首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Vapor phase concentrations of acetone, acetaldehyde and acetonitrile over their aqueous solutions were measured to determine Henry's law partition coefficients for these compounds in the temperature range 5–40 °C. The results are for acetone: ln(H 1/atm)=–(5286±100)T+(18.4±0.3); acetaldehyde: ln(H 1/atm)=–(5671±22)/T+(20.4±0.1); and acetonitrile: ln(H 1/atm)=–(4106±101)/T+(13.8±0.3). Artificial seawater of 3.5% salinity in place of deiionized water raisesH 1 by about 15%. A similar technique has been used to measure the equilibrium constants for the addition compounds of acetone and acetaldehyde with bisulfite in aqueous solution. The results are ln(K 1/M –1)=(4972±318)/T–(11.2±1.1) and ln(K 1/M –1)=(6240±427)/T–(8.1±1.3), respectively. The results are compared and partly combined with other data in the literature to provide an average representation.  相似文献   

2.
The rate coefficients for the reaction between atomic chlorine and a number of naturally occurring species have been measured at ambient temperature and atmospheric pressure using the relative rate technique. The values obtained were (4.0 ± 0.8) × 10-10, (2.1 ± 0.5) × 10-10, (3.2 ± 0.5) × 10-10, and (4.9 ± 0.5) × 10-10 cm3 molecule-1 s-1, for reactions with isoprene, methyl vinyl ketone, methacrolein and 3-carene, respectively. The value obtained for isoprene compares favourably with previously reported values. No values have been reported to date for the rate constants of the other reactions.  相似文献   

3.
Henry's law coefficients of 15 alkyl nitrates, keto-, hydroxy-, and dinitrates of atmospheric interest have been measured, mostly over the temperature range 1–25°C. The compounds are stable in aqueous solution. Where literature data were available, Henry's law coefficients are in very good agreement. It is concluded that dissolution in cloud and rain water is not an important loss process for alkyl mononitrates in the atmosphere. The residence times of the more soluble bifunctional organic nitrates, however, are significantly affected or even controlled by washout and rainout. Gas chromatographic analysis of bifunctional nitrates in preconcentrated atmospheric samples may be adversely affected by the adsorptive properties of these compounds.  相似文献   

4.
Airborne measurements of volatile organic compounds (VOC) were performed overthe tropical rainforest in Surinam (0–12 km altitude,2°–7° N, 54°–58° W) using the proton transferreaction mass spectrometry (PTR-MS) technique, which allows online monitoringof compounds like isoprene, its oxidation products methyl vinyl ketone,methacrolein, tentatively identified hydroxy-isoprene-hydroperoxides, andseveral other organic compounds. Isoprene volume mixing ratios (VMR) variedfrom below the detection limit at the highest altitudes to about 7 nmol/molin the planetary boundary layer shortly before sunset. Correlations betweenisoprene and its product compounds were made for different times of day andaltitudes, with the isoprene-hydroperoxides showing the highest correlation.Model calculated mixing ratios of the isoprene oxidation products using adetailed hydrocarbon oxidation mechanism, as well as the intercomparisonmeasurement with air samples collected during the flights in canisters andlater analysed with a GC-FID, showed good agreement with the PTR-MSmeasurements, in particular at the higher mixing ratios.Low OH concentrations in the range of 1–3 × 105molecules cm-3 averaged over 24 hours were calculated due to lossof OH and HO2 in the isoprene oxidation chain, thereby stronglyenhancing the lifetime of gases in the forest boundary layer.  相似文献   

5.
The Henry's law constants, K H, of dilute aqueous formic and acetic acids were determined experimentally as a function of concentration and temperature using a new counterflow packed-column technique. K H was found to be (8.9±1.3)×103 and (4.1±0.4)×103 M atm-1 at 25°C for HCOOH and CH3COOH, respectively. The reaction enthalpies, H, were found to be –51±2 kJ mol-1 and –52±1 kJ mol-1 for formic and acetic acid, respectively. These are in good agreement with calculated thermochemical values.Whereas the K H values are in reasonably good agreement with certain other experimentally determined values, K H (HCOOH) is two to three times higher than calculated thermochemical values while K H (CH3COOH) is lower than the two calculated values.The best experimental values appear to be (11±2)×103 M atm-1 and (7±3)×103 M atm-1 for HCOOH and CH3COOH, respectively.  相似文献   

6.
Rate coefficients have been measured for the gas phasereactions of hydroxyl (OH) radicals and ozone with twounsaturated esters, allyl acetate(CH3C(O)OCH2CH=CH2) and isopropenylacetate (CH3C(O)OC(CH3)=CH2). The OHexperiments were carried out using the pulsed laserphotolysis – laser induced fluorescence technique overthe temperature range 243–372 K and the kinetic dataused to derive the following Arrhenius expressions (inunits of cm3 molecule-1 s-1): allylacetate, k 1 = (2.33 ± 0.27) ×10-12 exp[(732 ± 34)/T]; and isopropenyl acetate,k 2 = (4.52 ± 0.62) × 10-12exp[(809 ± 39)/T]. At 298 K, the rate coefficients obtained (inunits of 10-12 cm3 molecule-1 s-1)are: k 1 = (27.1 ± 3.0) and k 2= (69.6± 9.4). The relative rate technique has been usedto determine rate coefficients for the reaction ofozone with the acetates. Using methyl vinyl ketone asthe reference compound and a value of4.8 × 10-18 cm3 molecule-1s-1 asthe rate coefficient for its reaction with O3,the following rate coefficients were derived at 298 ± 4 K (in units of10-18 cm3molecule-1 s-1): allyl acetate, (2.4 ± 0.7) andisopropenyl acetate (0.7 ± 0.2). Theresults are discussed in terms of structure-activityrelationships and used to derive atmospheric lifetimesfor the acetates.  相似文献   

7.
Henry's law constants KH (mol kg-1 atm-1) have been measured between 278.15 K and 308.15 K for the following organic acids: CH2FCOOH (ln(KH[298.15 K]) = 11.3 ± 0.2), CH2ClCOOH (11.59 ± 0.14), CH2BrCOOH (11.94 ± 0.21), CHF2COOH (10.32 ± 0.10), CHCl2COOH (11.69 ± 0.11), CHBr2COOH (12.33 ± 0.29), CBr3COOH (12.61 ± 0.21), and CClF2COOH (10.11 ± 0.12). The variation of KH with temperature was determined for all acids except CH2FCOOH and CBr3COOH, with r H° for the dissolution reaction ranging from –85.2 ± 2.6 to –57.1 ± 2.5 kJ mol-1, meaning that their solubility is generally more sensitive to temperature than is the case for the simple carboxylic acids. The Henry's law constants show consistent trends with halogen substitution and, together with their high solubility compared to the parent (acetic) acid (ln(KH[298.15 K]) = 8.61), present a severe test of current predictive models based upon molecular structure. The solubility of haloacetic acids and strong dissociation at normal pH mean that they will partition almost entirely into cloud and fog in the atmosphere (0.05–1.0 g H2O m-3), but can reside in both phases for the liquid water contents typical of aerosols (10-5-10-4 g H2O m-3).  相似文献   

8.
Rate coefficients for the reactions of difunctional nitrates with atmospherically important OH radicals are not currently available in the literature. This study represents the first determination of rate coefficients for a number of C(3) and C(4) carbonyl nitrates and dinitrates with OH radicals in a 38 l glass reaction chamber at 1000 mbar total pressure of synthetic air by 298±2 K using a relative kinetic technique.The following rate coefficients (in units of 10-12 cm3 molecule-1 s-1) were obtained: 1,2-propandiol dinitrate, <0.31; 1,2-butandiol dinitrate, 1.70±0.32; 2,3-butandiol dinitrate, 1.07±0.26; -nitrooxyacetone, <0.43; 1-nitrooxy-2-butanone, 0.91±0.16; 3-nitrooxy-2-butanone, 1.27±0.14; 1,4-dinitrooxy-2-butene, 15.10±1.45; 3,4-dinitrooxy-1-butene, 10.10±0.50.The possible importance of reaction of OH as an atmospheric sink for the compounds compared to other loss processes is considered.  相似文献   

9.
Data on a variety of organic gases are presented, obtained with a protontransfer mass spectrometer (PTR-MS) operated during the March 1998 LBA/CLAIREairborne measurement campaign, between 60 and 12500 m over the rainforest inSurinam (2° N–5° N, 54° W–57° W). The instrumentcan detect molecules with a proton affinity greater than water, includingalkenes, dialkenes, carbonyls, alcohols, and nitriles. Many such molecules areemitted from the rainforest (e.g., isoprene) or formed from the oxidation ofprimary emissions (e.g., methylvinylketone (MVK) and methacrolein (MACR)).From a comparison with modelled data; the variation with altitude; previouslyreported biogenic emissions and the time and location of the measurement,possible and probable identities for the significant masses encountered in therange 33–140 amu have been deduced.The main observed protonated masses, postulated identities and observedaverage boundary layer mixing ratios over the rainforest were: 33 methanol(1.1 nmol/mol); 42 acetonitrile (190 pmol/mol); 43 multiple possibilities (5.9nmol/mol), 45 acetaldehyde (1.7 nmol/mol), 47 formic acid (not quantified);59 acetone (2.9 nmol/mol), 61 acetic acid (not quantified), 63 dimethylsulphide (DMS) (289 pmol/mol), 69 isoprene (1.7 nmol/mol), 71 MVK + MACR (1.3nmol/mol), 73 methyl ethyl ketone (1.8 nmol/mol), 75 hydroxyacetone (606pmol/mol), 83 C5 isoprene hydroxy carbonylsC5H8O2, methyl furan, and cis 3-hexen-1-ol(732 pmol/mol), 87 C5 carbonyls and methacrylic acid, 95 possibly2-vinyl furan (656 pmol/mol), 97 unknown (305 pmol/mol), 99 cis hexenal (512pmol/mol) and 101 isoprene C5 hydroperoxides (575 pmol/mol). Somespecies agreed well with those derived from an isoprene only photochemicalmodel (e.g., mass 71 MVK + MACR) while others did not and were observed athigher than previously reported mixing ratios (e.g., mass 59 acetone, mass 63DMS). Monoterpenes were not detected above the detection limit of 300pmol/mol. Several species postulated are potentially important sources ofHOx in the free troposphere, e.g., methanol, acetone, methyl ethylketone, methyl vinyl ketone and methacrolein.  相似文献   

10.
In June 1996, 16 UV-visible sensors from 11 institutes measured spectra of the zenith sky for more than 10 days. Spectra were analysed in real-time to determine slant column amounts of O3 and NO2. Spectra of Hg lamps and lasers were measured, and the amount of NO2 in a cell was determined by each spectrometer. Some spectra were re-analysed after obvious errors were found. Slant columns were compared in two ways: by examining regression analyses against comparison instruments over the whole range of solar zenith angles; and by taking fractional differences from a comparison instrument at solar zenith angles between 85° and 91°. Regression identified which pairs of instruments were most consistent, and so which could be used as universal comparison instruments. For O3, regression slopes for the whole campaign agreed within 5% for most instruments despite the use of different cross-sections and wavelength intervals, whereas similar agreement was only achieved for NO2 when the same cross-sections and wavelength intervals were used and only one half-day's data was analysed. Mean fractional differences in NO2 from a comparison instrument fall within ±7% (1-sigma) for most instruments, with standard deviations of the mean differences averaging 4.5%. Mean differences in O3 fall within ±2.5% (1- sigma) for most instruments, with standard deviations of the mean differences averaging 2%. Measurements of NO2 in the cell had similar agreement to measurements of NO2 in the atmosphere, but for some instruments measurements with cell and atmosphere relative to a comparison instrument disagreed by more than the error bars.  相似文献   

11.
A combined study of the OH gas phase reaction and uptake on aqueous surfacesof two carbonates, dimethyl and diethyl carbonate has been carried out todetermine the atmospheric lifetimes of these compounds. Rate coefficients havebeen measured for gas phase reactions of OH radicals with dimethyl and diethylcarbonate. The experiments were carried out using pulsed laser photolysis– laser induced fluorescence over the temperature range 263–372K and the kinetic data were used to derive the following Arrhenius expressions(in units of cm3 molecule–1 s–1):for dimethyl carbonate, k1 = (0.83±0.27)×10–12 exp [–(247± 98)/T] and fordiethyl carbonate, k2 = (0.46±0.15)×10–12 exp [(503± 203)/T]. At 298 K, therate coefficients obtained (in units of 10–12 cm3molecule–1 s–1) are: k1 =(0.35± 0.04) and k2 = (2.31± 0.29). The results arediscussed in terms of structure-activity relationships.The uptake coefficients of both carbonates on aqueous surfaces were measuredas a function of temperature and composition of the liquid phase, using thedroplet train technique coupled to a mass spectrometric detection. Dimethyland diethyl carbonate show very similar results. For both carbonates, themeasured uptake kinetics were found to be independent of the aqueous phasecomposition (pure water, NaOH solutions) but dependent on gas-liquid contacttime which characterises a surface saturation effect. The uptake coefficientvalues show a slight negative temperature dependence for both carbonates.These values vary from 1.4×10–2 to0.6×10–2 in the temperature range of 265–279 Kfor dimethyl carbonate, from 2.4×10–2 to0.9×10–2 in the temperature range of 270–279 Kfor diethyl carbonate. From the kinetic data, the following Henry's lawconstants were derived between 279 and 265 K: dimethyl carbonate,H1 = 20–106 M atm–1; and diethyl carbonate,H2 = 30–98 M atm–1. The reported data showthat the OH reaction is the major atmospheric loss process of these twocarbonates with lifetimes of 33 and 5 days, respectively, while the wetdeposition is a negligible process.  相似文献   

12.
We present here experimental determinations of mass accommodation coefficients using a low pressure tube reactor in which monodispersed droplets, generated by a vibrating orifice, are brought into contact with known amounts of trace gases. The uptake of the gases and the accommodation coefficient are determined by chemical analysis of the aqueous phase.We report in this article measurements of exp=(6.0±0.8)×10–2 at 298 K and with a total pressure of 38 Torr for SO2, (5.0±1.0)×10–2 at 297 K and total pressure of 52 Torr for HNO3, (1.5±0.6)×10–3 at 298 K and total pressure of 50 Torr for NO2, (2.4±1.0)×10–2 at 290 K and total pressure of 70 Torr for NH3.These values are corrected for mass transport limitations in the gas phase leading to =(1.3±0.1)×10–1 (298 K) for SO2, (1.1±0.1)×10–1 (298 K) for HNO3, (9.7±0.9)×10–2 (290 K) for NH3, (1.5±0.8)×10–3 (298 K) for NO2 but this last value should not be considered as the true value of for NO2 because of possible chemical interferences.Results are discussed in terms of experimental conditions which determine the presence of limitations on the mass transport rates of gaseous species into an aqueous phase, which permits the correction of the experimental values.  相似文献   

13.
The reactivity of some selected biogenic monoterpenecompounds towards important aqueous phase free-radicaloxidants, namely OH· and SO4 -·, have beeninvestigated using the complementary experimentaltechniques of pulse radiolysis and laser flashphotolysis ( = 248 nm). Rate constants forthe reactions of the OH· radical with cis-verbenol andmethacrolein have been determined to be (6.8 ± 0.5) ×109 dm3 mol-1 s-1 and (8.0± 0.7) × 109 dm3 mol-1s-1,respectively (T = 20 °C, pH 4.0, Ionic strength 0 mol dm-3). Rate constants and activationenergies for the reactions of the SO4 -·radical have been measured for the following compounds(T = 20 °C, pH 4.0, Ionic strength = 0.03 moldm-3): -pinene (k = (3.1 ± 0.1) ×109 dm3 mol-1 s-1;E act. =(8.9 ± 1.3) kJ mol-1), -terpineol(k = (4.1 ± 0.1) × 109 dm3mol-1s-1; E act. = (13.4 ± 0.6) kJmol-1), cis-verbenol (k = (3.2 ± 0.2) ×109 dm3 mol-1 s-1;E act. =(10.0 ± 0.7) kJ mol-1), verbenone (k = (1.6± 0.1) × 109 dm3 mol-1s-1;E act. = (6.1 ± 0.7) kJ mol-1), myrtenal(k = (1.85 ± 0.1) × 109 dm3mol-1s-1; E act. = (7.5 ± 0.7) kJmol-1)and methacrolein (k = (1.18 ± 0.1) × 109dm3 mol-1 s-1). In most instances theabsorption spectra of the intermediate products formedby these reactions have been measured which, inconjunction with strategic conductiometric studies,have been used to suggest plausible mechanisms for theoxidation in acidic de-oxygenated solution.  相似文献   

14.
Using a filter radiometer, the meridional profile of the NO2 photolysis frequency, J(NO2), was measured between 50° N and 30° S during the cruise ANTVII/1 September/October 1988 of the research vessel Polarstern on the Atlantic Ocean. Simultaneously, global broadband irradiance and acrosol were monitored. Clean marine background air with low aerosol loads (b sp=(1–2)×10-5 m-1) was encountered at the latitudes 25° N–30° N and 18° S–27° S, respectively. Under these conditions and an almost cloudless sky J(NO2) reached 7.3×10-3 s-1 (2 sr) for a zenith angle of 30°. Between 30° N and 30° S, the latitudinal variation of the J(NO2) noontime maxima was less than ± 10%, while the mean value at noon was 7.8×10-3 s-1. For the set of all data between 50° N and 30° S, a nearly linear correlation of J(NO2) vs. global broadland irradiance was found. The slope of (8.24±0.03)×10-5 s-1/mW cm-2 agrees within 10% with observations in Jülich (51° N, 6.2° E).  相似文献   

15.
The 1,4-hydroxycarbonyl 5-hydroxy-2-pentanone is an important product of the gas-phase reaction of OH radicals with n-pentane in the presence of NO. We have used a relative rate method with 4-methyl-2-pentanone as the reference compound to measure the rate constant for the reaction of OH radicals with 5-hydroxy-2-pentanone at 296 ± 2 K. The carbonyls were sampled by on-fiber derivatization using a Solid Phase Micro Extraction (SPME) fiber coated with O> -(2,3,4,5,6-pentafluorobenzyl)hydroxylamine hydrochloride with subsequent thermal desorption of the oxime derivatives and quantification by gas chromatography with flame ionization detection. For comparison, the reference compound was also analyzed following sample collection onto a Tenax adsorbent cartridge. Products of the reaction were investigated using coated-fiber SPME sampling with gas chromatography-mass spectrometry analysis as well as by using in situ atmospheric pressure ionization mass spectrometry. A rate constant for the reaction of OH radicals with 5-hydroxy-2-pentanone of (1.6 ± 0.4) × 10–11 cm3 molecule–1 s–1 was obtained at 296 ± 2 K. Two dicarbonyl products, of molecular weight 86 and 100, were observed and are attributed to CH3C(O)CH2CHO and CH3C(O)CH2CH2CHO, respectively. Reaction schemes leading to these products are presented.  相似文献   

16.
Ambient concentrations of isoprene and several of its atmospheric oxidation productsmethacrolein, methylvinyl ketone, formaldehyde, formic acid, acetic acid, and pyruvic acid-were measured in a central Pennsylvania deciduous forest during the summer of 1988. Isoprene concentrations ranged from near zero at night to levels in excess of 30 ppbv during daylight hours. During fair weather periods, midday isoprene levels normally fell in the 5–10 ppbv range. Methacrolein and methylvinyl ketone levels ranged from less than 0.5 ppbv to greater than 3 ppbv with average midday concentrations in the 1 to 2 ppbv range. The diurnal behavior of formaldehyde paralleled that of isoprene with ambient concentrations lowest (1 ppbv) in the predawn hours and highest (>9.0 ppbv) during the afternoon. The organic acids peaked during the midday period with average ambient concentration of 2.5, 2.0, and 0.05 ppbv for formic, acetic, and pyruvic acid, respectively. These data indicate that oxygenated organics comprise a large fraction of the total volatile organic carbon containing species present in rural, forested regions of the eastern United States. Consequently, these compounds need to be included in photochemical models that attempt to simulate oxidant behavior and/or atmospheric acidity in these forested regions.  相似文献   

17.
Stratospheric volume mixing ratio profiles of N2O5, CH4, and N2O have been retrieved from a set of 0.052 cm–1 resolution (FWHM) solar occultation spectra recorded at sunrise during a balloon flight from Aire sur l'Adour, France (44° N latitude) on 12 October 1990. The N2O5 results have been derived from measurements of the integrated absorption by the 1246 cm–1 band. Assuming a total intensity of 4.32×10–17 cm–1/molecule cm–2 independent of temperature, the retrieved N2O5 volume mixing ratios in ppbv (parts per billion by volume, 10–9), interpolated to 2 km height spacings, are 1.64±0.49 at 37.5 km, 1.92±0.56 at 35.5 km, 2.06±0.47 at 33.5 km, 1.95±0.42 at 31.5 km, 1.60±0.33 at 29.5 km, 1.26±0.28 at 27.5 km, and 0.85±0.20 at 25.5 km. Error bars indicate the estimated 1- uncertainty including the error in the total band intensity (±20% has been assumed). The retrieved profiles are compared with previous measurements and photochemical model results.Laboratoire associé aux Universités Pierre et Marie Curie et Paris Sud.  相似文献   

18.
The effect of temperature on the solubility of PAN and on its hydrolysis rate in near-neutral and slightly acidic water were studied in a bubble column apparatus. The results obtained are a Henry's law coefficient H=10–9.04±0.6 exp[(6513±376)/T] M atm–1, and a first-order hydrolysis rate constant k=106.60±1.0 exp[(–6612±662)/T] s-1, which was independent of pH in the range 3.2pH6.7. The products formed are nitrite and nitrate in approximately equal proportions under near-neutral conditions. At a pH<4, nitrite is oxidized in a secondary reaction, and nitrate becomes the only product at low pH. Previously measured deposition velocities of PAN on stagnant water surfaces are shown to be hydrolysis rate limited.  相似文献   

19.
A calibrated spectroradiometer was used for the measurement of spectra of the absolute actinic flux F during the POPCORN field campaign in Pennewitt (53.8° N, 11.7° E, sea level) in August 1994. The obtained set of actinic flux spectra was used to determine the photolysis frequencies J(O1D), J(NO2), J(HCHO), J(H2O2), J(HONO), and J(CH3CHO), using molecular photodissociation data from literature. The accuracy of the actinic flux measurement was about ±5%. The accuracy of the photolysis frequency determination is limited by the uncertainties of the molecular absorption cross section and quantum yield data. A good agreement within the experimental uncertainties was found in comparison with measurements of J(O1D) and J(NO2) by filterradiometer which were calibrated absolutely against chemical actinometer. A comparison of this work's photolysis frequency measurements at 40° solar zenith angle with respective measured and modeled data from the literature also shows good agreement for most of the processes considered in this work. However, in the case of J(NO2) data reported in the literature as a function of solar zenith angle differences up to a factor of 1.6 with respect to this work's J(NO2) data are observed. Since this is far beyond the estimated experimental uncertainties, other atmospheric variables, such as aerosols, seem to affect J(NO2) to an extent that is underestimated by now and make indirect comparisons of J(NO2) measurements difficult.  相似文献   

20.
Since April 1986, measurements of the CO2 concentration in the surface air have been conducted at the Meteorological Research Institure (MRI, 36°04 N, 140°07 E, 25 m above sea level) in Tsukuba, located 50 km northeast of Tokyo, Japan. The CO2 data measured over times between 11:00 Japan Standard Time (JST) and 16:00 JST (C N ) were considered to be representative of the air (within a few ppmv) in the planetary boundary layer. To evaluate the representative CO2 level on a spatial scale larger than that of the C N record, the CO2 data with hour-to-hour variation less than 1 ppmv were selected (C P ). Comparison of these data with those of Ryori (39°02 N, 141°50 E), a continental station operated by the Japan Meteorological Agency, indicates that the C P record provides a representative CO2 level in the air on spatial scales of at least a few hundred kilometers.The C N record allows an investigation of the internanual changes in photosynthesis/respiration against changes in climatological parameters. Within a small temperature anomaly (ca.±1 °C) respiration is sensitive to the temperature change, while photosynthesis is less sensitive. When the temperature anomaly is large, however, photosynthesis and respiration tend to be competitive.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号