首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 109 毫秒
1.
基于TRMM资料的高原涡与西南涡引发强降水的对比研究   总被引:4,自引:0,他引:4  
利用TRMM(Tropical Rainfall Measuring Mission)卫星探测结果结合NCEP(National Centers for Environmental Prediction)再分析资料, 对2007年7月17日四川、重庆地区的一次西南涡强降水系统和2008年7月21日四川东部的东移高原涡强降水系统的三维结构特征、雨顶高度以及降水廓线特征进行对比分析研究。结果表明:(1)两次降水过程均是发生在西南—东北向的水汽辐合带中, 且降水云群均位于低涡的东南方。(2)两次强降水在水平结构上均表现为由一个主降水雨带和多个零散降水云团组成, 高原涡强降水过程比西南涡强降水的降水强度和范围都要大。降水雷达探测到的两个中尺度降水系统均以降水范围大、强度弱的层云降水为主, 但对流性降水对总降水量的贡献较大, 其中西南涡降水中对流降水所占比例比高原涡的大, 对总降水率的贡献也大。(3)垂直结构上:两次强降水的雨顶高度均是随地表雨强的增加而增加, 且最大雨顶高度接近16 km, 但西南涡强降水中的雨顶高度比高原涡更高, 说明西南涡降水过程中对流旺盛程度强于高原涡。(4)两次强降水中雨滴碰并增长过程以及凝结潜热的释放主要集中在8 km以下, 但8 km以上西南涡降水变化大于高原涡, 且前者在8~12 km高度层的降水量对总降水量贡献百分比大于后者。  相似文献   

2.
使用中国新一代FY-4A卫星、GPM卫星的降水雷达等多源观测数据,选择两次高原涡与西南涡相互作用的暴雨个例,分析了两涡作用下盆地中尺度降水云系的空间结构特征。结果表明:西南涡与高原涡耦合作用下产生中尺度对流复合体MCC云系,短时强降水主要发生在MCC发展至成熟阶段,强降水区的云顶亮温值低于-60℃,云顶高度在12 km左右;西南涡与高原涡相互作用时,云顶亮温低值区的中心位置和强度与同时刻强降水特征很好对应;降水云体中对流性降水粒子的反射率因子在低层快速增长,层云性降水粒子的反射率因子强度增长的区域为零度亮带层附近;对流性降水雨强远大于层云,其粒子半径也大于层云降水,而对流性降水粒子的浓度高于或等于后者;层云对总降水量的贡献大于对流云,且层云降水量表现出大小均匀的粒子积聚的结果;对流性降水率垂直分布柱状明显且有云墙,层云性降水率垂直分布呈不规则柱状且没有显著的云墙,降水率均随海拔高度的升高而减小,5 km以下对流层对总降水量的贡献最大。  相似文献   

3.
利用TRMM卫星资料对"07.7"川南特大暴雨的诊断研究   总被引:2,自引:0,他引:2  
利用TRMM卫星探测结果,结合多普勒雷达风廓线资料,研究了2007年7月9日发生于四川盆地南部的一次特大暴雨过程在不同阶段的降水粒子风廓线、潜热和降水结构特征。结果表明:(1)大暴雨区存在低层辐合、高层辐散的典型垂直环流结构。(2)强降水系统由一个主降水云团和多个零散降水云团组成;降水系统中对流降水所占面积比层云降水面积小,但对流降水具有很强的降水率,对总降水量的贡献超过层云降水。(3)降水发展旺盛阶段,强对流降水的雨顶高度可达17 km,强降水主体中垂直方向和水平方向均存在非均匀的降水强度分布;减弱阶段,强降水雨顶高度仅10 km左右,且其层云降水有清晰亮度带。  相似文献   

4.
《高原气象》2021,40(4):829-839
GPM(Global Precipitation Measurement)卫星目前被广泛应用于对流系统的研究中,但受限于卫星轨道扫描方式,在中纬度青藏高原东部区域,GPM轨道观测数据捕获完整的强对流系统较为困难。本文利用全球降雨观测GPM卫星资料、FY-4A卫星资料、NCEP-FNL和ERA-Interim再分析资料,结合地面观测资料,研究了2018年7月1日发生在高原东坡的一次暴雨强降水系统结构。结果表明:层云降水和对流性降水组成的混合性降水云团中,对流云样本数只有层云的1/5,但平均降水率是层云的14倍,对总降水的贡献达到75%,对流性降水贡献远高于南方强降水系统;强降水质心离地高度约2 km,具有比我国南方同类强对流系统更明显的低质心特征;对流云内云滴谱较宽,云粒子半径差异较大,2~5 km高度出现明显的粒子累积带,与层云系统具有显著差异。在副高外围西南气流的引导下,来自孟加拉湾的水汽通道打通,甘肃省南部700 hPa比湿可达16 g·kg~(-1),大气可降水量普遍达到40 kg·m~(-2)以上,加之大气不稳定能量较高,高原涡和700 hPa切变线合并触发了此次对流性强降水。受云团前侧高压脊阻挡,暴雨云团从高原东部初生至发展旺盛阶段用时接近4 h,自西向东移动约3个经度,属于准静止型暴雨云团,暴雨云团移速缓慢是导致此次局地极端强降水的重要原因。  相似文献   

5.
利用热带测雨卫星(TRMM)的降水雷达(PR)和微波成像仪(TMI)连续2个轨道的探测结果,分析了2013年6月26—29日发生在江西省北部地区的中尺度降水过程不同降水阶段的降水水平结构、雨顶高度、降水廓线的变化特征。结果表明,此次降水过程由强对流云降水逐渐演变为对流性较弱的层状云降水。对流云降水阶段降水系统由成片层状降水云团中分布的多个零散强对流降水云团组成,降水分布不均匀,强对流云降水对总降水量的贡献大。层状云降水阶段,层状云中强对流单体消失,对流云降水像素及对流云降水率对总降水量的贡献减少,降水雨强谱变小,降水高度逐渐降低,云体高层降水量减少。对流云降水和层状云降水廓线存在差异,最大降水率出现的高度越高且中高层降水量越大,降水的对流性则越强。  相似文献   

6.
利用TRMM卫星资料对青藏高原地区强对流天气特征分析   总被引:5,自引:0,他引:5  
李典  白爱娟  黄盛军 《高原气象》2012,31(2):304-311
利用热带测雨卫星TRMM(Tropical Rainfall Measure Mission)多种探测结果,结合NCEP再分析资料,研究了发生在青藏高原地区的一次强对流天气特征,综合分析了高原地区对流云特殊的水平、垂直结构特征。结果表明:(1)该强对流降水系统由几个孤立、零散的块状降水云团组成,以深厚弱对流降水为主,微波亮温的低值区也呈孤立、零散的块状分布,并且整个对流系统的云顶高度一致偏高,深厚强对流降水的雨谱主要集中在1~20mm.h-1的范围内,90%以上的深厚弱对流降水样本数和降水量都集中在0~5mm.h-1范围内,在垂直方向上呈被"挤压"状态。除云冰粒子集中在6~18km高度外,可降冰、可降水和云水粒子都集中在低层8km以下,冰雹天气表现为可降冰粒子在低层含量偏高。(2)高原地区强对流天气的特征与其他地方的不同,表现为雨强较小,比平原地区明显偏弱,且对流云降雨样本在不同降雨率范围内分布不均匀,降水云团雨顶高度也远低于平原地区的对流云,地表降水率大值区与微波辐射亮温低值区呈不完全对称分布,潜热释放呈单峰型。(3)高原地区强对流系统发生时,垂直上升运动在400hPa达到最大,水汽主要集中在400hPa高度以下的范围内。  相似文献   

7.
TRMM卫星对青藏高原东坡一次大暴雨强降水结构的研究   总被引:3,自引:0,他引:3  
利用热带测雨卫星(TRMM)探测资料,NCEP、ERA-Interim再分析资料,结合C波段多普勒雷达和其他地面观测资料,研究了2013年7月21日发生在青藏高原东坡的一次大暴雨强降水结构。结果表明,高能、高湿的不稳定大气在700 hPa切变线及地面辐合线的触发下产生了此次大暴雨,降水具有明显的强对流性质。从水平结构来看,降水系统由成片的层云雨团中分散分布的多个对流性雨团组成,对流样本数远少于层云,但平均雨强是层云的4.7倍,对总降水的贡献达到25.6%;以超过10 mm/h雨强为强度标准,3个20-50 km、回波强度在45-50 dBz的β中尺度对流雨团零散地分布在主雨带中,对应 < 210 K的微波辐射亮温区和≥ 32 mm/h的地面强降水;对流降水的雨强谱集中在1-50 mm/h,其中20-30 mm/h的雨强对总雨强的贡献最大,这与中国东部降水有着显著区别,而90%的层云降水的雨强均小于10 mm/h。从垂直结构来看,对流降水云呈柱状自地面伸展,平均雨顶高度随地面雨强的增强而不断升高(5-12 km),强降水中心区域的质心在2-6 km;降水廓线反映出强降水系统中降水主要集中在6 km以下高度范围,且降水强度在垂直方向分布不均匀,对流降水和层云降水的强度随高度升高的总趋势是趋于减弱,但在一定高度范围内,对流降水强度随高度升高而增大,并且在多个地表雨强廓线中都有体现。此外,地基雷达的探测结果也表明了强降水的低质心特点及显著的逆风区演变特征,这是对TRMM PR探测的验证和补充。   相似文献   

8.
利用热带测雨卫星(TRMM)的测雨雷达(PR)、微波辐射计(TMI)和闪电成像仪(LIS)资料分析2012年8月25日甘肃省一次较强冰雹过程。结果表明,本次过程受3个分散的β中尺度对流系统影响,对流云像素点约为层云的1/2,对流云平均降水率是层云的8.2倍。冰雹云回波顶高度近13 km,回波强度大于55 dBZ的最大高度为7.5 km左右,降水率大于45 mm·h^-1的云层厚度约7 km。降水廓线反映出降水率垂直分布不均匀,对流降水中50、10 mm·h^-1的降水率随着高度的升高先增加后减小,在9 km左右减小明显。此次冰雹过程的闪电发生临近处6 km雷达反射率高于40 dBZ,85 GHz极化修正亮温低于210 K。  相似文献   

9.
文中利用TRMM卫星的测雨雷达和微波成像仪探测结果,研究了1998年7月20日21时(世界时)和1999年6月9日21时发生在武汉地区附近和皖南地区的两个中尺度强降水系统的水平结构和垂直结构,以及TMI微波亮温对降水强弱和分布的响应。研究结果表明:这两个中尺度强降水系统中对流降水所占面积比层云降水面积小,但对流降水具有很强的降水率,它对总降水量的贡献超过了层云降水。降水水平结构表明,两个中尺度强降水系统由多个强雨团或雨带组成,它们均属于对流性降水;降水垂直结构分析表明,强对流降水的雨顶高度可达15km,强对流降水主体中存在垂直方向和水平方向非均匀降水率分布区,层云降水有清晰的亮度带,层云降水的上方存在多层云系结构。降水廓线分布表明:对流降水廓线与层云降水廓线有明显的区别,并且降水廓线清晰地反映了降水微物理过程的垂直分布。整个中尺度强降水系统中对流降水与层云降水的区别还反映在标准化的总降水率随高度的分布。微波信号分析表明:TMI85 GHz极化修正亮温,19.4与37.0,19.4与85.5,37.0与85.5 GHz的垂直极化亮温差均能较好地指示陆面附近的降水分布。  相似文献   

10.
利用TRMM卫星多种探测仪器得到的观测资料,分析研究2010年7月15~18日由西南低涡引发的四川盆地区域性暴雨天气过程,重点揭示了该次过程降水的三维结构特征。结果表明:红外和微波亮温数据均能从一定侧面反映低涡云系的降水特征;西南低涡引发的降水属于中尺度系统降水,层云降水对总降水的贡献率超过90%,存在明显的亮带结构;大范围降水区内包含一条主雨带和若干独立的对流性雨团,表现为大范围层云降水围绕对流降水的结构特征,对流性降水云顶最高能发展到17km,局部最大降水率出现在2~5km高度;降水凸起部分为独立的对流降水云团,呈塔状立体结构。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号