首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
The uncertainties and sources of variation in projected impacts of climate change on agriculture and terrestrial ecosystems depend not only on the emission scenarios and climate models used for projecting future climates, but also on the impact models used, and the local soil and climatic conditions of the managed or unmanaged ecosystems under study. We addressed these uncertainties by applying different impact models at site, regional and continental scales, and by separating the variation in simulated relative changes in ecosystem performance into the different sources of uncertainty and variation using analyses of variance. The crop and ecosystem models used output from a range of global and regional climate models (GCMs and RCMs) projecting climate change over Europe between 1961–1990 and 2071–2100 under the IPCC SRES scenarios. The projected impacts on productivity of crops and ecosystems included the direct effects of increased CO2 concentration on photosynthesis. The variation in simulated results attributed to differences between the climate models were, in all cases, smaller than the variation attributed to either emission scenarios or local conditions. The methods used for applying the climate model outputs played a larger role than the choice of the GCM or RCM. The thermal suitability for grain maize cultivation in Europe was estimated to expand by 30–50% across all SRES emissions scenarios. Strong increases in net primary productivity (NPP) (35–54%) were projected in northern European ecosystems as a result of a longer growing season and higher CO2 concentrations. Changing water balance dominated the projected responses of southern European ecosystems, with NPP declining or increasing only slightly relative to present-day conditions. Both site and continental scale models showed large increases in yield of rain-fed winter wheat for northern Europe, with smaller increases or even decreases in southern Europe. Site-based, regional and continental scale models showed large spatial variations in the response of nitrate leaching from winter wheat cultivation to projected climate change due to strong interactions with soils and climate. The variation in simulated impacts was smaller between scenarios based on RCMs nested within the same GCM than between scenarios based on different GCMs or between emission scenarios.  相似文献   

2.
The forest succession model FORSKA was applied to a west-east transect across Central Europe using points from a global climate data set. Climate change experiments were undertaken for two general circulation model scenarios and two different site classes. The simulated climate changes lead to reduced forest productivity and a changed species composition on most sites. Under current climate, the broad scale pattern of the climatically driven distribution of forest communities is quite realistically reproduced. However, the resolution of climate data imposes limitations on the simulation of forest dynamics in subcontinental climate, because climate variability and extreme events are not well represented.  相似文献   

3.
C. Tague  L. Seaby  A. Hope 《Climatic change》2009,93(1-2):137-155
Global Climate Models (GCMs) project moderate warming along with increases in atmospheric CO2 for California Mediterranean type ecosystems (MTEs). In water-limited ecosystems, vegetation acts as an important control on streamflow and responds to soil moisture availability. Fires are also key disturbances in semi-arid environments, and few studies have explored the potential interactions among changes in climate, vegetation dynamics, hydrology, elevated atmospheric CO2 concentrations and fire. We model ecosystem productivity, evapotranspiration, and summer streamflow under a range of temperature and precipitation scenarios using RHESSys, a spatially distributed model of carbon–water interactions. We examine the direct impacts of temperature and precipitation on vegetation productivity and impacts associated with higher water-use efficiency under elevated atmospheric CO2. Results suggest that for most climate scenarios, biomass in chaparral-dominated systems is likely to increase, leading to reductions in summer streamflow. However, within the range of GCM predictions, there are some scenarios in which vegetation may decrease, leading to higher summer streamflows. Changes due to increases in fire frequency will also impact summer streamflow but these will be small relative to changes due to vegetation productivity. Results suggest that monitoring vegetation responses to a changing climate should be a focus of climate change assessment for California MTEs.  相似文献   

4.
Here we simulate dryland agriculture in the United States in order to assess potential future agricultural production under a set of general circulation model (GCM)-based climate change scenarios. The total national production of three major grain crops—corn, soybeans, and winter wheat—and two forage crops—alfalfa and clover hay—is calculated for the actual present day core production area (CPA) of each of these crops. In general, higher global mean temperature (GMT) reduces production and higher atmospheric carbon dioxide concentration ([CO2]) increases production. Depending on the climatic change scenarios employed overall national production of the crops studied changes by up to plus or minus 25% from present-day levels. Impacts are more significant regionally, with crop production varying by greater than ±50% from baseline levels. Analysis of currently possible production areas (CPPAs) for each crop indicates that the regions most likely to be affected by climate change are those on the margins of the areas in which they are currently grown. Crop yield variability was found to be primarily influenced by local weather and geographic features rather than by large-scale changes in climate patterns and atmospheric composition. Future US agronomic potential will be significantly affected by the changes in climate projected here. The nature of the crop response will depend primarily on to what extent precipitation patterns change and also on the degree of warming experienced.  相似文献   

5.
Tropical rainforest plays an important role in the global carbon cycle, accounting for a large part of global net primary productivity and contributing to CO2 sequestration. The objective of this work is to simulate potential changes in the rainforest biome in Central America subject to anthropogenic climate change under two emissions scenarios, RCP4.5 and RCP8.5. The use of a dynamic vegetation model and climate change scenarios is an approach to investigate, assess or anticipate how biomes respond to climate change. In this work, the Inland dynamic vegetation model was driven by the Eta regional climate model simulations. These simulations accept boundary conditions from HadGEM2-ES runs in the two emissions scenarios. The possible consequences of regional climate change on vegetation properties, such as biomass, net primary production and changes in forest extent and distribution, were investigated. The Inland model projections show reductions in tropical forest cover in both scenarios. The reduction of tropical forest cover is greater in RCP8.5. The Inland model projects biomass increases where tropical forest remains due to the CO2 fertilization effect. The future distribution of predominant vegetation shows that some areas of tropical rainforest in Central America are replaced by savannah and grassland in RCP4.5. Inland projections under both RCP4.5 and RCP8.5 show a net primary productivity reduction trend due to significant tropical forest reduction, temperature increase, precipitation reduction and dry spell increments, despite the biomass increases in some areas of Costa Rica and Panama. This study may provide guidance to adaptation studies of climate change impacts on the tropical rainforests in Central America.  相似文献   

6.
A patch model was developed to characterize the effects of climate on succession of miombo dry forests of Zambezian Africa using Malawi as a case study. The model, called MIOMBO, is based on the FORSKA Version 1 gap model of forest succession by Prentice and Leemans (1990). The FORSKA model was modified to include the effects of moisture and fire; and how these affect processes of establishment, survival, growth and development. The impacts that four different GCM scenarios for a CO2 doubling might have on dynamics of a number of miombo species were analyzed. Preliminary results show a gradual increase in the basal area of the more mesic species. This result is consistent with what might be expected with increased precipitation. Tree growth and development data with associated detailed climatic data are lacking and severely limit the ability to define quantitatively how species are influenced by given levels of environmental factors (such as climate and nutrient factors), and how they might respond to seasonal changes in climate variability.Paper presented at the GCTE Workshop on The Application of Forest Stand Models to Evaluate Global Change Issues, Apeldoorn, March 28–April 1, 1994, The Netherlands.  相似文献   

7.
We estimated how the possible changes in wind climate and state of the forest due to climate change may affect the probability of exceeding critical wind speeds expected to cause wind damage within a forest management unit located in Southern Sweden. The topography of the management unit was relatively gentle and the forests were dominated by Norway spruce (Picea abies (L.) Karst.). We incorporated a model relating the site index (SI) to the site productivity into the forest projection model FTM. Using estimated changes in the net primary production (NPP) due to climate change and assuming a relative change in NPP equal to a relative change in the site productivity, we simulated possible future states of the forest under gradual adjustment of SI in response to climate change. We estimated changes in NPP by combining the boreal-adapted BIOMASS model with four regional climate change scenarios calculated using the RCAO model for the period 2071–2100 and two control period scenarios for the period 1961–1990. The modified WINDA model was used to calculate the probability of wind damage for individual forest stands in simulated future states of the forest. The climate change scenarios used represent non-extreme projections on a 100-year time scale in terms of global mean warming. A 15–40% increase in NPP was estimated to result from climate change until the period 2071–2100. Increasing sensitivity of the forest to wind was indicated when the management rules of today were applied. A greater proportion of the calculated change in probability of wind damage was due to changes in wind climate than to changes in the sensitivity of the forest to wind. While regional climate scenarios based on the HadAM3H general circulation model (GCM) indicated no change (SRES A2 emission scenario) or a slightly reduced (SRES B2 emission scenario) probability of wind damage, scenarios based on the ECHAM4/OPYC3 GCM indicated increased probability of wind damage. The assessment should, however, be reviewed as the simulation of forest growth under climate change as well as climate change scenarios are refined.  相似文献   

8.
Water Resources Implications of Global Warming: A U.S. Regional Perspective   总被引:8,自引:1,他引:7  
The implications of global warming for the performance of six U.S. water resource systems are evaluated. The six case study sites represent a range of geographic and hydrologic, as well as institutional and social settings. Large, multi-reservoir systems (Columbia River, Missouri River, Apalachicola-Chatahoochee-Flint (ACF) Rivers), small, one or two reservoir systems (Tacoma and Boston) and medium size systems (Savannah River) are represented. The river basins range from mountainous to low relief and semi-humid to semi-arid, and the system operational purposes range from predominantly municipal to broadly multi-purpose. The studies inferred, using a chain of climate downscaling, hydrologic and water resources systems models, the sensitivity of six water resources systems to changes in precipitation, temperature and solar radiation. The climate change scenarios used in this study are based on results from transient climate change experiments performed with coupled ocean-atmosphere General Circulation Models (GCMs) for the 1995 Intergovernmental Panel on Climate Change (IPCC) assessment. An earlier doubled-CO2 scenario from one of the GCMs was also used in the evaluation. The GCM scenarios were transferred to the local level using a simple downscaling approach that scales local weather variables by fixed monthly ratios (for precipitation) and fixed monthly shifts (for temperature). For those river basins where snow plays an important role in the current climate hydrology (Tacoma, Columbia, Missouri and, to a lesser extent, Boston) changes in temperature result in important changes in seasonal streamflow hydrographs. In these systems, spring snowmelt peaks are reduced and winter flows increase, on average. Changes in precipitation are generally reflected in the annual total runoff volumes more than in the seasonal shape of the hydrographs. In the Savannah and ACF systems, where snow plays a minor hydrological role, changes in hydrological response are linked more directly to temperature and precipitation changes. Effects on system performance varied from system to system, from GCM to GCM, and for each system operating objective (such as hydropower production, municipal and industrial supply, flood control, recreation, navigation and instream flow protection). Effects were generally smaller for the transient scenarios than for the doubled CO2 scenario. In terms of streamflow, one of the transient scenarios tended to have increases at most sites, while another tended to have decreases at most sites. The third showed no general consistency over the six sites. Generally, the water resource system performance effects were determined by the hydrologic changes and the amount of buffering provided by the system's storage capacity. The effects of demand growth and other plausible future operational considerations were evaluated as well. For most sites, the effects of these non-climatic effects on future system performance would about equal or exceed the effects of climate change over system planning horizons.  相似文献   

9.
We analyze the control runs and 2 × CO2 projections (5-yearlengths) of the CSIRO Mk 2 GCM and the RegCM2 regional climate model, which was nested in the CSIRO GCM, over the Southeastern U.S.; and we present the development of climate scenarios for use in an integrated assessment of agriculture. The RegCM exhibits smaller biases in both maximum and minimum temperature compared to the CSIRO. Domain average precipitation biases are generally negative and relatively small in winter, spring, and fall, but both models produce large positive biases in summer, that of the RegCM being the larger. Spatial pattern correlations of the model control runs and observations show that the RegCM reproduces better than the CSIRO the spatial patterns of precipitation, minimum and maximum temperature in all seasons. Under climate change conditions, the most salient feature from the point of view of scenarios for agriculture is the large decreases in summer precipitation, about 20% in the CSIRO and 30% in the RegCM. Increases in springprecipitation are found in both models, about 35% in the CSIRO and 25% in theRegCM. Precipitation decreases of about 20% dominate in winter in the CSIRO,while a more complex pattern of increases and decreases is exhibited by the regional model. Temperature increases by 3 to 5 °C in the CSIRO, the higher values dominating in winter and spring. In the RegCM, temperature increases are much more spatially and temporally variable, ranging from 1 to 7 °C acrossall months and grids. In summer large increases (up to 7 °C) in maximum temperature are found in the northeastern part of the domain where maximum drying occurs.  相似文献   

10.
Summary  It is expected that a change in climatic conditions due to global warming will directly impact agricultural production. Most climate change studies have been applied at very large scales, in which regions were represented by only one or two weather stations, which were mainly located at airports of major cities. The objective of this study was to determine the potential impact of climate change at a local level, taking into account weather data recorded at remote locations. Daily weather data for a 30-year period were obtained for more than 500 sites, representing the southeastern region of the USA. Climate change scenarios, using transient and equilibrium global circulation models (GCM), were defined, created and applied to the daily historical weather data. The modified temperature, precipitation and solar radiation databases corresponding to each of the climate change scenarios were used to run the CERES v.3.5 simulation model for maize and winter wheat and the CROPGRO v.3.5 model for soybean and peanut. The GCM scenarios projected a shorter duration of the crop-growing season. Under the current level of CO2, the GCM scenarios projected a decrease of crop yields in the 2020s. When the direct effects of CO2 were assumed in the study, the scenarios resulted in an increase in soybean and peanut yield. Under equilibrium , the GCM climate change scenarios projected a decrease of maize and winter wheat yield. The indirect effects of climate change also tended to decrease soybean and peanut yield. However, when the direct effects of CO2 were included, most of the scenarios resulted in an increase in legume yields. Possible changes in sowing data, hybrids and cultivar selection, and fertilization were considered as adaptation options to mitigate the potential negative impact of potential warming. Received July 20, 1999/Revised April 18, 2000  相似文献   

11.
A regional database containing historical time series and climate change scenarios for the Southeastern United States was developed for the U.S.D.A. Forest Service Southern Global Change Program (SGCP). Daily historical values of maximum temperature, minimum temperature and precipitation and empirically derived estimates of vapor pressure deficit and solar radiation across a uniform 1° latitude × 1° longitude grid were obtained. Climate change scenarios of temperature, precipitation, vapor pressure deficit and solar radiation were generated using semi-empirical techniques which combined historical time series and simulation field summaries from GISS, GFDL, OSU and UKMO General Circulation Model (GCM) experiments. An internally consistent 1° latitude × 1° longitude climate change scenario database was produced in which vapor pressure deficit and solar radiation conditions were driven by the GCM temperature projections, but were not constrained to agree with GCM calculated radiation and humidity fields. Some of the unique characteristics of the database were illustrated through a case study featuring growing season and annual potential evapotranspiration (ETp) estimates. Overall, the unconstrained scenarios produced smaller median ETp changes from historical baseline conditions, with a smaller range of outcomes than those driven by GCM-directed scenarios. Collectively, the range of annual and growing season ET changes from baseline estimates in response to the unconstrained climate scenarios was +10% to +40%. No outlier responses were identified. ETp changes driven by GCM-directed (constrained) UKMO radiation and humidity scenarios were on the order of +100%, resulting in the identification of some ETp responses as statistical outliers. These response differences were attributed to differences between the constrained and unconstrained humidity scenarios.  相似文献   

12.
Comparing the Performance of Forest gap Models in North America   总被引:6,自引:0,他引:6  
Forest gap models have a long history in the study of forest dynamics, including predicting long-term succession patterns and assessing the potential impacts of climate change and air pollution on forest structure and composition. In most applications, existing models are adapted for the specific question at hand and little effort is devoted to evaluating alternative formulations for key processes, although this has the potential to significantly influence model behavior. In the present study, we explore the implications of alternative formulations for selected ecological processes via the comparison of several gap models. Baseline predictions of forest biomass, composition and size structure generated by several gap models are compared to each other and to measured data at boreal and temperate sites in North America. The models ForClim and LINKAGES v2.0 were compared based on simulations of a temperate forest site in Tennessee, whereas FORSKA-2V, BOREALIS and ForClim were compared at four boreal forest sites in central and eastern Canada. Results for present-day conditions were evaluated on their success in predicting forest cover, species composition, total biomass and stand density, and allocation of biomass among species. In addition, the sensitivity of each model to climatic changes was investigated using a suite of six climate change scenarios involving temperature and precipitation. In the temperate forest simulations, both ForClim and LINKAGES v2.0 predicted mixed mesophytic forests dominated by oak species, which is expected for this region of Tennessee. The models differed in their predictions of species composition as well as with respect to the simulated rates of succession. Simulated forest dynamics under the changed climates were qualitatively similar between the two models, although aboveground biomass and species composition in ForClim was more sensitive to drought than in LINKAGES v2.0. Under a warmer climate, the modeled effects of temperature on tree growth in LINKAGES v2.0 led to the unrealistic loss of several key species. In the boreal forest simulations, ForClim predicted significant forest growth at only the most mesic site, and failed to predict a realistic species composition. In contrast, FORSKA-2V and BOREALIS were successful in simulating forest cover, general species composition, and biomass at most sites. In the climate change scenarios, ForClim was highly sensitive, whereas the other two models exhibited sensitivity only at the drier central Canadian sites. Although the studied sites differ strongly with respect to both the climatic regime and the set of dominating species, a unifying feature emerged from these simulation exercises. The major differences in model behavior were brought about by differences in the internal representations of the seasonal water balance, and they point to an important limitation in some gap model formulations for assessing climate change impacts.  相似文献   

13.
Climate change scenarios with a high spatial and temporal resolution are required in the evaluation of the effects of climate change on agricultural potential and agricultural risk. Such scenarios should reproduce changes in mean weather characteristics as well as incorporate the changes in climate variability indicated by the global climate model (GCM) used. Recent work on the sensitivity of crop models and climatic extremes has clearly demonstrated that changes in variability can have more profound effects on crop yield and on the probability of extreme weather events than simple changes in the mean values. The construction of climate change scenarios based on spatial regression downscaling and on the use of a local stochastic weather generator is described. Regression downscaling translated the coarse resolution GCM grid-box predictions of climate change to site-specific values. These values were then used to perturb the parameters of the stochastic weather generator in order to simulate site-specific daily weather data. This approach permits the incorporation of changes in the mean and variability of climate in a consistent and computationally inexpensive way. The stochastic weather generator used in this study, LARS-WG, has been validated across Europe and has been shown to perform well in the simulation of different weather statistics, including those climatic extremes relevant to agriculture. The importance of downscaling and the incorporation of climate variability are demonstrated at two European sites where climate change scenarios were constructed using the UK Met. Office high resolution GCM equilibrium and transient experiments.  相似文献   

14.
Seasonal GCM-based temperature and precipitation projections for the end of the 21st century are presented for five European regions; projections are compared with corresponding estimates given by the PRUDENCE RCMs. For most of the six global GCMs studied, only responses to the SRES A2 and B2 forcing scenarios are available. To formulate projections for the A1FI and B1 forcing scenarios, a super-ensemble pattern-scaling technique has been developed. This method uses linear regression to represent the relationship between the local GCM-simulated response and the global mean temperature change simulated by a simple climate model. The method has several advantages: e.g., the noise caused by internal variability is reduced, and the information provided by GCM runs performed with various forcing scenarios is utilized effectively. The super-ensemble method proved especially useful when only one A2 and one B2 simulation is available for an individual GCM. Next, 95% probability intervals were constructed for regional temperature and precipitation change, separately for the four forcing scenarios, by fitting a normal distribution to the set of projections calculated by the GCMs. For the high-end of the A1FI uncertainty interval, temperature increases close to 10°C could be expected in the southern European summer and northern European winter. Conversely, the low-end warming estimates for the B1 scenario are ~ 1°C. The uncertainty intervals of precipitation change are quite broad, but the mean estimate is one of a marked increase in the north in winter and a drastic reduction in the south in summer. In the RCM simulations driven by a single global model, the spread of the temperature and precipitation projections tends to be smaller than that in the GCM simulations, but it is possible to reduce this disparity by employing several driving models for all RCMs. In the present suite of simulations, the difference between the mean GCM and RCM projections is fairly small, regardless of the number or driving models applied.  相似文献   

15.
Background insect herbivory, in addition to insect outbreaks, can have an important long term influence on the performance of tree species. Since a projected warmer climate may favour insect herbivores, we use a dynamic ecosystem model to investigate the impacts of background herbivory on vegetation growth and productivity, as well as distribution and associated changes in terrestrial ecosystems of northern Europe. We used the GUESS ecosystem modelling framework and a simple linear model for including the leaf area loss of Betula pubescens in relation to mean July temperature. We tested the sensitivity of the responses of the simulated ecosystems to different, but realistic, degrees of insect damage. Predicted temperature increases are likely to enhance the potential insect impacts on vegetation. The impacts are strongest in the eastern areas, where potential insect damage to B. pubescens can increase by 4–5%. The increase in insect damage to B. pubescens results in a reduction of total birch leaf area (LAI), total birch biomass and birch productivity (Net Primary Production). This effect is stronger than the insect damage to leaf area alone would suggest, due to its second order effect on the competition between tree species. The model's demonstration that background herbivory may cause changes in vegetation structure suggests that insect damage, generally neglected by vegetation models, can change predictions of future forest composition. Carbon fluxes and albedo are only slightly influenced by background insect herbivory, indicating that background insect damage is of minor importance for estimating the feedback of terrestrial ecosystems to climate change.  相似文献   

16.
The paper deals with a selection of the climatological baseline, GCM validity and construction of the climate change scenarios for an impact assessment in the Czech territory. The period of 1961–1990 has been selected as the climatological baseline. The corresponding database includes more than 50 monthly mean temperature and precipitation series, and 16 time series of daily meteorological data that contain also the solar radiation data. The 1× CO2 outputs produced by four GCMs, provided by the CSMT (GISS, GFD30, GFD01, and CCCM), were compared with observed temperature and precipitation conditions in western and central Europe with a particular attention devoted to the Czech territory. The GCM ability to simulate annual cycles of temperature, precipitation and radiation was thoroughly examined. The GISS and CCCM were selected as a basis for constructing climate change scenarios as they simulated reasonably the observed patterns. According to the GISS variant, 2× CO2 climate assumes a higher winter and lower summer warming, and an increase in annual precipitation amounts. A dangerous combination of the summer temperature increase and declining precipitation amounts is a specific feature of the CCCM scenario. An incremental scenario for temperature and precipitation is based on the combination of prescribed changes in both annual means and annual courses.  相似文献   

17.
In this article, we examine climate model estimations for the future climate over central Belgium. Our analysis is focused mainly on two variables: potential evapotranspiration (PET) and precipitation. PET is calculated using the Penman equation with parameters appropriately calibrated for Belgium, based on RCM data from the European project PRUDENCE database. Next, we proceed into estimating the model capacity to reproduce the reference climate for PET and precipitation. The same analysis for precipitation is also performed based on GCM data from the IPCC AR4 database. Then, the climate change signal is evaluated over central Belgium using RCM and GCM simulations based on several SRES scenarios. The RCM simulations show a clear shift in the precipitation pattern with an increase during winter and a decrease during summer. However, the inclusion of another set of SRES scenarios from the GCM simulations leads to a less clear climate change signal.  相似文献   

18.
This paper outlines the effects of climate change by the 2050s on hydrological regimes at the continental scale in Europe, at a spatial resolution of 0.5×0.5°. Hydrological regimes are simulated using a macro-scale hydrological model, operating at a daily time step, and four climate change scenarios are used. There are differences between the four scenarios, but each indicates a general reduction in annual runoff in southern Europe (south of around 50°N), and an increase in the north. In maritime areas there is little difference in the timing of flows, but the range through the year tends to increase with lower flows during summer. The most significant changes in flow regime, however, occur where snowfall becomes less important due to higher temperatures, and therefore both winter runoff increases and spring flow decreases: these changes occur across a large part of eastern Europe. In western maritime Europe low flows reduce, but further east minimum flows will increase as flows during the present low flow season – winter – rise. “Drought” was indexed as the maximum total deficit volume below the flow exceeded 95% of the time: this was found to increase in intensity across most of western Europe, but decrease in the east and north. The study attempted to quantify several sources of uncertainty, and showed that the effects of model uncertainty on the estimated change in runoff were generally small compared to the differences between scenarios and the assumed change in global temperature by 2050.  相似文献   

19.
Abstract

As part of a study on the effects of climatic variability and change on the sustainability of agriculture in Alberto, the modelling performance of the second‐generation Canadian Climate Centre GCM (general circulation model) is examined. For the region in general, the simulation of 1 × CO2 mean temperature is generally better than that for mean precipitation, and summer is the season best modelled for each variable. At the scale of individual grid squares, DJF (December, January, February) (temperature) and JJA (June, July, August) (precipitation) are the seasons best modelled. The GCM‐simulated increases in mean annual temperature resulting from a doubling of CO2 are of the order of 5 to 6°C in the Prairie region, with much of this increase resulting from substantial warming in the winter and spring. Increases in mean annual precipitation are of the order of 50 to 150 mm (changes of +5 to +15%), with the greatest changes again occurring in winter and spring. As far as the limited GCM run durations allow, temperature and precipitation variance generally show no significant changes from a 1 × CO2 to a 2 × CO2 climate. Increased precipitation in winter and spring does not result in greater snow accumulations owing to the magnitude of warming; and significant decreases in soil moisture content occur in summer and fall. The resulting effects on the growing season and moisture regime have the potential to affect agricultural practices in the area.  相似文献   

20.
Hydrologic Sensitivity of Global Rivers to Climate Change   总被引:12,自引:1,他引:12  
Climate predictions from four state-of-the-art general circulation models (GCMs) were used to assess the hydrologic sensitivity to climate change of nine large, continental river basins (Amazon, Amur, Mackenzie, Mekong, Mississippi, Severnaya Dvina, Xi, Yellow, Yenisei). The four climate models (HCCPR-CM2, HCCPR-CM3, MPI-ECHAM4, and DOE-PCM3) all predicted transient climate response to changing greenhouse gas concentrations, and incorporated modern land surface parameterizations. Model-predicted monthly average precipitation and temperature changes were downscaled to the river basin level using model increments (transient minus control) to adjust for GCM bias. The variable infiltration capacity (VIC) macroscale hydrological model (MHM) was used to calculate the corresponding changes in hydrologic fluxes (especially streamflow and evapotranspiration) and moisture storages. Hydrologic model simulations were performed for decades centered on 2025 and 2045. In addition, a sensitivity study was performed in which temperature and precipitation were increased independently by 2 °C and 10%, respectively, during each of four seasons. All GCMs predict a warming for all nine basins, with the greatest warming predicted to occur during the winter months in the highest latitudes. Precipitation generally increases, but the monthly precipitation signal varies more between the models than does temperature. The largest changes in the hydrological cycle are predicted for the snow-dominated basins of mid to higher latitudes. This results in part from the greater amount of warming predicted for these regions, but more importantly, because of the important role of snow in the water balance. Because the snow pack integrates the effects of climate change over a period of months, the largest changes occur in early to mid spring when snow melt occurs. The climate change responses are somewhat different for the coldest snow dominated basins than for those with more transitional snow regimes. In the coldest basins, the response to warming is an increase of the spring streamflow peak, whereas for the transitional basins spring runoff decreases. Instead, the transitional basins have large increases in winter streamflows. The hydrological response of most tropical and mid-latitude basins to the warmer and somewhat wetter conditions predicted by the GCMs is a reduction in annual streamflow, although again, considerable disagreement exists among the different GCMs. In contrast, for the high-latitude basins increases in annual flow volume are predicted in most cases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号