首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
关皓  周林  王汉杰  宋帅 《气象学报》2008,66(3):342-350
利用中尺度大气模式MM5(V3)和第3代海浪模式WWATCH建立考虑大气-海浪相互作用的风浪耦合模式.在耦合模式中引入考虑波浪影响的海表粗糙度参数化方案,大气模式分量提供海面10 m风场驱动海浪模式分量运行,并利用海浪模式分量反馈的波龄参数计算海表粗糙度.利用耦合模式模拟南海的一次台风过程,通过3组对比试验,检验耦合模式对台风过程的模拟效果并研究大气-海浪相互作用对台风过程的影响.结果表明:耦合模式能够较好地模拟南海的台风过程,与非耦合大气模式相比,其模拟的台风强度略有增强,路径变化不大;耦合模式对台风过程中海表热通量及降水影响显著,在台风充分发展过程中,耦合模式模拟的海表热通量增强,台风螺旋雨带上尤其是台风路径的右侧,耦合模式模拟的降水强于非耦合模式;耦合模式较好地模拟了台风过程海浪场的分布和演变,与非耦合模式相比,其模拟的海浪场增强,与实际更为接近;考虑了海表粗糙度对波浪的依赖关系后,海浪场同时影响海表的动力过程和热力过程,从本次个例看,在台风发展初期,海浪对海表动力作用影响显著,其反馈作用使台风系统减弱,但在台风充分发展后,耦合系统中海表热通量增加,热力作用显著增强,海浪的反馈作用有利于台风系统的发展和维持.  相似文献   

2.
利用中尺度大气模式AREM与国际上比较成熟的海浪模式WAVEWATCH-Ⅲ进行双向耦合,应用管道通信技术建立区域中尺度大气-海浪耦合模式预报系统,充分考虑中尺度海-气间的相互作用,即大气低层风场驱动海浪并影响海浪状态变化,海浪通过与波龄密切相关的海表粗糙度和海洋飞沫来改变海气间动量、感热和潜热交换从而实现对大气的反馈.文中利用该耦合预报系统对发生在东南沿海的"威马逊"台风过程进行数值试验,重点分析海表粗糙度和海洋飞沫两个耦合因子对台风数值预报的影响.主要结论是:在台风高海况下,海浪引起的海表粗糙度和海洋飞沫的增加对台风数值预报影响均较为显著.海表粗糙度加大了海气间动量通量(摩擦作用),其阻碍台风的发展,但对台风路径预报影响不大;海洋飞沫贡献的感热和潜热为台风发展提供能量,从而使台风强度增强,降水显著增加,并使台风路径预报更加接近实况;两者共同的作用,使台风强度增强,台风路径预报也更为合理.  相似文献   

3.
海浪和海洋飞沫对“珊珊”台风影响的数值研究   总被引:1,自引:0,他引:1  
刘磊  费建芳  郑静  程小平 《气象学报》2011,69(4):693-705
台风是剧烈的天气系统,在开放的海上强风激起大浪,改变了海表粗糙度,同时,海浪顶端的白泡沫破碎,在海-气界面处会出现大量的海洋飞沫。基于共享内存的进程间通信技术应用到区域大气和海浪模式的耦合中,大气模式引入了Fairall和Andreas两种海洋飞沫参数化方案,对2006年珊珊台风进行了模拟对比试验,结果表明:耦合模式通过海-气相互作用,对台风的强度产生影响,由于耦合模式在海表粗糙度的计算上考虑了海表状况,使得耦合模式模拟的台风强度更接近实况,而对台风的移动路径影响不大;耦合模式中海-气相互作用主要通过动力因素来对台风产生影响,海表状况影响了海表粗糙度,从而使台风的动量输送发生变化,具体的台风强度增强还是减弱主要取决于海表状况与实况的符合程度;海洋飞沫参数化主要通过热力场的改变来影响动力场,Fairall方案中潜热通量和感热通量得到很大程度的加强,使得台风的热力结构得以改变,台风强度明显加强,从而影响了动力场结构;Andreas方案由于其界面通量算法在高相对湿度条件下计算界面通量时得到的量值较小,虽然高风速条件下感热通量加大,但总的潜热通量、感热通量较Fairall方案为弱,因此,模拟的台风强度不强;海洋飞沫参...  相似文献   

4.
利用一个海气耦合模式对台风Krovanh的模拟   总被引:5,自引:1,他引:4       下载免费PDF全文
采用中尺度大气模式MM5和区域海洋模式POM构造了中尺度海气耦合模式, 模拟了Krovanh (0312) 台风过程中台风-海洋相互作用, 分析了台风引起的海面降温影响台风强度的机制和海洋对台风响应的特征。试验结果显示: 考虑台风引起的海面降温使台风强度模拟有了较大改进, 模拟的台风中心气压和近中心最大风速均与实况较符合。POM模拟的海表面温度与TRMM/TMI观测的海表面温度也较为一致, 台风Krovanh在其路径右侧95 km处引起较大的海面降温, 最大降温幅度达5.8℃。与海表面温度降低相对应的是混合层深度的增加, 较大的海面降温对应较大的混合层加深, 表明大风夹卷在海表面温度的降低中起主要作用。分析表明, 台风引起的海面降温降低海洋向大气输送的潜热通量和感热通量, 特别是在台风内核区, 平均总热通量减少了32.1%。热通量的减少使得湿静力能及湿静力能径向梯度减小, 削弱了台风强度。  相似文献   

5.
南海海域海-气耦合模式及其数值模拟试验   总被引:11,自引:1,他引:10  
在NCAR区域气候模式RegGM2和普林斯顿海洋模式POM基础上发展适用于区域海-气相互作用研究的区域海-气耦合模式,模式采用同步耦合、海洋模式将海表温度提供给大气模式,大气模式为海洋模式提供太阳短波辐射、感热能量、潜热通量。海洋与大气模式每15min交换一次通量。耦合过程没有使用通量校正。使用该模式对中国南海区域1995年5-7月大气和海洋进行了模拟试验,将模拟结果与COADS通量强迫的模拟结果  相似文献   

6.
中尺度海-气耦合模式GRAPES_OMLM对台风珍珠的模拟研究   总被引:1,自引:0,他引:1  
利用全球/区域同化与预报系统GRAPES(Global/Regional Assimilation and Prediction System)和改进的Mellor-Yamada型海洋混合层模式OMLM(Ocean Mixed Layer Model),建立了一个新的中尺度海-气耦合模式GRAPES_OMLM,并利用该模式对发生于南海的台风珍珠(0601)进行了模拟研究,检验了GRAPES_OMLM对台风的模拟性能,并分析了局地海-气相互作用对台风的影响。结果表明,GRAPES_OMLM基本能模拟出台风天气过程中的主要物理过程。考虑了海-气相互作用的耦合试验所模拟出的台风强度、近台风中心最大风速以及台风后期移动路径,相对于两组控制试验(单独大气模式)的模拟结果都有较大的改进。而且,采用逐日变化海表温度作为下边界条件的控制试验2的模拟结果相对于SST不变的控制试验1更接近观测。耦合模式GRAPES_OMLM能较好地模拟出台风过境海表温度的变化,台风珍珠在其路径右侧有超过4.0℃的降温。SST的变化和海表风应力的变化呈反相关系,风应力的增大伴随着海洋近表层湍流动能(TKE)的加强,大风动力作用是SST降低的主要原因。SST的降低致使海洋向台风输送的热通量减少,进而削弱了台风的强度并改变台风环流结构,同时通过改变位势涡度趋势的一波结构(WN-1)来影响台风的移动路径。  相似文献   

7.
由于海洋业务化预报模式对中尺度涡等海洋中、小尺度物理过程的准确预报仍然具有较大困难,因此,区域台风-海洋耦合模式初始化采用稳定基态的海洋数据是当前的有效手段。本文通过对两组台风个例的模拟,检验了基于稳定基态海洋数据的区域台风-海洋耦合模式的模拟效果,并通过6组敏感性试验,研究了初始台风最大风速半径(Radius of maximum wind speed,RMWS)对耦合模式模拟结果的影响。结果表明:初始台风RMWS的影响贯穿整个模拟阶段,RMWS越大,下垫面热通量输送量级越大,台风强度越强。在台风强烈的风场作用下,海温反馈也越显著,从而引起热通量降低幅度增大。RMWS作为与台风结构密切相关的物理量在度量台风强度中起到了重要作用。  相似文献   

8.
为探索台风与海洋相互作用,用实测资料,计算了在东海和南海活动的共9个台风海-气界面热量交换值。结果:发现台风环流内,水温小于露点时,潜热出现负值,反之为正值,水温与露点相同时,潜热量值为零;台风环流内海-气界面热量交换强烈,主要贡献来自潜热,水温、气温均是下降趋势,气温下降更为明显;夏季,东海和南海海-气界面热量交换值量相近,海洋对大气响应为主。秋、冬季,海-气界面热量交换比夏季强烈,大气对海洋响应为主。结论:台风对海洋响应为主;秋、冬季,海-气界面热量交换,东海比南海更加强烈。  相似文献   

9.
为探索台风与海洋相互作用,用实测资料,计算了在东海和南海活动的共9个台风海-气界面热量交换值。结果:发现台风环流内,水温小于露点时,潜热出现负值,反之为正值,水温与露点相同时,潜热量值为零;台风环流内海-气界面热量交换强烈,主要贡献来自潜热,水温、气温均是下降趋势,气温下降更为明显;夏季,东海和南海海-气界面热量交换值量相近,海洋对大气响应为主。秋、冬季,海-气界面热量交换比夏季强烈,大气对海洋响应为主。结论:台风对海洋响应为主;秋、冬季,海-气界面热量交换,东海比南海更加强烈。  相似文献   

10.
冬季风风场持续异常对黑潮流域影响的数值模拟   总被引:1,自引:0,他引:1  
运用一个三维斜压海洋模式对冬季风风场持续异常时期的黑潮区海洋进行了模拟,初步分析了冬季风风场持续异常对黑潮区海面高度、海流和海温的影响。结果表明:强冬季风会减弱海面高度梯度,普遍降低黑潮区海表温度,对流场有一定的影响,尤其在南海这样的封闭海区。强冬季风抑制了黑潮的发展,同时却增强了黄海暖流和对马暖流。  相似文献   

11.
Based on MM5,POM,and WW3,a regional atmosphere-ocean-wave coupled system is developed in this work under the environment of Message Passing Interface.The coupled system is applied in a study of two typhoon processes in the South China Sea(SCS).The results show that the coupled model operates steadily and efficiently and exhibits good capability in simulating typhoon processes.It improves the simulation accuracy of the track and intensity of the typhoon.The response of ocean surface to the typhoon is remarkable,especially on the right side of the typhoon track.The sea surface temperature(SST)declines,and the ocean current and wave height are intensified.In the coupling experiment,the decline of SST intensifies and the inertial oscillation amplitude of the ocean current increases when the ocean-wave effect is considered.Therefore,the atmosphere-ocean-wave coupled system can help in the study of air-sea interaction and improve the capability of predicting and preventing weather and oceanic disasters in SCS.  相似文献   

12.
南海海流对冬季风风应力的响应特征   总被引:1,自引:1,他引:0  
本文用美国普林斯顿大学海洋模式(POM)的南海版本(SCS-POM) 模拟了持续冬季风风应力作用下,南海海流的响应特征。结果表明,从静止的海洋 出发,定常冬季风风应力驱动下的南海海流有明显的时间变化,垂直积分后的海流 (全流)约需120天左右的时间,方能达到准稳定态,表层、次表层和深层海流的时 间演变也有类似特征。模拟结果还表明,SCS-POM有能力模拟出南海边界流、沿 岸流和海流的涡旋状结构。  相似文献   

13.
为探讨黄海海洋涡旋的三维结构特征、能量输送与转换及影响机制,对黄海海域典型台风海洋气旋与近海海湾反气旋式涡旋个例进行数值模拟和时空诊断分析。采用FVCOM(Finite Volume Community Ocean Model)区域海洋数值模式精细化描述台风海洋涡旋与近海海洋中小尺度涡旋系统。对涡旋能量传输特征模拟显示,气旋式和反气旋式海洋涡旋中,非对称强流区动能能量下传比涡旋中心部位的强度更强,维持时间更长,下传深度更深。反气旋式海洋涡旋因Ekman流动形成的向中心辐合作用,造成此类差异更显著。气旋涡的动能主要来源于台风的近海面风应力动能和海洋涡旋有效位能的转换,反气旋涡旋区域风动力偏弱,其动能强度维持在低位,其涡旋增强伴随着有效位能的增加。环境因子影响机制从风浪,底摩擦和地形三方面讨论。结果显示:耦合波浪模块后,台风强风应力和风浪的综合作用扩大台风海洋涡旋尺度,并增强涡旋环流强度,同时对相邻的反气旋涡有压缩和减弱作用。风浪效应对台风海洋涡旋有正贡献。强台风过程表层环流响应台风应力而浅水地形和底摩擦强烈影响涡旋下层,造成台风海洋涡旋结构在垂直方向上偏移,并影响到下层环流速度减小,流向与表层相反。在海洋气旋涡和反气旋涡的显著辐散区,其混合层下方有温盐要素的涌升对应,辐合区有温盐要素的下沉对应;同时海底地形的升降也造成温盐强迫上升与下降,其强度与地形起伏尺度成正比,较环流系统作用更强。  相似文献   

14.
We statistically analyze the tropical typhoon forming in the South China Sea and use TC (Tropical Cyclone) for short in the following) by typhoon yearbook. The typhoon quantity is very different in different months and years. TC appears in all months except March, and the most TC quantity in a year is 11, the least is 1 and 6.2 on average. The most TC quantity in a month is 5 and the least is 0. TC lands most in August and no TC lands on Chinese continent from December to the following April. The primary landing area is between Shantou and Hainan Island. The sustaining period of TC is usually between 4 days to 7days, and the longest is 19 days. Only 15% of the TC forming in the South China Sea can intensify to typhoon, and they all form in the ocean area deeper than 150m. The South China Sea is the ocean area over which the TC occurs frequently.  相似文献   

15.
Upper ocean response of the South China Sea to Typhoon Krovanh (2003)   总被引:1,自引:0,他引:1  
To quantitatively investigate the dynamic and thermal responses of the South China Sea (SCS) during and subsequent to the passage of a real typhoon, a three-dimensional, regional coupled air–sea model is developed to study the upper ocean response of the SCS to Typhoon Krovanh (2003). Owing to the scarcity of ocean observations, the three-dimensional numerical modeling with high resolution, as a powerful tool, offers a valuable opportunity to investigate how the air–sea process proceeds under such extreme conditions. The amplitude and distribution of the cold path produced by the coupled model compare reasonably well with the TRMM/TMI-derived data. The maximum SST cooling is 5.3 °C, about 80 km to the right of the typhoon track, which is consistent with the well-documented rightward bias in the SST response to typhoons. In correspondence to the SST cooling, the mixed layer depth exhibits an increase; the increases in the mixed layer depth on the right of typhoon track are significantly higher than those on the left, with maxima of 58 m. This correspondence indicates that the SST cooling is caused mainly by entrainment. Under the influence of typhoon, a cyclonic, near-surface current field is generated in the upper ocean layer, which moves with the typhoon. The typhoon-induced horizontal currents in the wake of the storm have strong near-inertial oscillation, which gradually propagates downward. The unique features of the SCS response to Typhoon Krovanh are also discussed, such as Kuroshio intrusion and coastal subsurface jets.  相似文献   

16.
We statistically analyze the tropical typhoon forming in the South China Sea and use TC (Tropical Cyclone) for short in the following) by typhoon yearbook. The typhoon quantity is very different in different months and years. TC appears in all months except March, and the most TC quantity in a year is 11, the least is 1 and 6.2 on average. The most TC quantity in a month is 5 and the least is 0. TC lands most in August and no TC lands on Chinese continent from December to the following April. The primary landing area is between Shantou and Hainan Island. The sustaining period of TC is usually between 4 days to 7days, and the longest is 19 days.Only 15% of the TC forming in the South China Sea can intensify to typhoon, and they all form in the ocean area deeper than 150m. The South China Sea is the ocean area over which the TC occurs frequently.  相似文献   

17.
2013年影响湖南的两次相似路径台风暴雨对比分析   总被引:3,自引:3,他引:0  
应用多种常规观测资料、加密自动气象站资料和NCEP 1°×1°再分析资料,对2013年影响湖南的两次相似路径台风暴雨过程进行了对比分析。研究表明:“尤特”台风暴雨直接由台风环流引起,具有锋前暖区降水的特点;而“天兔”台风暴雨由台风低压倒槽与西风带天气系统相互作用引起的,其降水属于典型的锋面降水。“尤特”由东风带进入西风带,其与副高相对位置的变化是导致其登陆后路径北翘的主要原因。“尤特”低压环流与南海季风相互作用,充沛的水汽输送对台风低压环流的长时间维持以及湘东南暴雨的形成和发展起到了重要的组织和促进作用。而“天兔”登陆后南海季风位置偏南,不利于“天兔”的长时间维持以及向暴雨区的水汽输送。低层暖式切变线附近强辐合与高层强辐散耦合、低层强正涡度与高层负涡度的耦合为“尤特”台风暴雨的发生发展提供了动力条件。由中低层冷空气入侵导致的锋生强迫和高低空急流耦合形成的次级环流,加强了“天兔”低压倒槽内冷暖气流的辐合,是触发倒槽内中尺度对流发展和暴雨产生的重要动力机制。  相似文献   

18.
Studies on oceanic conditions in the South China Sea (SCS) and adjacent waters are helpful for thorough understanding of summer monsoons in East Asia. To have a 3-dimensional picture of how the oceanic currents vary, the oceanic elements in the South China Sea (SCS) and its neighboring sea regions in January~August 1998 have been simulated by using the improved Princeton University Ocean Model (POM) in this paper. The main results are in good agreement with that of ocean investigations and other simulations. The results show that the SCS branch of the Kuroshio Current is an important part in the north SCS from January to August; the SCS warm current is reproduced clearly in all months except in winter; there always exists a large-scale anti-cyclonic vortex on the right of the Kuroshio Current from January to August. In the model domain, the surface currents of the SCS have the closest relations with the monsoon with an apparent seasonal variation. In addition, the developing characteristics of the SST in the SCS and its neighboring sea regions before and after the summer monsoon onset are also well simulated by the improved POM. Those are the foundation for developing a coupled regional ocean-atmospheric model system.  相似文献   

19.
为了比较两个不同的海洋垂直混合参数化方案在中尺度海气浪耦合模式数值预报中的效果,采用军队T799全球预报系统和西北太平洋海洋预报系统的预报场资料驱动区域中尺度海气浪耦合模式,针对西北太平洋在2014年9月7—10日和17—20日的大气和海洋要素场进行数值回报试验,并将同期台风观测资料、NCEP再分析资料以及NOAA海表面温度数据各自与模式结果进行比较。结果表明,在无台风天气下使用GLS-ε方案对大气要素的预报效果更好,而MY2.5方案在台风天气影响下表现更好,同时其在连续8天的预报中无溢出现象,较GLS-ε方案稳定性更好;台风影响区域的海表面温度对MY2.5方案更敏感;台风天气过程中,MY2.5方案引起的海洋上层温度混合更强烈。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号