首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 354 毫秒
1.
Summary The local wind system in the upper Isar Valley (Bavarian Alps) near Mittenwald has the peculiarity that regularly strong foehn-like nocturnal flows occur, mainly during clear nights in autumn and winter. We will refer to this phenomenon as “Minifoehn”, as its properties are similar to the classical deep foehn in the sense that its breakthrough into the Isar Valley usually brings a striking increase in temperature and a concomitant decrease in relative humidity. Numerical simulations with the MM5 model reveal that this phenomenon is related to a nocturnal drainage flow originating from a plateau south of Mittenwald. This flow is driven by the temperature difference between this plateau (1180 m) and the free atmosphere above Mittenwald (920 m, 15 km north of the plateau) at the same level. The air masses flow through two different valleys that merge again further downstream. The upper part of one of the two drainage currents goes over a small mountain ridge (1180 m) south-west of Mittenwald and then descends into the Isar Valley, leading to an advection of potentially warm air towards Mittenwald. This branch of the drainage current constitutes the Minifoehn. The remaining part of the drainage current flows through a narrow gap towards the Isar Valley and then joins the drainage flow of this valley. As these air masses are significantly cooler than the Minifoehn branch, large horizontal temperature gradients can be found around Mittenwald. The dynamical behaviour of the cold air flow turns out to be qualitatively consistent with shallow-water theory only in the absence of a forcing by large-scale winds. Otherwise, gravity-wave induced pressure perturbations interact with the drainage flow and modify the low-level flow field. The simulations show that the gravity waves are excited by the mountain range that separates the two valleys mentioned above. Moreover, the simulations indicate that the structure of this nocturnal wind system is not very sensitive to the direction of synoptic-scale winds as long as they come from the southern sector. On the other hand, ambient northerly winds are able to prevent the drainage flow and therefore the local foehn effects in the Isar Valley provided that synoptic winds are strong enough. The results of the MM5 simulations are in good agreement with the measurements and observations described in part 1 of this study.  相似文献   

2.
Summary This study presents high-resolution numerical simulations of north foehn in the Austrian Inn Valley which have been performed with the Penn State/NCAR mesoscale model MM5. As the Inn Valley is located north of the Alpine crest, north foehn occurs comparatively rarely in this valley, and there are only sparse observations available for this phenomenon. Simulations of the 24 January 1993 case as well as idealized simulations are performed to get a deeper insight into the dynamics of the north foehn. Moreover, the synoptic conditions leading to the occurrence of north foehn in the Inn Valley are investigated. The simulations indicate that there are at least four different paths for the foehn to penetrate into the valley. Two of them are running along side valleys entering the upper Inn Valley from the west. These flow paths appear to be most important when the large-scale flow has a significant westerly component. The other possible flow paths enter the Inn Valley from the northwest or north and require a strong northerly component of the large-scale flow. From a dynamical point of view, north foehn appears to be similar to the well researched south foehn in that vertically propagating gravity waves force the descent of the ambient flow into the valleys. However, there are also indications that trapped lee waves have a significant impact on the surface wind field, which has not been reported for south foehn so far. Moreover, the model results show that a precondition for the formation of north foehn in the Inn Valley is the absence of significant orographic precipitation. Evaporative cooling induced by precipitation falling into subsaturated air not only reduces the surface temperatures but also inhibits the formation of large-amplitude gravity waves, suppressing the development of stormy surface winds.  相似文献   

3.
Summary An unusually strong nocturnal downvalley wind can be regularly observed in the upper Isar Valley close to Mittenwald (Bavarian Alps) when a high-pressure system is located over Central Europe or when ambient southerly winds are present. Due to the structure of the local topography, this downvalley wind has foehn-like properties in the sense that the breakthrough of the flow into the valley is characterized by a strong increase in temperature and a decrease in relative humidity. Therefore the author called this flow Minifoehn. In fact, wind speeds are low in comparison to deep foehn, but gusts may reach values up to 20ms–1, even under the influence of high pressure systems with weak atmospheric pressure gradients. To investigate the Minifoehn, surface stations have been installed for collecting temperature, humidity, wind and pressure data. Measurements have shown that the Minifoehn represents the upper part of one of the drainage currents which flows over a mountain ridge into the valley at Mittenwald. Nocturnally cooled air drains from a plateau south of Mittenwald through different valleys which merge again near Mittenwald. It seems that the forcing of the nocturnal currents is dominated by the temperature difference between this plateau and the free atmosphere above Mittenwald at the same level. Strong temperature differences are found during clear winter nights and in case of subsidence inversions. Moreover, the appearance of the Minifoehn in autumn and winter is so frequent that we even may find a climatic effect: the upper Isar Valley is usually free of fog during these seasons and nocturnal temperatures are often considerably higher than in other Bavarian Alpine valleys at comparable altitude.  相似文献   

4.
Summary ?Numerical simulations of the south foehn in the region of Innsbruck are presented. They are semi-idealized in the sense that realistic orography but idealized initial and boundary conditions are used. The focus of this study is on typical features of the fully developed foehn, the breakthrough phase of the foehn and the diurnal cycle of the foehn. In addition, the impact of the large-scale wind direction is examined, including conditions leading to shallow foehn. The simulated flow fields have been found to be in very good agreement with observations except for a few minor details. In the lower part of the Sill Valley (the valley going from the Brenner pass down to Innsbruck), the wind speed is significantly higher than in the upper part. The acceleration can be traced back to the three-dimensional propagation of gravity waves excited over the adjacent mountain ridges. The amplitude of the gravity waves over the various mountain ridges depends sensitively on the wind direction, large wave amplitudes occurring only when the angle between the wind direction and the ridge line is not too small. For southwesterly or south–southwesterly large-scale flow, wave amplitudes are significantly larger to the east of Innsbruck than to the west. Foehn breakthrough at Innsbruck is usually preceded by a moderate westerly (downvalley) wind that is restricted to a rather small area around Innsbruck. The simulations reveal that this so-called pre-foehn is mainly a consequence of the gravity wave asymmetry, producing an asymmetric pressure perturbation with lower pressure to the east of Innsbruck. Shallow foehn, defined as a foehn occurring when the large-scale flow at crest height (700 hPa) is approximately westerly, is associated with relatively weak wave activity along the Sill Valley. It is found that at least a weak southerly wind component below crest height is necessary to maintain a significant shallow foehn over a longer time. Received October 10, 2001; accepted June 20, 2002 Published online: February 20, 2003  相似文献   

5.
Summary ?Observational data collected in the Lake Tekapo hydro catchment of the Southern Alps in New Zealand are used to analyse the wind and temperature fields in the alpine lake basin during summertime fair weather conditions. Measurements from surface stations, pilot balloon and tethersonde soundings, Doppler sodar and an instrumented light aircraft provide evidence of multi-scale interacting wind systems, ranging from microscale slope winds to mesoscale coast-to-basin flows. Thermal forcing of the winds occurred due to differential heating as a consequence of orography and heterogeneous surface features, which is quantified by heat budget and pressure field analysis. The daytime vertical temperature structure was characterised by distinct layering. Features of particular interest are the formation of thermal internal boundary layers due to the lake-land discontinuity and the development of elevated mixed layers. The latter were generated by advective heating from the basin and valley sidewalls by slope winds and by a superimposed valley wind blowing from the basin over Lake Tekapo and up the tributary Godley Valley. Daytime heating in the basin and its tributary valleys caused the development of a strong horizontal temperature gradient between the basin atmosphere and that over the surrounding landscape, and hence the development of a mesoscale heat low over the basin. After noon, air from outside the basin started flowing over mountain saddles into the basin causing cooling in the lowest layers, whereas at ridge top height the horizontal air temperature gradient between inside and outside the basin continued to increase. In the early evening, a more massive intrusion of cold air caused rapid cooling and a transition to a rather uniform slightly stable stratification up to about 2000 m agl. The onset time of this rapid cooling varied about 1–2 h between observation sites and was probably triggered by the decay of up-slope winds inside the basin, which previously countered the intrusion of air over the surrounding ridges. The intrusion of air from outside the basin continued until about mid-night, when a northerly mountain wind from the Godley Valley became dominant. The results illustrate the extreme complexity that can be caused by the operation of thermal forcing processes at a wide range of spatial scales. Received June 25, 2001; Revised December 21, 2001  相似文献   

6.
This paper investigates the impact of weak synoptic-scale forcing on the thermally induced valley-wind circulation in the Alpine Inn Valley and one of its largest tributaries, the Wipp Valley. To this end, high-resolution numerical simulations with realistic topography but idealized large-scale atmospheric conditions are performed. The large-scale flow has a speed increasing linearly from 5 m s?1 at sea level to 12.5 m s?1 at tropopause level, but its direction is varied between each experiment. For reference, an experiment without large-scale winds is conducted as well. The results indicate that the sensitivity to ambient flow forcing differs substantially between the Inn Valley and the Wipp Valley. The valley-wind circulation of the Inn Valley is found to be fairly robust against weak ambient forcing, changing by a much smaller amount than the along-valley component of the imposed large-scale flow. The valley wind tends to be intensified (weakened) when the ambient flow is aligned with (opposite to) the local valley orientation. However, the flow response is complicated by larger-scale interactions of the ambient flow with the Alpine massif. Most notably, northerly and northwesterly flow is deflected around the Alps, leading to the formation of a low-level jet along the northern edge of the Alps which in turn affects the valley-wind circulation in the lower Inn Valley. For the Wipp Valley, which is oriented approximately normal to the Alpine crest line and constitutes a deep gap in the Alpine crest, two distinctly different flow regimes are found depending on whether the large-scale flow has a significant southerly component or not. In the absence of a southerly flow component, the valley-wind circulation is similarly robust against ambient forcing as in the Inn Valley, with a fairly weak response of the local wind speeds. However, southerly ambient flow tends to force continuous downvalley (southerly) wind in the Wipp Valley. The flow dynamics can then be described as a pressure-driven gap flow during the day and as a mixture between katabatic flow and gap flow during the night. The responsible pressure forcing arises from the larger-scale interaction of the ambient flow with the Alpine massif, with southerly flow causing lifting on the southern side of the Alps and subsidence in the north.  相似文献   

7.
中亚低涡背景下阿克苏地区一次强降水天气分析   总被引:1,自引:0,他引:1  
郭楠楠  周玉淑  邓国 《气象学报》2019,77(4):686-700
为了加强对新疆暴雨过程的中尺度系统发展机理的认识,利用美国环境预测中心的FNL、欧洲中期数值预报中心的全球再分析资料、中国气象局提供的地面自动气象站观测资料、中国国家卫星气象中心提供的卫星辐射亮温(TBB)资料及WRF高分辨率数值模拟对2013年6月17—18日发生在新疆阿克苏地区的一次暴雨天气过程进行分析。结果表明,此次降水过程是发生在中高纬度“两脊一槽”的环流形势下,中亚低涡为这次暴雨的发生提供了有利的天气尺度动力及水汽条件;中亚低涡环流与天山南脉特殊地形造成的气流绕流叠加生成的中尺度辐合线是此次强降水的重要中尺度影响系统,山谷地形热力性质差异造成的下坡风推动辐合线移动,辐合线上发展的强对流引发了阿克苏地区的强降水。WRF模拟结果能够基本再现本次天气过程的降水落区、强度以及风场演变等。结合观测以及模拟资料进行的初步分析显示,西天山的阻挡导致偏南风在西天山南坡山谷附近产生堆积和辐合,山谷附近有局地的地形辐合线形成。同时,随着大尺度环流形势的调整,中亚低涡移动至阿克苏地区附近后,低涡南部的偏西气流一部分直接越过西天山变为西北风,另一部分穿过伊犁河谷转为东北风,这两支气流共同加剧了天山南脉阿克苏地区的偏北气流,促进了西天山南坡山谷附近中尺度辐合线的加强。辐合线以东的偏东气流带来的水汽在天山南脉前堆积,随着夜间山谷下坡风的增强作用,中尺度辐合线在向东南方向推进过程中不断发展加强,配合山脚堆积的水汽和辐合抬升,不稳定能量释放,对流发展,为阿克苏地区带来强降水天气。   相似文献   

8.
Summary In this paper, very-high-resolution numerical simulations are presented to analyze the small-scale dynamics of the foehn in the lower Wipp Valley and the adjacent parts of the Inn Valley. This region was one of the target areas for foehn observations during the Mesoscale Alpine Programme (MAP). Our simulations consider two MAP cases that markedly differed in the depth of the foehn flow. To isolate the dynamical effect of the key orographic features in the Wipp Valley region, we performed sensitivity experiments with different topography modifications. These involve lowering or even removing the Nordkette range, which constitutes the northern side wall of the east–west-oriented Inn Valley, and closing the Stubai Valley, which is the northernmost and largest tributary of the Wipp Valley. A comparison with surface and lidar observations indicates that our present model resolution of 467 m significantly improves the realism of the simulations compared to a resolution of 800 m, as used in a previous study. The Nordkette is found to have a twofold impact on the dynamics of foehn breakthrough into the Inn Valley. In reality, this mountain chain deflects part of the southerly foehn current coming from the Wipp Valley into the perpendicularly oriented Inn Valley. Our sensitivity tests indicate that this flow deflection tends to accelerate the foehn breakthrough into the Inn Valley, while upstream blocking effects induced by the Nordkette act to slow down the process of foehn breakthrough. The flow pattern in the Wipp Valley reveals that the upstream effects of the Nordkette are not quite far-reaching. The amplitude of the gravity waves over the lower Wipp Valley gets somewhat reduced by these upstream effects, but the overall flow pattern remains largely unaffected. Closing the Stubai Valley also has a minor effect of the wave structure and tends to reduce the cross-valley variability of the foehn flow in the lower Wipp Valley.  相似文献   

9.
Heavy rainfall usually occurs to the southeast of a Mei-yu frontal low. The rainstorms appeared to the west of Mei-yu frontal lows are difficult to forecast because their formation mechanisms are not well understood. An extreme rainfall event occurred to the west of a Mei-yu frontal low in Anqing City, Anhui Province, China, on 13 July 2010, which was not well predicted. Based on observation data, NCEP/NCAR reanalysis data and high-resolution numerical simulation output, the mechanisms of this severe rainstorm are analyzed in this paper. The results indicate that the eastward moving meso-α-scale low was a key synoptic system that resulted in the formation of the mesoscale convective system causing the rainstorm. As the low moved eastward and strengthened, the increasing northerly flow and the southerly warm/moist flow formed an eastwest elongated convergence line (frontal zone) at the west part of the low. While the low moved to the coastal region, its intensity was enhanced and its moving speed was reduced. As a result, the convergence line and the frontal zone remained quasi-stationary near Anqing. Furthermore, Anqing is located in a valley between the Dabie and Wannan Mountains; the northerly winds flowed around Dabie Mountains and entered the valley, leading to an intense local convergence and frontogenesis near Anqing. Under the unstable environments with sufficient water vapor, the local intense frontogenesis along with intense convergence triggered and maintained the quasi-stationary mesoscale convective system that resulted in the record-breaking rainfall in Anqing.  相似文献   

10.
Summary This study examines the exceptional Alpine south foehn event of 14–16 November 2002 using routine observations and high-resolution numerical simulations. Besides its long duration and an extremely high temperature level related to warm-air advection from the northern Sahara, this foehn event exhibited an unusual spatial structure of the low-level wind and temperature field. Whereas the foehn was largely restricted to the first half of 14 November in the western part of the Alps (Switzerland), it extended over the full period in the inner-Alpine valleys in the eastern Alps. The duration and intensity of the foehn also tended to decrease from the Alpine crest towards the northern rim of the Alps. Most surprisingly, continuous foehn even occurred on the windward side of the Alpine crest, namely in a basin located in the southeastern Alps. The distribution of the orographic precipitation associated with the foehn case was unusual as well. In Switzerland, intense precipitation was not restricted to the windward (southern) side of the Alps but extended to the northern side of the Alpine crest, particularly on 16 November. The results indicate that the spatio-temporal distribution of the foehn in the northern Alps was related to the fact that the western Alps were within a synoptic-scale transition zone between extremely warm air advected from the south and colder air lying over western Europe. The colder air was advected around the western Alps whereas extremely warm air descended from the Alpine crest farther east. Moreover, a small cyclone formed on 14 November north of the Alps and generated a shallow cold front propagating eastward along the northern Alps. Thus, the tendency towards foehn decreased from west to east and from the Alpine crest towards the north. The occurrence of foehn on the windward side of the Alpine crest was made possible by the extreme strength of the large-scale southerly flow, combined with the fact that the upstream precipitation field did not reach the southeastern edge of the Alps. Finally, the pronounced spillover of precipitation to the northern side in the Swiss part of the Alps appears to be related to the colder air present north of the crest. This prevented the formation of orographic gravity waves and downslope air motion, which usually leads to a rapid evaporation of the precipitation on the lee side of the Alpine crest.  相似文献   

11.
The so called Upper Río Negro Valley in Argentina is one of the most important fruit and vegetable production regions of the country. It comprises the lower valleys of the Limay and Neuquén rivers and the upper Negro river valley. Out of the 41,671 cultivated hectares, 84.6% are cultivated with fruit trees, especially apple, pear and stone fruit trees. Late frosts occurring when trees are sensitive to low temperatures have a significant impact on the regional production. This study presents an analysis of air flow characteristics in the Upper Río Negro Valley and its relationship with ambient air flow. To such effect, observations made when synoptic-scale weather patterns were favorable for radiative frosts (light wind and clear sky) or nocturnal temperature inversion in the lower layer were used. In the Negro river valley, both wind channeling and downward horizontal momentum transport from ambient wind were observed; in nighttime, very light wind events occurred, possibly associated with drainage winds from the nearby higher levels of the barda. In the Neuquén river valley, the prevailing effect appeared to be forced channeling, consistent with the results obtained in valleys where the synoptic scale wind crossed the axis of the valley. In the Limay river valley, the flow was observed to blow parallel to the longitudinal valley axis, possibly influenced by pressure gradient and forced channeling.  相似文献   

12.
The flow structure at the intersection between the Rhine and the Seez valleys nearthe Swiss city of Bad Ragaz has been documented by means of wind and pressuremeasurements collected from 9 September to 10 November 1999 during the MesoscaleAlpine Programme (MAP) experiment. To understand better the dynamics of theageostrophic winds that develop in this part of the Rhine valley, some key questionsare answered in this paper including the following: (i) How does air blow at theintersection of the Rhine and Seez valleys? and (ii) what are the dynamical processes(mechanical or thermal) driving the flow circulations in the valleys? Statistical analysis of the wind and pressure patterns at synoptic scale and at the scaleof the valley shows that five main flow patterns, SE/S, NW/W, NW/N, NW/S, SE/N(wind direction in the Seez valley/wind direction in the Rhine valley) prevail. The SE/S regime is the flow splitting situation. It is mainly driven by a strong pressure gradient across the Alps leading to foehn, even though some nocturnal cases are generated bylocal thermal gradients. The NW/W and NW/N regimes are mechanically forced bythe synoptic pressure gradient (as the flow splitting case). The difference between thetwo regimes is due to the synoptic flow direction [westerly (northerly) synoptic flowfor the NW/W (NW/N) regime], showing that the Rhine valley (particularly from BadRagaz to Lake Constance) is less efficient in channelling the flow than the Seez valley.The NW/S (occurring mainly during nighttime) and SE/N (occurring mainly duringdaytime) regimes are mainly katabatic flows. However, the SE/N regime is also partlyforced at the synoptic scale during the foehn case that occurred between 18 October and 20 October 1999, with a complex layered vertical structure. This analysis also shows that, contrary to what was observed in a broad section of theupper Rhine valley near Mannheim, very few countercurrents were observed near BadRagaz where the valley width is much smaller.  相似文献   

13.
The mistral and its effect on air pollution transport and vertical mixing   总被引:3,自引:0,他引:3  
Within the framework of ESCOMPTE, the influence of local wind systems like land–sea/mountain–valley winds on the distribution of air pollutants in the southern part of the Rhône valley and the coastal regions of southern France was investigated. In addition, the influence of the mistral on the long-range transport and vertical mixing of such substances on July 1, 2001 was analyzed. The results of the measurements of this mistral situation show high concentrations of O3 and NO2 in the layer just above the PBL at the southern exit of the Rhône valley near Avignon. By measurements from airborne and ground-based platforms and numerical simulations with the “Local Model” (LM) of the German Weather Service (DWD), it is shown that the mistral develops according to the theory conceived by Pettré [J. Atmos. Sci. 39 (1982) 542–554]. The synoptic-scale northerly flow through the Rhône valley is accelerated up to a Froude number (Fr) of 2.1, while the valley widens. Then, near the Mediterranean coast, a hydraulic jump occurs and Fr drops down to values below 1.0. High ozone concentrations of 112 ppb measured above the mistral layer disappear due to enhanced mixing after the flow has passed the hydraulic jump. There is some evidence that the ozone-rich air originates from the source region of greater Paris or upwind. The results confirm that regional wind systems associated with transport of trace gases in the high-grade industrialized Rhône valley can be successfully predicted using data of operational weather forecast models.  相似文献   

14.
One year of observations from a network of five 915-MHz boundary-layer radar wind profilers equipped with radio acoustic sounding systems located in California’s Central Valley are used to investigate the annual variability of convective boundary-layer depth and its correlation to meteorological parameters and conditions. Results from the analysis show that at four of the sites, the boundary-layer height reaches its maximum in the late-spring months then surprisingly decreases during the summer months, with mean July depths almost identical to those for December. The temporal decrease in boundary-layer depth, as well as its spatial variation, is found to be consistent with the nocturnal low-level lapse rate observed at each site. Multiple forcing mechanisms that could explain the unexpected seasonal behaviour of boundary-layer depth are investigated, including solar radiation, precipitation, boundary-layer mesoscale convergence, low-level cold-air advection, local surface characteristics and irrigation patterns and synoptic-scale subsidence. Variations in solar radiation, precipitation and synoptic-scale subsidence do not explain the shallow summertime convective boundary-layer depths observed. Topographically forced cold-air advection and local land-use characteristics can help explain the shallow CBL depths at the four sites, while topographically forced low-level convergence helps maintain larger CBL depths at the fifth site near the southern end of the valley.  相似文献   

15.
The interaction of katabatic winds with ambient winds has been investigated for an idealized valley using Clark's nonhydrostatic model. Ambient ridgetop wind speeds ranged from 0.5 to 6 m/s, and made angles with the valley axis ranging from 0 ° to 90 °: cooling of the valley was based on measured values of sensible heat fluxes taken from observations in Colorado's Brush Creek Valley. The depth and strength of the down-valley winds decreased with increasing ambient wind speeds but showed relatively little sensitivity to wind directions in the range of 10 ° to 60 ° from the valley axis. An observed inverse linear decrease of drainage depth with wind speed in a 100 m thick layer above the ridgetops was also found in the simulations for parts of the valley but not near the valley mouth. Vertical motions over the valley showed marked patchiness, and implications of this structure on valley flow dynamics are discussed.This work was supported by the U.S. Department of Energy (DOE) under Contract DE-AC06-76RLO 1830.  相似文献   

16.
Summary Local scale windfield and air mass characteristics during the onset of two foehn wind events in an alpine hydro-catchment are presented. Grounding of the topographically modified foehn was found to be dependent on daytime surface heating and topographic channelling of flow. The foehn front was observed to advance down-valley until the valley widened significantly. The foehn wind appeared to decouple from the surface downstream of the accelerated flow associated with the valley constriction, and to be lifted above local thermally generated circulations including a lake breeze. Towards evening, the foehn front retreated up valley in response to reduced surface heating and the intrusion into the study area of a deep and cool air mass associated with a regional scale mountain-plain circulation. Differences in the local windfield observed during both case study events reflect the importance of different thermal and dynamic forcings on airflow in complex terrain. These are the result of variation in surface energy exchanges, channelling and blocking of airflow. Observations presented here have both theoretical and applied implications with regard to forecasting foehn onset, wind hazard management, recreational activities and air quality management in alpine settings. Received January 23, 2001 Revised October 17, 2001  相似文献   

17.
By using the high-resolution observation data and MM5 model simulation data, the analysis on the 12 June 2008 Guangxi flash-flood rainstorm shows that the associated major mesoscale weather system of this event is a quasi-stationary mesoscale vortex, which resulted from the interaction between the midlatitude synoptic-scale waves in the westerly belt and the low-latitude warm-moist flow under the terrain effect. The genesis, development, and movement of the mesoscale vortex have significant impacts on the intensity and persistence of the severe precipitation from the Guangxi flash-flood rainstorm. This vortex is characterized by the coexistence of strong vorticity and divergence with the same order of magnitude. Well organized, deep, and moist convection was observed for a long period of time, and was produced by the interaction between the mesoscale vortex and the gravity waves. The latter was generated by the terrain effect and the ageostrophic effect of high winds in the low-level jet. According to the quasi-balanced dynamical theory, quasi-balanced flow must have existed in the mesoscale motions with both divergent and rotational winds. Thus, based on the diagnosis of the quasi-balanced flow, the PV-ωinversion method is employed to analyze the organized moist convection. The results show that 50%-70% of the vertical circulation in the rainstorm areas was quasi-balanced, so the quasi-balanced flow could well reflect features of the strong vertical motions associated with the coexistence of vorticity and divergence during this event.  相似文献   

18.
Local Winds In A Valley City   总被引:1,自引:0,他引:1  
Local winds were studied around a valley city, by using a high resolution two-dimensional mesoscale model forced by surface temperatures from a measurement campaign around Lanzhou City, China, during stagnant conditions. In the simulations nighttime winds are purely katabatic downslope winds without urban effects, despite the fact that the city is 6–7°C warmer than its surroundings all night. In contrast, daytime near-surface winds result from upslope flow resisted by an opposing simultaneous urban heat-island circulation (UHIC). Hence winds remain weak and variable around a city in a narrow valley during daytime. These conditions may lead to severe air quality problems day and night.The local circulations are sensitive to the widths of the valley and/or city,and also latitude, as is demonstrated by model experiments. Interestingly, in a flat and calm environment an extratropical daytime UHIC cell may turn into a weak `anti-UHIC' by the morning, due to frictional decoupling after sunset and subsequent inertial oscillation during the night, analogously tothe land breeze and nocturnal low-level jet formation.  相似文献   

19.
Summary This paper presents idealized numerical simulations of the valley wind circulation in the Alpine Inn Valley, which are compared with existing data and are used to improve our dynamical understanding of the valley wind. The simulations have been performed with the Penn State/NCAR mesoscale model MM5. They use a high-resolution realistic topography but idealized large-scale conditions without any synoptic forcing to focus on the thermally induced valley wind system. The comparison with the available observations shows that this simplified set-up is sufficient to reproduce the essential features of the valley wind.The results show that the tributaries of the Inn Valley have a considerable impact on the along-valley mass fluxes associated with the valley wind circulation. The upvalley mass flux is found to increase where tributaries enter the Inn Valley from the north, that is, from the direction where the Alpine foreland is located. On the other hand, the upvalley mass flux is reduced at the junctions with southern tributaries because part of the upvalley flow is deflected into these tributaries. For the downvalley flow, the situation is essentially reversed, but the influence of the valley geometry on the flow structure is larger than for the upvalley flow. The most important feature is a lateral valley contraction near the valley exit into the Alpine foreland. It reduces the downvalley mass flux at low levels, so that the wind maximum in the interior of the valley is shifted to a fairly large distance from the ground. North of the valley contraction, however, the downvalley flow strongly accelerates and forms a pronounced low-level jet. A dynamical analysis indicates that this acceleration can be interpreted as a transition from subcritical to supercritical hydraulic flow. Another interesting feature is that the low-level jet maintains its structure for several tenths of kilometres into the Alpine foreland. This appears to be related to the fact that the lateral wind shear on the flanks of the jet is associated with a strong dipole of potential vorticity (PV). Due to the conservation properties of the PV, the downstream advection of the PV dipole leads to the formation of a band-like feature that decays fairly slowly.  相似文献   

20.
Summary Numerical simulations of increasing complexity are conducted to investigate topographic controls and ambient wind effects upon drainage flows along a portion of the Colorado Front Range in the central Rocky Mountains. A series of two-dimensional simulations show the effects upon the drainage flow of changing slope gradient at the mountain-plain interface. For a given mountain slope, a decrease in the slope of the plain decelerates the mountain drainage jet as it approaches the plain and causes the jet to elevate. The integrated effects of slope and valley drainage are presented with particle trajectories for a particular drainage basin along the Front Range. A nested grid simulation of drainage flow from multiple basins along the Front Range shows that basin area is an important factor in the strength of the drainage flow and that canyon topography variations greatly affect the behavior of the drainage jet as it flows through the canyon mouth onto the plain. Strong drainage winds developed on each of four case night simulations due to the presence of only weak ambient wind below mountaintop. The weak winds represent a decoupling of the near-surface from stronger winds above mountaintop. The canyon drainage exhibited substantial temporal variability in wind speed with the inclusion of ambient winds, due to interactions between ambient and drainage winds.With 11 Figures  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号