首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1998年7月22日长江中游中β低涡的数值模拟及分析   总被引:12,自引:2,他引:12  
徐亚梅  高坤 《气象学报》2002,60(1):85-95
文中使用非静力的MM5中尺度模式,模拟1998年7月22日鄂东沿江发生的中β尺度突发性大暴雨。分析模式是高分辨输出,结果发现,中心分别位于庐山和黄石的两个中β低涡产生了上述突发性暴雨,一个中β低涡是非及地的,另一个是及地的;还发现:不仅中β低涡的结构和中α低涡有显著差异,而且非及地的中β低涡和及地的中β低涡结构上也有很大差异。非及地的中β低涡低层为冷干区,中高层为暖湿区,发展强盛时低层存在下沉辐散气流;及地的中β低涡由地面到中高层均为暖湿区,低层也不存在下沉辐散气流。探讨了两个中β低涡的形成原因,低空急流的扰动,经过幕阜山时,水平风速明显加强,在低层产生强质量辐合的同时,850hPa流场发生气旋性弯曲,移出幕阜山时,形成了稳定少动、中心位于庐山附近的中β低涡;庐山低涡在发展强盛时,通过次级环流诱发了黄石附近中β低涡的形成。  相似文献   

2.
冬季西伯利亚高压动力结构的研究   总被引:16,自引:1,他引:16  
本文研究了冬季西伯利亚高压建立时期的动力结构。研究得到,在高压建立前期,对流层中以正涡度为主。低层和高层有弱的辐合,中层是辐散;相应在700hPa以下是上升,以上是下沉。但当反气旋发展时,高层为正涡度和辐合气流,低层为负涡度和辐散气流,整层为下沉运动。这表明对流层中、上层的强质量辐合是导致西伯利亚高压发展的一个重要因子。涡度方程的诊断表明,西伯利亚高压区负涡度的出现和加强是对流层中、上层负涡度平流和低层散度项的作用。 另外,西伯利亚高压热平衡计算表明,对流层有深厚的冷却层(热汇)。这种非绝热冷却将在对流层中导致深厚的下沉运动,从而引起中高层的辐合,低层的辐散,有利于高压的加强。因而西伯利亚高压是在动力和热力因子共同作用下形成的。  相似文献   

3.
河南特强暴雨β中尺度流场发展机理的数值模拟研究   总被引:2,自引:2,他引:2  
采用宇如聪等研制开发的η坐标有限区域中尺度暴雨数值预报模式AREM,对2004年7月16—17日发生在河南的一次特大暴雨过程进行了数值模拟。模拟结果表明:凝结潜热促使对流层中层大气在β中尺度水平范围的气柱内得到加热,中高层大气的等压面抬高并形成β中尺度高压,中低层大气的等压面降低并形成β中尺度低压,上下层的共同作用促进了垂直运动的迅速发展。当上升运动强烈发展时,在其四周有明显的补偿下沉气流出现:在强上升运动南侧,对流层高层辐散气流向南回流导致对流层高层出现中尺度垂直环流圈,它的下沉支融入上升运动区南侧的补偿下沉气流中,并将高空的水平动量带到对流层低层形成一支新的β中尺度急流;在强上升运动北侧,对流层低层发展出了一支中尺度垂直环流圈,其下沉支向南的辐散气流与低层西南暖湿气流汇合,形成β中尺度辐合线,加强了暴雨区上空低层的辐合;在强上升运动东侧,对流层低层也有一支中尺度垂直环流发展,其下沉支中向西的辐散气流使该区域原来较为一致的西南气流出现向东的偏转,从而在西南气流中形成气旋性弯曲,更进一步加强了β中尺度辐合线上的辐合。对流层低层非地转涡度的强烈发展是β中尺度气旋形成的重要原因。最后给出了强暴雨β中尺度流场发展机理的三维空间示意图。  相似文献   

4.
本文通过对一些个例的研究,分析了西南低涡的维持和发展条件,发现低涡的维持和发展主要靠中高层的辐散量要大于低层的辐合量,同时中高层凝结潜热的释放也起着相当重要的作用。分析指出,在低涡上空,对流层上层有两支气流,(上升气流和下沉气流),在对流层中下层也有两支气流,共同构成低涡的三维流场。其中对流层中下层的两支气流对天气变化有重要影响。西南低涡的东部和南部是主要的降水区,而降水的强弱和低涡东侧的上升气流强弱及大气层结、水汽辐合量有关。  相似文献   

5.
江淮气旋的结构特征   总被引:1,自引:1,他引:1       下载免费PDF全文
本文分析了13个江淮气旋个例的合成场。认为江淮气旋的温压场特征是低层为低压,高层为高压,发展时各层均为暖性的,强盛后低层为冷性,高层为暖性;流场特征是低层气流辐合,具有正涡度,高层气流辐散,具有负涡度,气旋中心区域气流上升,边缘区域气流下沉,具有垂直环流圈。  相似文献   

6.
2010年福建一次早春强降雹超级单体风暴对比分析   总被引:3,自引:0,他引:3  
利用探空、地面资料以及建阳、龙岩、长乐三部新一代天气雷达资料,对2010年3月5日福建中北部地区5cm强降雹的两个超级单体风暴进行了对比分析。结果表明,干暖盖、强垂直风切变、中高层正涡度区及地面中尺度低压为超级单体的形成提供了良好的环境场。两个超级单体都是由多单体合并后发展起来的,在成熟阶段以右移为主,属长寿命右移风暴:第一个超级单体在发展过程中由于地形作用和新单体的并入经历了3次加强过程,低层出现明显的钩状回波、中高层三体散射特征;第二个超级单体经历了多单体风暴—超级单体风暴—多单体风暴3个阶段,成熟阶段低层呈现出明显的倒"V"形回波特征,中高层有明显向右伸展的云帖。两个超级单体风暴的中气旋都是由中层发展起来,随着中气旋强度不断加强和厚度加大,最强切变中心突降时出现冰雹、大风强对流天气。通过对第一个超级单体中气旋流场分析,发现风暴前、后侧的下沉气流与低层入流形成了明显的辐合旋转作用,下沉的干冷气流进一步推动低层的暖湿入流,形成强烈的上升气流,并在风暴顶形成强辐散,使得风暴长时间维持。第二个超级单体在风暴减弱阶段,风暴右侧出现中气旋分裂,之后减弱、消失。产生强对流天气时,中高层维持高反射率因子,出现三体散射现象、风暴顶强烈辐散以及较大的VIL密度等特征。  相似文献   

7.
2005年6月湖南大暴雨过程的天气动力学诊断分析   总被引:9,自引:3,他引:9  
利用NCEP分析资料和实测资料,对2005年6月初湖南大暴雨过程进行了天气动力学诊断分析。结果表明:暴雨区中上升运动和水汽辐合均大于周围区域,中低层为对流不稳定层结。暴雨区位于非地转湿Q矢量辐合强迫的次级环流上升支中,其南北两侧为非地转下沉气流,下沉气流的补偿有利于暴雨系统的维持。非地转湿Q矢量辐合区对6小时暴雨落区预报有指示意义。暴雨区位于700hPa湿位涡和850hPa湿相对位涡负值中心附近偏暖湿气流一侧。低层暖湿平流和强上升运动致使低层湿空气辐合补偿、热量上传,利于高层辐散增强,抽吸作用加强低空辐合,促使暴雨发展。  相似文献   

8.
LAPS分析场在一次强对流天气过程尺度分析中的应用   总被引:1,自引:0,他引:1  
利用LAPS(local analysis and prediction system)同化系统融合多种观测资料,对2010年8月25日发生在上海的一次强对流天气过程进行中尺度分析。结果表明,这次强对流天气主要是由中、低空中尺度辐合系统直接触发形成的。强对流形成阶段,地面有分散辐合形成并逐渐加强,成为触发中尺度垂直环流的主要机制,垂直结构上出现低层辐合高层辐散的有利配置,风暴中心附近出现明显的上升气流区,中高层相对湿度显著增加。成熟阶段,强对流云体中心附近的对流层底层开始出现下沉气流,上升气流在其拖曳作用下明显倾斜。衰减阶段,下沉气流加强使中尺度环流动力结构和水汽供应受到破坏,垂直结构上转为底层辐散高层辐合。因此,与天气尺度分析相比,基于LAPS的中尺度分析能更深刻地揭示中小尺度系统的三维结构和时空演变特征。  相似文献   

9.
低纬高原地区南支槽强降水中尺度MCS系统的模拟与分析   总被引:6,自引:7,他引:6  
选取2002年5月11~13日云南地区的一次南支槽强降水过程,利用MM5非静力中尺度数值模式对这次降水过程进行了数值模拟,利用模式高分辨率的输出结果分析了这次强降水中尺度对流系统的结构特征。分析结果表明:强对流系统的低层环境风场为西南和东南气流辐合,高层则为一致的槽前西南气流。低层强正涡度暖湿气流辐合上升区紧邻辐合线的西南侧,槽前西南暖湿气流在辐合线附近冷空气的作用下辐合上升,形成强降水,强降水落区位于低层700hPa强正涡度暖湿气流辐合上升区的西南侧。对物理量要素的时间演变分析表明:在对流发展初期,沿辐合线的正负涡度、辐合辐散、上升与下沉运动在垂直方向和水平方向上相间分布,呈多个模态;当对流发展较强时演变为单一模态分布,即辐合线附近低层为正涡度辐合气流上升区,而高层为负涡度辐散气流下沉区。其中低层辐合较为浅薄,位于地面到600hPa高度,而正涡度和垂直速度较为深厚,可以从地面向上分别伸展到400hPa和200hPa高度。研究还揭示了低纬高原地区中尺度对流辐合系统的垂直轴线随高度向辐合区东北侧(高纬度地区)倾斜的特征,这是低纬高原地区南支槽强降水中尺度对流系统与其它切变线、准静止锋和低涡等中尺度对流系统不同的最主要特征之一。  相似文献   

10.
利用区域自动站观测、卫星、NCEP(1.0°×1.0°)再分析以及EC细网格等资料,对2019年6月发生在铜仁的2次暴雨天气过程进行分析,结果表明:(1)2次暴雨天气过程高空500 hPa青藏高原和四川有高空槽东移,贵州处于槽前西南气流中。地面从青海—甘肃南下的冷空气,分两路南下在遵义东部交汇,迫使该地暖空气抬升,在重庆附近形成"Ω"形势,凸起的中心位于重庆中部,形成锢囚气旋。(2)对应在850 hPa有贵州偏南气流与四川偏北气流交汇,在毕节东部形成气旋性环流,随着南风持续加强,北风继续南下补充,逐渐在重庆西北部形成低涡(即重庆低涡)。(3)与低涡对应的对流云团,起初触发于毕节与遵义附近,并沿着低涡切变线移动、发展,最强时形成MCS,云顶温度-70℃,暴雨发生在对流云团强中心附近。(4)从垂直结构看,低涡伸展高度在850 hPa以下,低涡附近前侧低层为暖湿、中高层干冷,而低涡后侧则整层为干冷,同时近地层偏东风气流也表现为暖湿特性,则利于对流降水在低涡前侧不稳定的暖湿气流里激发。(5)铜仁处于重庆低涡影响的形势下,物理量特征能较好地反映降雨的起止时间和降雨落区。  相似文献   

11.
2009年早春南方地区一次高架雷暴天气过程的机理分析   总被引:1,自引:0,他引:1  
利用常规气象观测资料、6.7μm卫星水汽图像和TBB、闪电定位资料以及NCEP/NCAR 1°×1°再分析资料,对2009年3月3日南方地区一次高架雷暴天气过程进行诊断研究。结果表明,该过程主要影响系统是中低层低槽、低涡切变线、西南低空急流、南北支西风急流。低空急流造成暖湿气流输送和高空急流造成冷平流侵入是对流触发机制。近地层为层结稳定的"冷空气垫",位势不稳定出现在低空急流与中高层干冷气流之间,并因急流中的下沉运动得以加强;西南暖湿气流与其北部干冷气流在中低层形成湿斜压锋区,西南气流的下沉支和北方下沉气流汇合在近地层形成的东北风回流与上部西南风生成锋面次级环流圈及中高层上升气流与北支急流中的下沉气流耦合形成次级正环流圈有利于倾斜上升运动的发展;低空急流的强暖平流和水汽通量辐合、北支急流入口区右侧的强辐散和南支急流北侧的辐合均加强了中尺度上升运动。湿层浅薄、上下干层较为深厚、强垂直风切变、低层逆温、-20~0℃过冷水层气流强上升运动等有利于雷暴天气的发生。雷电和冰雹出现在TBB、低空急流风速、θse、水汽通量以及300 h Pa散度等值线密集区附近。  相似文献   

12.
利用ECMWF资料对2001年6月1~5日东移出高原的低涡个例的动力结构进行了诊断分析。结果表明:(1)低涡东移过程中,闭合等高线或者闭合气旋式环流的垂直厚度随时间呈加厚趋势;(2)高原低涡在东移过程中,垂直方向上几乎都是正涡度,500hPa上正涡度随时间呈增强趋势;(3)在高原上时涡区明显低层辐合、高层辐散;移出高原后表现为微弱的低层辐合、高层辐散,甚至低层辐散、中层辐合、高层辐散。(4)处于高原上时涡区整层都为上升运动,移出高原以后上升运动微弱,中低空经常为下沉运动。(5)低涡处于高原上时,涡区在边界层始终有水汽辐合,移出高原以后在低空只有微弱的水汽辐合甚至辐散。涡区外围东南侧的槽前脊后区存在低空急流,是水汽通量和水汽辐合的大值区。   相似文献   

13.
"99·6"梅雨锋暴雨低涡切变线的数值模拟和分析   总被引:20,自引:1,他引:19  
隆霄  程麟生 《大气科学》2004,28(3):342-356
在天气分析的基础上,利用非静力中尺度模式MM5和四维资料同化逼进方法及双向三重嵌套网格技术,对1999年6月23~25日(简称"99·6")发生在长江中下游地区的梅雨锋暴雨过程进行了数值模拟.结果表明:模拟结果与观测结果的比较指出,高分辨数值模式MM5可以成功地模拟梅雨锋中尺度低涡切变线的发生和发展;模拟结果显示,在α中尺度低涡切变线发展过程中,低层强的西南急流和东北气流增强了低层的辐合;而高空的西风急流和东风急流则增强了高空的辐散;正是由于这种从高空到低空环流的配置,才促进了α中尺度低涡不断发展;模拟低涡切变线不同部位的垂直环流和物理量场表明,"99·6"梅雨锋低涡切变线的结构非常复杂:在梅雨锋的发展期,暖锋附近的垂直上升运动最强,低涡中心次之,冷锋附近最弱.模拟结果也表明,由于下垫面特征的不同,中国和日本的梅雨锋暖锋附近环流结构有较大的区别;模拟结果显示,在α中尺度低涡发展过程中,不断有扰动在低涡前部发展,激发并分裂出一系列的β中尺度系统,β中尺度系统运动剧烈,但由于其低层辐合强于中空辐散,所以当它远离母体时会很快衰减.  相似文献   

14.
利用分钟降水资料、FY-4A气象卫星高分辨率资料、多普勒天气雷达资料和ERA5再分析资料对2021年“7·20”河南极端暴雨过程中尺度系统精细结构及热动力发展机制进行观测分析和诊断研究, 结果表明: 该过程发生在“两高对峙”的鞍型场弱背景下, 其主导系统为500 hPa弱低压系统和低层偏东风切变线; 极端暴雨主要由水平尺度约300 km呈近乎圆形结构中尺度对流复合体产生, 其长时间维持与内部多个中尺度对流系统的合并及外围东南侧暖湿区新生单体的持续并入有关; 郑州站小时强降水(201.9 mm· h-1)由几乎静止的低质心β中尺度弓状回波产生, 其分钟降水量持续在3~4.7 mm; 边界层风场的动力辐合触发强烈对流, 使得强降水区上空θse锋区长时间处于中性层结, 其高层辐散气流在西北太平洋副热带高压附近构成次级环流下沉支; 中层500 hPa低压区气旋式曲率附近正涡度平流和925 hPa偏东气流持续暖平流输送、低层变形场锋生作用, 以及来自华东近海边界层急流异常强盛的水汽输送是此次极端过程发展维持的热动力学成因。  相似文献   

15.
利用NCEP再分析1°×1°资料对2009年9月4-7日造成新疆西南部一次暴雨过程的中亚低涡的动力热力三维结构及演变特征进行了分析,并初步探讨了低涡的发生、发展机理。结果表明:此次中亚低涡具有明显的冷心结构且较为深厚,首先在对流层中高层发展(300 h Pa高度上低涡中心及演变特征最为明显),随时间向低层延伸,其发展—成熟—减弱过程是一个斜压—正压—斜压的过程。成熟期,300 h Pa之下均为冷异常,冷中心与高度中心相重合,轴线趋于垂直;低涡中心附近对流层整层均为正涡度区,在其东西两侧300 h Pa高度上存在对称的正涡度中心;低涡中心附近对流层低层辐合、中高层辐散的结构有利于上升运动及中亚低涡的维持发展。减弱期,冷中心强度明显减弱,轴线向西倾斜,低涡中心附近对流层中高层出现负涡度区,无明显辐散辐合和上升运动。此次过程中,上升运动与充足的水汽相互配合,引发强降水。对流层"上干下湿"的空间结构、冷空气向下传递以及高位涡的侵入和向下传递对低涡的发展演变有重要意义。  相似文献   

16.
一次局地大暴雨三维风场的双多普勒雷达探测研究   总被引:14,自引:3,他引:11  
周海光  张沛源 《大气科学》2005,29(3):372-386
使用地基双多普勒天气雷达综合和连续调整技术 (MUSCAT), 对2001年7月13日安徽省合肥、马鞍山双多普勒雷达同步探测到的暴雨系统进行三维风场反演.其暴雨系统的流场特点是在低层存在切变线和辐合线, 高层气流辐散, 有明显的垂直环流; 低层的水平辐合区与高层的水平速度的辐散区相匹配, 对应着上升运动; 下沉气流在近地面层形成的向外流出的辐散气流促使暴雨系统前方低层暖湿空气上升; 南北强回波单体在全椒附近合并, 单体合并首先从低层开始, 然后扩展到中高层, 造成全椒地区的局地强降水; 中低层的切变线和辐合线是强回波单体合并的动力因素; 流场特征是在其上空形成中尺度涡旋.最后, 给出了这次暴雨的概念流场模型.  相似文献   

17.
通过对 1999年秋季一次突发性降水过程高空急流的分析 ,发现急流入口区南侧辐散 ,其低层辐合上升 ,当低层有印缅槽活动的时候 ,对流加强 ,印缅槽发展 ;急流入口区北侧辐合 ,其低层辐散下沉 ,有向南的非地转风  相似文献   

18.
屠妮妮  李跃清 《干旱气象》2014,32(6):962-971
利用NCEP再分析格点资料、常规观测资料、自动站降水资料、0.1°×0.1°的FY-2E云顶亮温资料,对2013年6月29日至7月1日发生在四川东部的大暴雨过程进行分析,结合涡度收支方程重点分析了引发这次大暴雨的西南涡结构。结果表明:在西南低涡发生发展过程中,对低涡发展起直接作用的是水平辐合辐散项和水平平流项,低涡形成前水平辐合辐散项起主要贡献,低涡形成后水平平流项贡献增大,并在对流层中低层以正贡献为主,扭转项贡献最小,而垂直输送项在低涡形成前期以正贡献为主,低涡减弱阶段以负贡献为主;在西南低涡形成前期,对流层高层有位涡大值区向下传输至中层,中高层正位涡叠加在低层负位涡之上,有利于低层低涡的发展及不稳定能量的存储与释放,是低涡维持发展的重要因素。  相似文献   

19.
利用常规气象观测资料和NCEP再分析资料,对江西2012年2月22日的平流雾天气过程进行了诊断分析。结果表明,低层850—925 hPa江南有暖脊发展,且西南气流与等温线交角较大时,暖湿平流的输送为平流雾的形成提供了有利的平流逆温层结和水汽条件。当地面西南倒槽向东北方向发展时,在700—850 hPa西南急流的南侧有辐散下沉气流,925 hPa到近地层有弱辐合上升气流,两支气流的垂直混合有利于水汽聚积在逆温层下而形成雾。平流雾易形成于低层回温最明显且与地面逆温强度最大的时段。  相似文献   

20.

对2006-06-03西安、咸阳突发性暴雨天气进行预报讨论及成因分析,结果表明:①预报失误的原因主要是环流形势非常复杂,天气系统演变规律难以把握,对造成影响的中小尺度系统很难捕捉;高原东部低涡、切变突生机理认识不清;冷空气强度及入侵路径不明晰。②这次突发性暴雨天气是由贝湖冷涡东移、高原上多短波槽活动,东高西低形势建立,提供了大降水发生的背景条件;高空冷槽、上升运动、低涡辐合区汇合并叠加在西安、咸阳,为该地中小尺度系统生成和发展提供有利条件;突发性暴雨产生在深厚的水汽层结、水汽辐合及强烈的持续上升运动区,在高层辐散、低层辐合的形成区,对流发展,强烈的低涡辐合触发不稳定能量释放,产生突发性暴雨;低涡辐合形成与暴雨过程同步,辐合中心出现突发性暴雨。低涡辐合是造成突发性暴雨的直接影响系统。

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号