首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
高洋  方翔 《气象》2018,44(5):597-611
基于2012—2014年CloudSat卫星数据,按照热带气旋强度分类的6个等级以及沿台风中心的径向距离,分析西太平洋台风云系的垂直结构及其微物理特征。研究表明:(1)不同强度的台风云系中均是单层云占主导,多层云中双层云出现比例最高;随着台风强度的增强,距离台风中心250km之内,单层云分布位置更加集中且垂直厚度较厚,而450km之外的单层云一直集中在7~15km,厚度较薄;随着台风强度的增强,距离台风中心250km之内的双层云中的底层云和顶层云均增厚且分布位置更加趋于集中,云间距变窄,而450km之外顶层云和底层云较薄,云间距一直较大。(2)台风云系中,深对流云、高层云、卷云与其他云类型相比,分布的垂直范围较广,出现频率较高,分布的位置会随着台风强度变化和沿台风中心径向距离的增加有明显的变化。(3)随着台风强度的增强,近台风中心5km以上的回波有明显增强,除此高值区外,发展较为成熟的台风,距台风中心450km之外也会出现多个明显的柱状回波高值区。(4)近台风中心液水含量的值和冰水含量的值随强度变化均有明显增加,但外围云系中也有分散的冰水含量高值中心但分布高度相对较低,在10km附近;液水粒子数浓度的高值区域与液水含量的高值区非常对应,而冰水含量的高值区位于冰粒子数浓度的高值区下方,表明小的冰粒子被较强的对流活动带到了高处,而大的冰粒子集中在云系较低处。  相似文献   

2.
利用机载粒子测量系统资料、天气雷达和Ka波段云雷达资料,分析了2017年5月22日河北省一次低槽冷锋降水过程积层混合云的微物理结构。结果表明:降水云系出现在低槽槽前西南气流中,积层混合云为大范围的层状云系中镶嵌大量对流云核结构,0℃层高度位于3577—4004m,随降水过程发展0℃层高度降低,嵌入的对流加强将抬升云顶高度。云内粒子浓度随云内对流的发生和加强而提高,云粒子浓度从1.8×10^5L^-1上升至5.0×10^5L^-1;云内过冷水含量大幅提高,从0.05g·m^-3上升至0.60g·m^-3,冷云中上层过冷水含量可长时间维持在0.20g·m^-3,中上层过冷水占比达60%。对流发生和加强可提高冰晶粒子增长速度,弱对流区冷云低层出现冰晶粒子浓度爆发增长区,强对流区冷云中上层成为冰晶粒子浓度快速增长区;最大降水粒子直径从8000μm增长至10000μm以上,直径在10000μm以上降水粒子谱分布区域从云底向中上层拓展。  相似文献   

3.
利用黄河上游地区不同降水云系31次降水的激光雨滴谱仪观测资料,对不同云系降水雨滴物理参量特征及滴谱的演变特征进行统计分析。结果表明:在黄河上游地区,层状云系降水和混合云系降水雨滴粒子呈单峰型分布,对流云系降水雨滴粒子呈双峰型分布。层状云系降水雨滴粒径峰值出现在0.4 mm,粒径范围较窄,雨滴数密度最大;对流云系降水雨滴粒径峰值出现在0.8 mm,粒径分布范围较宽,雨滴数密度最小;混合云系降水雨滴粒径峰值和粒径分布范围介于两者之间。雨滴各微物理参量(平均直径、均方根直径、平均体积直径、中值直径和体积中值直径)由大到小排序依次为对流云降水、混合云降水和层状云降水。降雨强度和雨滴数密度变化趋势一致,对流云和混合云降水强度和雨滴粒子数浓度有较好的相关性。通过雨滴谱特征的研究,有利于认识该地区降水微物理特性及成雨机制,为实施科学人工增雨提供一定的科学依据。  相似文献   

4.
大兴安岭是我国重要生态资源保护区,深入分析该区域云物理特性参量分布特征,对了解复杂地形区域气候变化及人工影响天气等具有重要意义。基于CloudSat-CALIPSO(CloudSat-Cloud Aerosol Lidar and Infrared Pathfinder Satellite Observations)卫星观测资料,分析了大兴安岭地区云层的宏、微观物理特征,结果表明:大兴安岭地区年平均云出现频率为59.5%,主要以高层云、卷云和层积云为主,春夏季云发生频率高于秋冬季。云层主要以薄云为主,61.41%的云厚度不超过2 km,云顶高度、云底高度分别呈现双峰型和单峰型分布形式。云垂直结构特征为单层云的出现频率最高,占到总云量的69.19%,随着云层数的增加,云的发生频率逐渐降低。大兴安岭地区云中液态水含量丰富,年平均值达244.41 mg·m^(-3),约为冰水含量年平均值的4倍,有83.2%的云水含量集中在低空5 km以下的区域。水滴粒子有效粒径和数浓度的年平均值分别为15.86μm和34.47个·cm^(-3),均小于冰晶粒子平均值。云中含水量和有效粒径随高度呈现单峰型分布形式,而云滴粒子数浓度则在低空呈现为双峰型分布形式。  相似文献   

5.
利用2020—2021年昭苏地区夏季的雨滴谱数据,研究层状云和对流云降水的微物理参量及雨滴谱特征。结果表明:对流云降水的粒子数浓度和粒子直径明显偏大,较大的粒子直径和粒子数浓度使得其降水强度和液态含水量远大于层状云降水。两类降水云的雨滴谱均为单峰结构,峰值直径主要分布在0.5~0.625 mm,对流云降水的雨滴谱谱宽明显大于层状云降水。两类降水云的雨滴直径和粒子数浓度与青藏高原中部的观测值相近,且昭苏地区的对流云滴谱更倾向于大陆性对流簇。研究结果有助于加深对昭苏地区降水的微物理特征及其演变规律的理解。  相似文献   

6.
郭小浩  李艳伟  蔡磊 《大气科学》2015,39(4):677-691
嵌有对流的层状云系兼有两种云的特征并且降水效率较高, 具有重要的研究意义。本文结合观测资料, 利用中尺度数值模式WRF(Weather Research and Forecast)模拟了2010年7月1日发生在东北地区的一次大范围强降水天气过程, 并对其中两个较典型的嵌入对流个例进行了详细分析。分析发现这两个嵌入对流都是由低层对流嵌入到高层云系所形成, 其中由对流云和位于其正上方的层云所形成的嵌入对流发展更加旺盛并给地面带来更强降水。以这两个个例为基础, 通过其与模拟区域内的普通对流云和层云相比较发现:相对于孤立对流云, 嵌入对流内的对流云生命期更长、低层水汽辐合更强、云内液水含量更大, 不稳定能量更多集中在低层;而在液水含量相当的两个嵌入对流中固态水含量的不同对降水强度影响较大;另一方面, 在嵌入对流发展的过程中嵌入对流内层云的垂直尺度扩大、含水量增加、降水强度增强, 从降水机制来看其云内固态和液态水含量都随嵌入对流发展逐渐增大, 而单纯层云内的上述变化均不明显。  相似文献   

7.
使用WRF模式中的Morrison,WSM6,SBM,P3四种微物理方案的集合,模拟中尺度对流系统降水过程.研究发现不同的微物理方案模拟的对流云区液态含水量,冰水含量的垂直分布各不相同,而模拟的层状云区液态含水量,冰水含量的垂直分布结果相似.总的来说与其他方案相比,Morrison方案和集合平均的结果最接近观测值.我们也注意到在一些区域,所有成员均高估了液态含水量2-8倍,这也导致了在这些区域集合平均值与观测相比仍然有很大的差距.  相似文献   

8.
使用WRF模式中的Morrison,WSM6,SBM,P3四种微物理方案的集合,模拟中尺度对流系统降水过程.研究发现不同的微物理方案模拟的对流云区液态含水量,冰水含量的垂直分布各不相同,而模拟的层状云区液态含水量,冰水含量的垂直分布结果相似.总的来说与其他方案相比,Morrison方案和集合平均的结果最接近观测值.我们也注意到在一些区域,所有成员均高估了液态含水量2-8倍,这也导致了在这些区域集合平均值与观测相比仍然有很大的差距.  相似文献   

9.
基于多普勒天气雷达和OTT Parsivel激光雨滴谱仪资料对山西汾阳地区2次降水进行分析,对比对流云和层状云降水的雨滴谱特征。结果表明:层状云降水雨滴平均数浓度和雨强分别为286.20个·m~(-3)和1.33 mm·h~(-1),对流云降水雨滴平均数浓度和雨强分别为516.13个·m~(-3)和10.17 mm·h~(-1);对流云降水雨强主要由降水粒子数浓度决定,直径为1—2 mm的粒子对2种云系雨强贡献最大;2种云系不同雨强下雨滴谱分布和雨滴平均谱分布均呈单峰型,对流云降水雨滴平均谱宽大于层状云降水雨滴平均谱宽,Gamma分布对2种云系降水平均谱拟合均存在一定偏差;通过雨滴谱计算的雷达反射率因子估算降水会造成对降水的低估。  相似文献   

10.
范思睿  王维佳 《气象科技》2019,47(2):191-200
2014—2017年四川地区开展了大范围云系观测科学试验。观测对象以盆地层状云系和积层混合云系为主,积状云(对流云)为辅。本文围绕试验目标、区域、观测要素、观测布局设计、观测方案设计、设备技术参数和典型个例等7个方面进行介绍,根据不同类型云系和降水变化特征,设计有针对性的观测方案,获得了不同类型云系和降水的多尺度连续性观测数据,为四川地区开展云和降水关系研究提供详实的综合型外场观测数据。层状降水云典型个例云高可达8km,云强核心部位的云雷达反射率可达28dBz,径向速度可达-6m·s~(-1),在0℃附近,反射率和退偏振因子LDR上有一条明显的亮带,表现为极大值,液态水主要集中于4.5km以下,随着雨强增大,液水含量增加,降水滴谱分布较窄,随着雨强减小,雨滴谱和速度谱变窄,但小粒径数浓度增加,说明对层状云雨强起主导作用的是雨滴直径,而不是数浓度;无降水层状云典型个例云层厚度为3.2km,云顶约为4km,云雷达反射率不超过0dBz,径向速度不超过5m·s~(-1),层状云内整层水汽含量和液水含量较为稳定,云中主要为液态粒子且粒径偏小、小粒径数浓度较高。  相似文献   

11.
范雯露  景晓琴  杨璟  周思雨 《大气科学》2022,46(5):1113-1131
混合相态层状云与对流云的微物理特征有很大的差异性,但现阶段数值模式中并没有充分考虑两者的区别,这是导致云降水的模拟有较大不确定性的原因之一。为了加深对层状云与对流云的微物理特征差异的理解,并为模式的验证和参数化开发提供支撑,本文基于在中落基山地区进行的Ice in Clouds Experiment—Layer Clouds(ICE-L)项目和High Plain Cumulus(HiCu)项目的飞机观测资料,定量对比分析了该地区大陆性混合相态冬季较浅薄的层状云与较弱及中等强度的夏季对流云的微物理特征。其中,粒子图像和粒子谱通过2D-Cloud和2D-Precipitation探头得到,液态水含量通过热线式King探头测量得到,冰水含量基于粒子谱计算得到。主要结论有:(1)在?30°C~0°C的温度层范围内,夏季对流云内的液态水含量比冬季层状云高一个数量级,冰水含量高一到两个数量级,并且在对流云云顶附近观测到更多的过冷水。此外,夏季对流云中液态水含量在?20°C~0°C上随温度降低而升高,而冬季层状云则相反。夏季对流云中更活跃的冰晶生成和生长过程使得云内液态水质量分数小于层状云。(2)冬季层状云与夏季对流云内相态空间分布极不均匀。随着温度从0°C降低到?30°C,在冬季层状云中冰晶发生贝吉龙过程,云中的过冷水为主的区域向混合相态和冰相转化。而夏季对流云中相态结构更为复杂,体现了对流云中复杂的冰水相互作用。(3)在?30°C~0°C的温度范围内,夏季对流云的粒子谱宽度大于冬季层状云。随着温度的降低,冬季层状云与夏季对流云均存在粒子谱增宽的现象。(4)冬季层状云中,温度低于?20°C时冰晶主要为无规则状,在?20°C~?10°C观测到了辐枝状和无规则状冰晶,在?10°C以上观测到了柱状和无规则状冰晶,说明冰晶的生长主要为凝华增长和碰并增长。而夏季对流云以冻滴、霰粒子与不规则冰晶为主,说明主要为液滴冻结、淞附增长和碰并增长为主。(5)在夏季对流云较强的上升气流中存在较高的液态水含量,但垂直速度与云内冰水含量没有明显的相关性。  相似文献   

12.
对云中微物理过程的研究是研究云降水形成过程和人工影响降水的重要基础,目前对积层混合云的对流区/对流泡中的微物理结构了解甚少。本文利用河北省“十三五”气象重点工程——云水资源开发利用工程的示范项目(2017~2019年)“太行山东麓人工增雨防雹作业技术试验”飞机和地面雷达观测数据,重点分析研究了2017年5月22日一次典型稳定性积层混合云对流泡和融化层的结构特征。研究结果表明,此次积层混合云高层存在高浓度大冰粒子,冰粒子下落过程中的增长在不同区域存在明显差异,在含有高过冷水含量的对流泡中,冰粒子增长主要是聚并和凇附增长,而在过冷水含量较低的云区以聚并增长为主。由于聚并增长形成的大冰粒子密度低,下落速度小,穿过0℃层时间更长,出现大量半融化的冰粒子,使融化现象更为明显。镶嵌在层状云中的对流泡一般处于0℃~-10℃(高度4~6 km)层之间,垂直和水平尺度约2 km,最大上升气流速度可达5 m s-1。对流泡内平均液态水含量是周围云区的2倍左右,小云粒子平均浓度比周围云区高一个量级,大粒子(直径800 μm以上)的浓度也更高。在具有较高过冷水含量的对流泡中降水形成符合“播撒—供给”机制,但在过冷水含量较低的区域并不符合这一机制。  相似文献   

13.
The presence of embedded convection in stratiform clouds strongly affects ice microphysical properties and precipitation formation. In situ aircraft measurements, including upward and downward spirals and horizontal penetrations, were performed within both embedded convective cells and stratiform regions of a mixedphase stratiform cloud system on 22 May 2017. Supercooled liquid water measurements, particle size distributions, and particle habits in different cloud regions were discussed with the intent of characterizing the riming process and determining how particle size distributions vary from convective to stratiform regions. Significant amounts of supercooled liquid water, with maxima up to 0.6 g m~(-3), were observed between -3℃ and-6℃ in the embedded convective cells while the peak liquid water content was generally less than 0.1 g m~(-3) in the stratiform regions.There are two distinct differences in particle size distributions between convective and stratiform regions.One difference is the significant shift toward larger particles from upper -15℃ to lower -10℃ in the convective region, with the maximum particle dimensions increasing from less than 6000 μm to over 1 cm. The particles larger than 1 cm at -10℃ are composed of dendrites and their aggregates. The other difference is the large concentrations of small particles(25–205 μm) at temperatures between -3℃ and-5℃ in the convective region, where rimed ice particles and needles coexist. Needle regions are observed from three of the five spirals, but only the cloud conditions within the convective region fit into the Hallett-Mossop criteria.  相似文献   

14.
三江源地区秋季典型多层层状云系的飞机观测分析   总被引:4,自引:0,他引:4  
利用三江源地区一次机载粒子测量系统PMS(Particle Measuring Systems)的分层垂直探测资料,系统研究了该地区秋季典型多层层状云系的微物理特性,结果表明:(1)云系由4层云层组成,Cs(卷层云)和上层As(高层云)为冰云,下层As和Sc(层积云)为过冷混合态云。下层As的云粒子浓度和过冷水含量最大,Sc的云粒子尺寸及谱宽最大,且具有较明显的地区特性;(2)Sc(下层As及对流泡)中中值直径在3.5~18.5 μm(3.5~ 21.5 μm)之间的云粒子为液相,中值直径大于21.5 μm(24.5 μm)的云粒子为冰相;(3)混合态云中高过冷水区与低过冷水区云的粒子谱分布差异明显,Sc高过冷水区有较明显的淞附增长现象;(4)Sc、下层As云底、对流泡顶高过冷水区的云滴有效半径依次增加。Sc高过冷水区的过冷水含量比率均值及标准差为69.9±19.4%,且与过冷水含量存在一定的关联性;下层As云底高过冷水区的过冷水含量比率无明显变化,其均值及标准差为89.2±8.1%;(5)混合态云各高度层FSSP(前向散射粒子谱探头)平均粒子谱均为单峰型伽玛分布,混合态云和冰云各高度层2DC(二维灰度云粒子探头)平均粒子谱基本上都为负指数型分布。  相似文献   

15.
Yafei YAN  Yimin LIU 《大气科学进展》2019,36(10):1089-1102
Cloud is essential in the atmosphere, condensing water vapor and generating strong convective or large-scale persistent precipitation. In this work, the relationships between cloud vertical macro- or microphysical properties, radiative heating rate, and precipitation for convective and stratiform clouds in boreal summer over the Tibetan Plateau (TP) are analyzed and compared with its neighboring land and tropical oceans based on CloudSat/CALIPSO satellite measurements and TRMM precipitation data. The precipitation intensity caused by convective clouds is twofold stronger than that by stratiform clouds. The vertical macrophysics of both cloud types show similar features over the TP, with the region weakening the precipitation intensity and compressing the cloud vertical expansion and variation in cloud top height, but having an uplift effect on the average cloud top height. The vertical microphysics of both cloud types under conditions of no rain over the TP are characterized by lower-level ice water, ice particles with a relatively larger range of sizes, and a relatively lower occurrence of denser ice particles. The features are similar to other regions when precipitation enhances, but convective clouds gather denser and larger ice particles than stratiform clouds over the TP. The atmospheric shortwave (longwave) heating (cooling) rate strengthens with increased precipitation for both cloud types. The longwave cooling layer is thicker when the rainfall rate is less than 100 mm d?1, but the net heating layer is typically compressed for the profiles of both cloud types over the TP. This study provides insights into the associations between clouds and precipitation, and an observational basis for improving the simulation of convective and stratiform clouds over the TP in climate models.  相似文献   

16.
利用2013年10月13日机载粒子测量系统(PMS)在张家口涞源地区对积层混合云中上部进行的增雨探测数据,分析了云的垂直微物理结构、云区的可播性和作业前后液态云粒子、冰晶及降水粒子的微物理变化。结果表明,此次降水性积层混合云的垂直结构由冷、暖两层云配置,云层发展厚实,冷云区云粒子浓度平均为62 cm-3,液态水含量最大0.05 g/m3;2DC和2DP探测的冰晶及降水粒子平均浓度分别为1.9和2.2 L-1;暖云内云粒子数浓度集中在300 cm-3左右,液态水含量约0.1 g/m3。探测区域云粒子数浓度的水平分布不均匀。利用云内过冷水含量和冰晶浓度等参数判断,该降水性积层混合云的播撒作业层具有强可播性。对比作业前后云中粒子浓度及平均直径发现,云粒子在作业前时段内的平均浓度为31 cm-3,远高于作业后平均浓度(17.6 cm-3);但平均直径变化不大。作业后冰晶粒子通过贝吉龙过程消耗过冷水长大,浓度由之前的0.86 L-1增至4.27 L-1,平均直径也增至550 μm。冰晶粒子逐渐长大形成降水,降水粒子浓度也相应有所升高,谱明显变宽。   相似文献   

17.
In this study we observed the microphysical properties, including the vertical and horizontal distributions of ice particles,liquid water content and ice habit, in different regions of a slightly supercooled stratiform cloud. Using aircraft instrument and radar data, the cloud top temperature was recorded as higher than -15℃, behind a cold front, on 9 September 2015 in North China. During the flight sampling, the high ice number concentration area was located in the supercooled part of a shallow convective cloud embedded in a stratiform cloud, where the ambient temperature was around -3℃. In this area,the maximum number concentrations of particles with diameter greater than 100 μm and 500 μm(N_(100) and N_(500)) exceeded 300 L~(-1) and 30 L~(-1), respectively, and were related to large supercooled water droplets with diameter greater than 24 μm derived from cloud–aerosol spectrometer probe measurements. The ice particles types in this region were predominantly columnar, needle, graupel, and some freezing drops, suggesting that the occurrence of high ice number concentrations was likely related to the Hallett–Mossop mechanism, although many other ice multiplication processes cannot be totally ruled out.The maximum ice number concentration obtained during the first penetration was around two to three orders of magnitude larger than that predicted by the Demott and Fletcher schemes when assuming the cloud top temperature was around-15℃.During the second penetration conducted within the stratiform cloud, N_(100) and N_(500) decreased by a factor of five to ten, and the presence of columnar and needle-like crystals became very rare.  相似文献   

18.
层状云结构和降水机制研究及人工增雨问题讨论   总被引:1,自引:0,他引:1  
总结了层状云及其降水物理研究的部分成果。在此基础上, 讨论了层状云人工增雨的几个问题, 提出用常规观测资料判断人工增雨条件的方法。具体结果如下:层状云结构是不均匀的。层状云系在垂直方向上具有分层结构。“催化—供给”云是降水性层状云的典型结构, “催化—供给”云相互作用是导致降水的主要过程。按微观结构可以将降水性层状云分成3 层:冰相层、冰水混合层和液水层。冰相层是催化云, 冰水混合层和液水层是供给云。层状云降水过程研究表明, 对应于层状云或“催化—供给”云的3层宏观结构, 发生着不同的微物理过程, 粒子形成和增长过程也不同。冰相层的冰晶和雪, 凝华是其主要增长方式, 其次是雪与冰晶的聚合过程;雪(或聚合体)落入冰水混合层后, 继续通过凝华增长或贝吉龙过程增长, 同时撞冻过冷云水增长, 有部分冰雪晶通过撞冻增长而转化成霰。在液水层, 雪(或聚合体)霰开始融化, 同时收集云暖区云水增长。冰相粒子的撞冻增长过程和凝华增长过程相比同样重要。层状云各层对降水的贡献不同。一般而言, 对于“催化—供给”云, 催化云对降水的贡献低于30%, 供给云在70%以上。在以上研究的基础上, 讨论了层状云人工增雨的问题。(1)“催化—供给”云结构有利于云水转化成降水, 只有冰相层、冰水混合成和液水层相互“配合”, 才能形成有效降水。可以将“催化—供给”云作为层状云人工增雨催化的结构条件。(2)要选择降水形成以冷云过程为主的层状云催化, 冰面饱和水汽量和过冷水含量要大些。(3)层状云人工增雨原理应该补充。降水形成不但经历贝吉龙-芬德森过程, 冰水混合层的聚合和撞冻增长也是十分重要的过程。过冷水对于降水的形成非常重要, 但冰面饱和水汽量对降水的形成也同样重要。最后, 结合层状云的研究成果, 提出用常规探测资料判别层状云人工增雨催化条件的方法:利用卫星云图和雷达回波判别“催化—供给”云的结构, 用雷达RHI 回波(在距离高度显示器上的回波)判别降水机制和液水层。    相似文献   

19.
张佃国  王烁  郭学良  王洪  樊明月 《大气科学》2020,44(5):1023-1038
利用机载Ka波段云雷达(Airborne Ka-Band Precipitation Cloud Radar, KPR)和粒子测量系统(Droplet Measurement Technologies, DMT),分析了2018年4月22日黄淮气旋背景系统下积层混合云中对流泡的动力和微物理特征。首先,对Ka波段云雷达观测的山东地区春季36个对流泡样本按照回波强度、水平尺度、回波顶高三个参量进行统计,结果表明平均回波强度为20~30 dBZ的对流泡占69%。对流泡水平尺度为15~30 km,占61%。对流泡最大回波顶高集中在6~8 km,比周边层云高2~4 km。之后,对4月22日积层混合云中的对流泡个例微物理参数进行统计,结果表明对流泡内部以上升气流为主,最大上升气流速度达到1.35 m s?1,平均上升气流速度为0.22 m s?1;对流泡内过冷水含量比较高,最大含水量为0.34 g m?3,平均含水量为0.15 g m?3。对流泡内冰晶数浓度是泡外的5.5倍,平均直径是泡外的1.7倍。结合云粒子图像探头,发现对流泡前沿和尾部冰粒子以柱状和辐枝状为主,而对流泡核心区域冰粒子以聚合体形式存在。冰粒子通过凇附过程和碰并过程增长,过冷水含量不足时冰粒子的凇附增长形成柱状粒子,含量充足时可迅速凇附成霰粒子。对流泡内降水形成的微物理机制不完全相同,主要依赖过冷水含量。当云中有充足的过冷水分布时,高层冰晶通过凇附增长形成霰粒子,通过融化层后形成降水;当云中缺少过冷水时,降水的形成主要通过水汽凝华过程形成冰雪晶,然后雪晶通过聚合过程实现增长。  相似文献   

20.
Summary Cloud microphysical properties in tropical convective and stratiform regions are examined based on hourly zonal-mean data from a two-dimensional cloud-resolving simulation. The model is integrated for 21 days with the imposed large-scale vertical velocity, zonal wind and horizontal advections obtained from Tropical Ocean Global Atmosphere Coupled Ocean-atmosphere Response Experiment (TOGA COARE). Time-mean cloud microphysical budgets are analyzed in raining stratiform regions, convective regions, and non-raining stratiform regions, respectively. In raining stratiform regions, ice water path (IWP) and liquid water path (LWP) have similar magnitudes. The collection process contributes slightly more to the growth of raindrops than the melting processes do, and surface rain rate is higher than the raindrop-related microphysical rate, indicating that the hydrometeor convergence from the convective regions plays a role in surface rainfall processes. In convective regions, IWP is much smaller than LWP, the collection process is dominant in producing raindrops, and surface rain rate is lower than the raindrop-related microphysical rate. In non-raining stratiform regions, IWP is much larger than LWP, and the melting processes are important in maintaining the raindrop budget. The statistical analysis of hourly data suggests that the slopes of linear regression equations between IWP and LWP in three regions are different. Rain producing processes in convective regions are associated with the water cloud processes regardless of convection intensity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号