首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
The characteristics of droughts and floods in China during the summers (May–August) of 2016 and 1998 were compared in great detail, together with the associated atmospheric circulations and external-forcing factors. Following results are obtained. (1) The precipitation was mostly above normal in China in summer 2016, with two main rainfall belts located in the Yangtze River valley (YRV) and North China. Compared with 1998, a similar rainfall belt was located over the YRV, with precipitation 100% and more above normal. However, the seasonal processes of Meiyu were different. A typical “Secondary Meiyu” occurred in 1998, whereas dry conditions dominated the YRV in 2016. (2) During May–July 2016, the Ural high was weaker than normal, but it was stronger than normal in 1998. This difference resulted from fairly different distributions of sea surface temperature anomalies (SSTAs) over the North Atlantic Ocean during the preceding winter and spring of the two years. (3) Nonetheless, tropical and subtropical circulation systems were much more similar in May–July of 2016 and 1998. The circulation systems in both years were characterized by a stronger than normal and more westward-extending western Pacific subtropical high (WPSH), a weaker than normal East Asian summer monsoon (EASM), and anomalous convergence of moisture flux in the mid and lower reaches of the YRV. These similar circulation anomalies were attributed to the similar tropical SSTA pattern in the preceding seasons, i.e., the super El Niño and strong warming in the tropical Indian Ocean. (4) Significant differences in the circulation pattern were observed in August between the two years. The WPSH broke up in August 2016, with its western part being combined with the continental high and persistently dominating eastern China. The EASM suddenly became stronger, and dry conditions prevailed in the YRV. On the contrary, the EASM was weaker in August 1998 and the “Secondary Meiyu” took place in the YRV. The Madden–Julian Oscillation (MJO) was extremely active in August 2016 and stayed in western Pacific for 25 days. It triggered frequent tropical cyclone activities and further influenced the significant turning of tropical and subtropical circulations in August 2016. In contrast, the MJO was active over the tropical Indian Ocean in August 1998, conducive to the maintenance of a strong WPSH. Alongside the above oceanic factors and atmospheric circulation anomalies, the thermal effect of snow cover over the Qinghai–Tibetan Plateau from the preceding winter to spring in 2016 was much weaker than that in 1998. This may explain the relatively stronger EASM and more abundant precipitation in North China in 2016 than those in 1998.  相似文献   

2.
2016年和1998年汛期降水特征及物理机制对比分析   总被引:12,自引:1,他引:11  
利用多种大气环流、海表温度、积雪面积等数据,并利用个例对比分析和统计方法,研究了2016年汛期(5-8月)中国旱、涝特征及与1998年的异同点,并对比分析了这两年导致降水异常的大气环流和外强迫因子。结果表明:(1)2016年汛期中国降水总体偏多,长江中下游和华北各有一支多雨带。与1998年相比,这两年南方多雨带均位于长江流域,梅雨雨量均较常年偏多1倍以上,但梅雨季节进程有显著差异,1998年发生典型的“二度梅”,而2016年梅雨结束后长江流域降水显著偏少,主要降水区移至北方。(2)2016年5-7月乌拉尔山高压脊明显偏弱,而1998年欧亚中高纬度呈“两脊一槽”型,这与北大西洋海温距平在这两年前冬至春季几乎完全相反的分布型密切相关。(3)这两年5-7月热带和副热带地区环流较为相似,副热带高压偏强、偏西,东亚夏季风偏弱,来自西北太平洋的水汽输送通量均在长江中下游形成异常辐合区,这主要是受到了前期相似的热带海温异常的影响,均为超强厄尔尼诺事件和热带印度洋全区一致偏暖模态。(4)这两年8月环流形势有显著差异,2016年8月副热带高压断裂,西段与大陆高压结合持续控制中国东部上空,夏季风迅速转强,长江流域高温少雨。而1998年8月夏季风进一步减弱,长江流域发生“二度梅”。2016年8月MJO异常活跃并长时间维持在西太平洋地区,激发频繁的热带气旋活动,对副热带地区大气环流的转折有重要作用。而1998年8月MJO主要活跃在印度洋地区,使得副高持续前期偏强的特征。除海洋和上述环流差异外,2016年前冬至春季青藏高原积雪的冷源热力效应远不及1998年强,这可能是导致2016年夏季风偏弱的程度不及1998年,而2016年汛期华北降水较1998年偏多的原因之一。   相似文献   

3.
Extreme precipitation events in the upper Yangtze River Valley (YRV) have recently become an increasingly important focus in China because they often cause droughts and floods. Unfortunately, little is known about the climate processes responsible for these events. This paper investigates factors favorable to frequent extreme precipitation events in the upper YRV. Our results reveal that a weakened South China Sea summer monsoon trough, intensified Eurasian-Pacific blocking highs, an intensified South Asian High, a southward subtropical westerly jet and an intensified Western North Pacific Subtropical High (WNPSH) increase atmospheric instability and enhance the convergence of moisture over the upper YRV, which result in more extreme precipitation events. The snow depth over the eastern Tibetan Plateau (TP) in winter and sea surface temperature anomalies (SSTAs) over three key regions in summer are important external forcing factors in the atmospheric circulation anomalies. Deep snow on the Tibetan Plateau in winter can weaken the subsequent East Asian summer monsoon circulation above by increasing the soil moisture content in summer and weakening the land–sea thermal contrast over East Asia. The positive SSTA in the western North Pacific may affect southwestward extension of the WNPSH and the blocking high over northeastern Asia by arousing the East Asian-Pacific pattern. The positive SSTA in the North Atlantic can affect extreme precipitation event frequency in the upper YRV via a wave train pattern along the westerly jet between the North Atlantic and East Asia. A tripolar pattern from west to east over the Indian Ocean can strengthen moisture transport by enhancing Somali cross-equatorial flow.  相似文献   

4.
张雯  董啸  薛峰 《大气科学》2020,44(2):390-406
基于1957~2017年观测和再分析资料,合成分析了北太平洋年代际振荡(Pacific decadal oscillation,PDO)不同位相下El Ni?o发展年和La Nina年东亚夏季风的环流、降水特征及季节内变化。结果表明,PDO正、负位相作为背景场,分别对El Ni?o发展年、La Nina年东亚夏季风及夏季降水具有加强作用。PDO正位相一方面可增强El Ni?o发展年夏季热带中东太平洋暖海温异常信号,另一方面通过冷海温状态加强中高纬东亚大陆与西北太平洋的环流异常,从而在一定程度上增强了东亚夏季风环流的异常程度;反之,PDO负位相则增强了La Nina年热带海气相互作用以及中高纬环流(如东北亚反气旋)的异常。在季节内变化方面,El Ni?o发展年6月贝湖以东反气旋性环流为东亚地区带来稳定的北风异常,东北亚位势高度减弱;7月开始,环流形势发生调整,日本以东洋面出现气旋性异常,东亚大陆偏北风及位势高度负异常均得到加强;8月,随着东亚夏季风季节进程和El Ni?o发展,西太平洋出现气旋性环流异常,东亚副热带位势高度进一步降低,西北太平洋副热带高压(简称副高)明显东退。La Nina年6月异常较弱,主要环流差异自7月西北太平洋为大范围气旋性异常控制开始,东亚-太平洋遥相关型显著,副高于季节内始终偏弱偏东。上述两种情况下,均造成东亚地区夏季降水总体上偏少,尤其是中国北方降水显著偏少。  相似文献   

5.
利用1979~2015年NCEP/NCAR发布的月平均全球再分析资料,分析了热带印度洋-西太平洋水汽输送异常对中国东部夏季降水的影响及其形成机理。研究结果表明:热带印度洋-西太平洋地区(10°S~30°N,60°~140°E)夏季异常水汽输送主要包括两个模态,他们可以解释总的水汽输送异常34%的方差。其中,第一模态(EOF1)表现为异常水汽沿反气旋从热带西太平洋经过南海及孟加拉湾输送到中国东部上空,对应南海、孟加拉湾水汽路径输送均偏多,此时西太平洋副热带高压显著偏强,异常水汽在长江中下游地区辐合并伴随显著上升运动,有利于长江中下游降水偏多;第二模态(EOF2)表现为异常水汽从热带印度洋沿阿拉伯海、印度半岛、中南半岛等呈反气旋式输送,华南上空相应出现气旋式水汽输送异常,并对应异常水汽辐合和上升运动,有利于华南降水偏多。就可能的外部成因而言,EOF1与ENSO关系密切,表现为前冬热带中东太平洋显著偏暖,夏季同期热带北印度洋、南海上空显著偏暖,造成西太平洋副热带高压显著偏强,异常水汽主要来源于热带西太平洋和南海;EOF2与同期热带印度洋偶极子(TIOD)异常有关,TIOD为正位相时热带印度洋上空出现异常东风,华南上空出现异常气旋并伴随水汽异常辐合,异常水汽主要来源于热带南印度洋。  相似文献   

6.
This paper focuses on the relationship between the phase transition of the Pacific decadal oscillation (PDO) and decadal variation of the East Asian summer monsoon (EASM) in the twentieth century. The first transition occurred in the 1940s, with an enhanced SST in the North Pacific and reduced SST in the tropical eastern Pacific and South Indian Ocean. In agreement with these SST changes, a higher SLP was found in most parts of the Pacific, while a lower SLP was found in the North Pacific and most parts of the Indian Ocean. In this case, the EASM was largely enhanced with a southerly anomaly in the lower troposphere along the east coast of China. Correspondingly, there was less rainfall in the Yangtze River valley and more rainfall in northern and southern China. An opposite change was found when the PDO reversed its phase in the late 1970s. In the tropical Indian Ocean and western Pacific, however, the SST was enhanced in both the 1940s and 1970s. As a result, the western Pacific subtropical high (WPSH) tended to extend westward with a larger magnitude in the 1970s. The major features were reasonably reproduced by an atmospheric general circulation model (IAP AGCM4.0) prescribed with observed SST and sea ice. On the other hand, the westward extension of the WPSH was exaggerated in the 1970s, while it was underestimated in the 1940s. Besides, the spatial pattern of the simulated summer rainfall in eastern China tended to shift southward compared with the observation.  相似文献   

7.
Based on the NCEP/NCAR reanalysis data and Chinese observational data during 1961–2013, atmospheric circulation patterns over East Asia in summer and their connection with precipitation and surface air temperature in eastern China as well as associated external forcing are investigated. Three patterns of the atmospheric circulation are identified, all with quasi-barotropic structures: (1) the East Asia/Pacific (EAP) pattern, (2) the Baikal Lake/Okhotsk Sea (BLOS) pattern, and (3) the eastern China/northern Okhotsk Sea (ECNOS) pattern. The positive EAP pattern significantly increases precipitation over the Yangtze River valley and favors cooling north of the Yangtze River and warming south of the Yangtze River in summer. The warm sea surface temperature anomalies over the tropical Indian Ocean suppress convection over the northwestern subtropical Pacific through the Ekman divergence induced by a Kelvin wave and excite the EAP pattern. The positive BLOS pattern is associated with below-average precipitation south of the Yangtze River and robust cooling over northeastern China. This pattern is triggered by anomalous spring sea ice concentration in the northern Barents Sea. The anomalous sea ice concentration contributes to a Rossby wave activity flux originating from the Greenland Sea, which propagates eastward to North Pacific. The positive ECNOS pattern leads to below-average precipitation and significant warming over northeastern China in summer. The reduced soil moisture associated with the earlier spring snowmelt enhances surface warming over Mongolia and northeastern China and the later spring snowmelt leads to surface cooling over Far East in summer, both of which are responsible for the formation of the ECNOS pattern.  相似文献   

8.
薛德强 《山东气象》2019,39(1):46-54
基于太平洋海面温度(SST)、大气环流及青岛降水量资料,分析并发现了青岛汛期(6—9月)降水量与太平洋年代际振荡(PDO)指数存在重要联系。当PDO处于冷位相时,西北太平洋区SST偏高,北美沿岸以及热带中东太平洋区SST偏低,西太平洋副热带高压偏弱偏东,脊线偏北,东亚夏季风偏强,青岛汛期降水量偏多,反之偏少。定义了一个新的太平洋SST距平指数SSTI,该指数包含了西北太平洋与热带中东太平洋SST距平反相变化的协同影响,也包含了PDO与ENSO的协同影响。与PDO指数、西北太平洋及热带中东太平洋SST相比,该指数与青岛汛期降水量相关性更好,通常SSTI正指数对应着汛期西太平洋副热带高压脊线偏北,面积偏小、强度偏弱,东亚夏季风偏强,有利于青岛汛期降水量偏多,反之偏少。SSTI指数可作为青岛汛期降水量预测的指示因子。  相似文献   

9.
利用1979—2012年日本气象厅次表层海温资料和NCEP/NCAR再分析资料,分析了前期冬季热带太平洋次表层海温与东亚夏季风的关系,并讨论了其可能机制。结果表明,前期冬季热带太平洋次表层海温与后期东亚夏季风强弱有显著的相关关系。冬季次表层海温呈现东正西负的类El Nio分布型时,夏季副热带高压偏强,西北太平洋地区受反气旋型环流控制,能将大量的水汽输送到长江和淮河流域,有利于水汽在该区域辐合,为夏季降水偏多创造了条件,此时东亚夏季风活动整体偏弱,反之亦然。但类El Nio分布型对东亚夏季气候变化的影响较类La Nia分布型更显著。此外,冬季热带太平洋次表层海温可能通过其自身能够持续性地影响东亚—太平洋地区的大气环流异常,次表层海温随季节变化有明显的发展和移动趋势:冬季西太平洋暖池次表层冷(暖)海温不断堆积,沿温跃层向东传播使得中东太平洋次表层海温逐渐变冷(暖),冷(暖)海温上翻加强使得海表温度异常,进一步影响到西太平洋副热带高压的位置和强度,并在东亚地区形成经向遥相关波列,通过西北太平洋地区异常反气旋(气旋)环流的作用,影响东亚地区大气环流以及气候变化。  相似文献   

10.
我国南方盛夏气温主模态特征及其与海温异常的联系   总被引:1,自引:0,他引:1  
袁媛  丁婷  高辉  李维京 《大气科学》2018,42(6):1245-1262
利用NCEP/NCAR大气环流资料、HadISST海温数据以及中国160站气温数据等,通过EOF分解、线性相关等统计方法,分析了我国南方盛夏气温异常的主导模态及其所对应的关键环流系统和可能的海洋外强迫信号。结果表明:我国南方盛夏气温偏高有两种不同的分布模态,一是以江淮地区为中心的江淮型高温,二是以江南和华南为中心的江南型高温,导致这两种高温型发生的环流影响系统和海温外强迫因子均有显著差异。影响江淮型高温的关键环流系统是高低空正压结构的高度场正距平和偏弱的东亚副热带西风急流。而影响这两个关键环流系统的海洋外强迫因子包括热带印度洋至东太平洋的"-+-"海温异常分布型及北大西洋中纬度的暖海温异常。2016年盛夏江淮型高温的大气环流和海温异常均表现出典型江淮型高温年的特征,更好的证明了统计分析的结论。而江南型高温的关键环流系统主要是加强西伸的西太平洋副热带高压。其海洋外强迫因子包括前冬赤道中东太平洋的暖海温异常和春季-盛夏热带印度洋全区一致型暖海温异常,其中热带印度洋海温的影响更为持续和显著。  相似文献   

11.
以往的研究已证实,西太平洋副热带高压(副高)在1970s后期减弱东退.基于大气模式(CAM4)的理想型海温强迫试验,结果表明:副高的东退可能是大气对于正位相太平洋年代际振荡(PDO)的相应.伴随着PDO转变为正位相,西太平洋至印度半岛以及热带东太平洋的对流加热增强,大气表现为Gill型响应,在亚洲大陆至西太平洋上空低层产生气旋性异常,有利于副高东退.同时,高层产生反气旋异常,使得东亚西风急流加强和向南扩展,进而调节西太平洋上空的次级环流,进一步有利于副高东退.  相似文献   

12.
利用1979~2013年6~8月的西南地区东部20个台站日降水量资料、逐日MJO(Madden-Julian Oscillation)指数、全球OLR(Outgoing Longwave Radiation)逐日格点资料以及NCEP/NCAR再分析日资料,采用合成分析和线性回归等方法,对夏季MJO不同位相活动影响西南地区东部夏季降水的原因及其可能机制进行了初步分析。研究表明,MJO与西南地区东部夏季降水之间存在着显著的关系,当MJO处于第4(第6)位相时,由于西太平洋副高位置偏南(偏北)、向西南地区东部的水汽输送偏多(偏少),在异常上升(下沉)气流影响下,西南地区东部夏季降水偏多(偏少)。MJO影响西南地区东部夏季降水的可能原因是:当MJO处于第4位相时,赤道东印度洋地区上空大气释放凝结潜热,其激发东北向传播的异常波动,进而影响东亚环流,使得西南地区东部出现夏季降水偏多的环流形势,西南地区东部夏季降水增多;但在第6位相时,西太平洋地区上空对流释放的凝结潜热,其激发PJ(太平洋-日本)型Rossby波列,出现不利于西南地区东部夏季降水的环流形势,西南地区东部夏季降水偏少。  相似文献   

13.
东亚夏季风和中国东部夏季降水年代际变化的模拟   总被引:4,自引:2,他引:4  
陈红  薛峰 《大气科学》2013,37(5):1143-1153
利用中国科学院大气物理研究所发展的第四代大气环流模式模拟了1970年代末东亚夏季风和相关的中国东部夏季降水年代际变化。结果表明,在给定的观测海温强迫下,模式能模拟出东亚夏季风的年代际减弱及 相关的环流场变化,包括东亚沿海的偏北风异常以及西太平洋副高的形态变化,模式还较好再现了中国东部夏季降水的雨型变化,即长江流域降水偏多,而华北和华南偏少,但位置略偏南。基于奇异值分解(SVD)的分析表明,热带海洋变暖是这次东亚夏季风的年代际减弱的主要因素,这与太平洋年代际振荡(PDO)在1970年代末期的位相转变有关。此外,模式还较好模拟了长江流域的变冷趋势,进而减弱了海陆温差,使东亚夏季风减弱。  相似文献   

14.
This study examines the features and dynamical processes of subseasonal zonal oscillation of the western Pacific subtropical high (WPSH) during early summer, by performing a multivariate empirical orthogonal function (MVEOF) analysis on daily winds and a diagnosis on potential vorticity (PV) at 500 hPa for the period 1979–2016. The first MV-EOF mode is characterized by an anticyclonic anomaly occupying southeastern China to subtropical western North Pacific regions. It has a period of 10–25 days and represents zonal shift of the WPSH. When the WPSH stretches more westward, the South Asian high (SAH) extends more eastward. Above-normal precipitation is observed over the Yangtze–Huaihe River (YHR) basin. Suppressed convection with anomalous descending motion is located over the subtropical western North Pacific. The relative zonal movement of the SAH and the WPSH helps to establish an anomalous local vertical circulation of ascending motion with upper-level divergence over the YHR basin and descending motion with upper-level convergence over the subtropical western Pacific. The above local vertical circulation provides a dynamic condition for persistent rainfall over the YHR basin. An enhanced southwest flow over the WPSH’s western edge transports more moisture to eastern China, providing a necessary water vapor condition for the persistent rainfall over the YHR basin. A potential vorticity diagnosis reveals that anomalous diabatic heating is a main source for PV generation. The anomalous cooling over the subtropical western Pacific produces a local negative PV center at 500 hPa. The anomalous heating over the YHR basin generates a local positive PV center. The above south–north dipolar structure of PV anomaly along with the climatological southerly flow leads to northward advection of negative PV. These two processes are conducive to the WPSH’s westward extension. The vertical advection process is unfavorable to the westward extension but contributes to the eastward retreat of the WPSH.  相似文献   

15.
使用分类集合的方法评估了第五次耦合模式比较计划(CMIP5)多个耦合模式对中国东部夏季降水年代际变化的模拟性能.结果表明,在评估的38个模式中,仅有6个模式(第1类模式)可以成功再现1970年代末中国东部夏季降水年代际变化的主要特征,即长江流域降水偏多、而华北和华南偏少.这些模式模拟的成功归因于它们能较好再现1970年代末东亚夏季风的年代际减弱及相关的环流场的变化,包括东亚沿海的偏北风异常以及西太平洋副热带高压的偏向西南、强度增强等.而对降水年代际变化模拟很差的第2类模式,则模拟出不出东亚夏季风的这种减弱特征.进一步的分析表明,两类CMIP5模式对太平洋年代际振荡(PDO)空间分布特征都有较好的再现能力,但对PDO年代际转变特征的模拟能力则差异较大.第1类模式能很好地模拟出1970年代末热带海洋的增暖和相关的PDO位相由负到正的转换,而第2类模式所模拟的PDO位相转变与观测完全相反,且也不能模拟出热带中东太平洋海洋的年代际增暖及江淮流域夏季的变冷,因此导致该类模式对1970年代末东亚夏季风的减弱和中国东部夏季雨型的年代际转变没有模拟能力.由此也表明,对耦合模式来说,中国夏季降水年代际变化的模拟能力在很大程度上取决于模式对海洋年代际变化信号的模拟.  相似文献   

16.
Various paleoclimate records have shown that the Asian monsoon was punctuated by numerous suborbital time-scale events, and these events were coeval with those that happened in the North Atlantic. This study investigates the Asian summer monsoon responses to the Atlantic Ocean forcing by applying an additional freshwater flux into the North Atlantic. The simulated results indicate that the cold North Atlantic and warm South Atlantic induced by the weakened Atlantic thermohaline circulation (THC) due to the freshwater flux lead to significantly suppressed Asian summer monsoon. The authors analyzed the detailed processes of the Atlantic Ocean forcing on the Asian summer monsoon, and found that the atmospheric teleconnection in the eastern and central North Pacific and the atmosphere-ocean interaction in the tropical North Pacific play the most crucial role. Enhanced precipitation in the subtropical North Pacific extends the effects of Atlantic Ocean forcing from the eastern Pacific into the western Pacific, and the atmosphere-ocean interaction in the tropical Pacific and Indian Ocean intensifies the circulation and precipitation anomalies in the Pacific and East Asia.  相似文献   

17.
In this work, the authors investigate changes in the interannual relationship between the East Asian summer monsoon (EASM) and the tropical Indian Ocean (IO) in the late 1970s. By contrasting the correlations of the EASM index (EASMI) with the summer IO sea surface temperature anomaly (SSTA) between 1953–1975 and 1978–2000, a pronounced different correlation pattern is found in the tropical IO. The SSTA pattern similar to the positive Indian Ocean Dipole (IOD) shows a strongly positive correlation with the EASMI in 1953–1975. But in 1978–2000, significant negative correlation appears in the northern IO and the IOD-like correlation pattern disappears. It is indicated that the summer strong IOD events in 1953–1975 can cause a weaker-than-normal western North Pacific (WNP) subtropical high, which tends to favor a strong EASM. In 1978–2000, the connection between the summer IOD and the WNP circulation is disrupted by the climate shift. Instead, the northern IO shows a close connection with the WNP circulation in 1978–2000. The warming over the northern IO is associated with the significant enhanced 500 hPa geopotential height and an anomalous anticyclone over the WNP. The change in the IO–EASM relationship is attributed to the interdecadal change of the background state of the ocean–atmosphere system and the interaction between the ENSO and IO. In recent decades, the tropical IO and tropical Pacific have a warmer mean SST, which has likely strengthened (weakened) the influence of the northern IO (IOD) on the EASM. In addition, due to the increase in the ENSO variability along with the higher mean equatorial eastern Pacific SST in 1978–2000, the influence of ENSO on the East Asian summer circulation experiences a significant strengthening after the late 1970s. Because the warming over the northern IO is associated with the significant warming in the equatorial eastern Pacific, the strengthened ENSO–EASM relationship has likely also contributed to the strengthened relationship between the northern IO and the EASM in 1978–2000.  相似文献   

18.
This study explores the characteristics of high temperature anomalies over eastern China and associated influencing factors using observations and model outputs. Results show that more long-duration (over 8 days) high temperature events occur over the middle and lower reaches of the Yangtze River Valley (YRV) than over the surrounding regions, and control most of the interannual variation of summer mean temperature in situ. The synergistic effect of summer precipitation over the South China Sea (SCS) region (18°-27°N, 115°-124°E) and the northwestern India and Arabian Sea (IAS) region (18°-27°N, 60°-80°E) contributes more significantly to the variation of summer YRV temperature, relative to the respective SCS or IAS precipitation anomaly. More precipitation (enhanced condensational heating) over the SCS region strengthens the western Pacific subtropical high (WPSH) and simultaneously weakens the westerly trough over the east coast of Asia, and accordingly results in associated high temperature anomalies over the YRV region through stimulating an East Asia-Pacific (EAP) pattern. More precipitation over the IAS region further adjusts the variations of the WPSH and westerly trough, and eventually reinforces high temperature anomalies over the YRV region. Furthermore, the condensational heating related to more IAS precipitation can adjust upper-tropospheric easterly anomalies over the YRV region by exciting a circumglobal teleconnection, inducing cold horizontal temperature advection and related anomalous descent, which is also conducive to the YRV high temperature anomalies. The reproduction of the above association in the model results indicates that the above results can be explained both statistically and dynamically.  相似文献   

19.
In this paper, the northward jump time of the western Pacific subtropical high(WPSH) is defined and analyzed on the interdecadal timescale. The results show that under global warming, significant interdecadal changes have occurred in the time of the WPSH northward jumps. From 1951 to 2012, the time of the first northward jump of WPSH has changed from "continuously early" to "continuously late", with the transition occurring in 1980. The time of the second northward jump of WPSH shows a similar change, with the transition occurring in 1978. In this study, we offer a new perspective by using the time of the northward jump of WPSH to explain the eastern China summer rainfall pattern change from "north-abundant-southbelow-average" to "south-abundant-north-below-average" at the end of the 1970 s. The interdecadal change in the time of the northward jump of WPSH corresponds not only with the summer rainfall pattern, but also with the Pacific decadal oscillation(PDO). The WPSH northward jump time corresponding to the cold(warm) phase of the PDO is early(late). Although the PDO and the El Nino–Southern Oscillation(ENSO)both greatly influence the time of the two northward jumps of WPSH, the PDO’s effect is noticed before the ENSO’s by approximately 1–2 months. After excluding the ENSO influence, we derive composite vertical atmospheric circulation for different phases of the PDO. The results show that during the cold(warm)phase of the PDO, the atmospheric circulations at 200, 500, and 850 h Pa all contribute to an earlier(later)northward jump of the WPSH.  相似文献   

20.
This study documents the decadal changes of the summer precipitation in East China, with increased rainfall in the Huang-Huai River region (HR) and decreased in the Yangtze River region (YR) during 2000?C2008 in comparison to 1979?C1999. The main features of the atmospheric circulation related to the increased precipitation in the HR are the strengthened ascending motion and slightly increased air humidity, which is partly due to the weakened moisture transport out of the HR to the western tropical Pacific (associated with the weakened westerly over East Asia and the warming center over the Lake Baikal). The rainfall decrease in the YR is related to the weakened ascending motion and reduced water vapor content, which is mainly related to the weakened southwesterly moisture flux into the YR (associated with the eastward recession of the Western Pacific Subtropical High). The global sea surface temperature (SST) also shows significant changes during 2000?C2008 relative to 1979?C1999. The shift of the Pacific decadal oscillation (PDO) to a negative phase probably induces the warming over the Lake Baikal and the weakened westerly jet through the air-sea interaction in the Pacific, and thus changes the summer precipitation pattern in East China. Numerical experiments using an atmospheric general circulation model, with prescribed all-Pacific SST anomalies of 2000?C2008 relative to 1979?C1999, also lend support to the PDO??s contribution to the warming over the Lake Baikal and the weakened westerlies over East China.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号