首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of sea-surface waves and ocean spray on the marine atmospheric boundary layer(MABL) at different wind speeds and wave ages were investigated. An MABL model was developed that introduces a wave-induced component and spray force to the total surface stress. The theoretical model solution was determined assuming the eddy viscosity coefficient varied linearly with height above the sea surface. The wave-induced component was evaluated using a directional wave spectrum and growth rate. Spray force was described using interactions between ocean-spray droplets and wind-velocity shear. Wind profiles and sea-surface drag coefficients were calculated for low to high wind speeds for wind-generated sea at different wave ages to examine surface-wave and ocean-spray effects on MABL momentum distribution. The theoretical solutions were compared with model solutions neglecting wave-induced stress and/or spray stress. Surface waves strongly affected near-surface wind profiles and sea-surface drag coefficients at low to moderate wind speeds. Drag coefficients and near-surface wind speeds were lower for young than for old waves. At high wind speeds, ocean-spray droplets produced by wind-tearing breaking-wave crests affected the MABL strongly in comparison with surface waves, implying that wave age affects the MABL only negligibly. Low drag coefficients at high wind caused by ocean-spray production increased turbulent stress in the sea-spray generation layer, accelerating near-sea-surface wind. Comparing the analytical drag coefficient values with laboratory measurements and field observations indicated that surface waves and ocean spray significantly affect the MABL at different wind speeds and wave ages.  相似文献   

2.
Laboratory Studies Of Wind Stress Over Surface Waves   总被引:4,自引:0,他引:4  
Simultaneous laboratory observations of wind speed, wind stress, and surfacewind-wave spectra are made under a variety of wind forcing patterns using cleanwater as well as water containing an artificial surfactant. Under typical experimentalconditions, more than half of the total stress is supported by the wave-induced stressrather than by the surface viscous stress. When the surfactant reduces the shortwind-wave spectra, the wind stress also decreases by as much as 20–30% at agiven wind speed. When the wind forcing is modulated in time, the wind stresstends to be higher under decreasing wind than under increasing wind at a givenwind speed, mainly because the response of short wind-wave spectra to varyingwind forcing is delayed in time. These examples clearly demonstrate that therelationship between the wind speed and the wind stress can be significantlymodified if the surface wave field is not in equilibrium with the wind forcing.Next, we examine whether the wind stress is estimated accurately if the wave-inducedstress by all surface wave components is explicitly evaluated by linear superpositionand is added to the surface viscous stress. It is assumed that the surface viscous stressis uniquely related to the wind speed, and that the wind input rate is determined by thelocal, reduced turbulent stress rather than the total stress. Our wind stress estimatesincluding the wave contributions agree well with observed wind stress values, evenif the surface wave field is away from its equilibrium with the wind in the presenceof surface films and/or under time-transient wind forcing. These observations stronglysuggest that the wind stress is accurately evaluated as a sum of the wave-induced stressand the surface viscous stress. At very high winds, our stress estimates tend to be lowerthan the observations. We suspect that this is because of the enhancement of wind stressover very steep (or breaking) short wind-waves.  相似文献   

3.
The impact of air-flow separation from breaking dominant waves is analyzed.This impact results from the correlation of the pressure drop with theforward slope of breaking waves. The pressure drop is parameterized via thesquare of the reference mean velocity. The slope of breaking waves isrelated to the statistical properties of the wave breaking fronts describedin terms of the average total length of breaking fronts. Assuming that thedominant waves are narrow and that the length of breaking fronts is relatedto the length of the contour of the breaking zone it is shown that theseparation stress supported by dominant waves is proportional to thebreaking probability of dominant waves. The breaking probability of dominantwaves, in turn, is defined by the dominant wave steepness. With thedominant wave steepness increasing, the breaking probability is increasedand so does the separation stress. This mechanism explains wave age (youngerwaves being steeper) and finite depth (the spectrum is steeper in shallowwater) dependence of the sea drag. It is shown that dominant waves support asignificant fraction of total stress (sea drag) for young seas due to theair-flow separation that occurs when they break. A good comparison of themodel results for the sea drag with several data sets is reported.  相似文献   

4.
This paper presents a unique set of observations of nearlycoincident and progressive oceanic and marine atmospheric boundary-layer (MABL) fronts in a coastal zone. The event was observed during the afternoon of 12 May 1996 at the United States Army Corps of Engineers, Coastal Engineering Research Center, Field Research Facility pier at Duck, North Carolina. The oceanic front was warm and fresh. Current variabilityaccompanied the oceanic front. A marked MABL front preceded the oceanic front by several minutes and had characteristics of a sea-breezefront. This MABL front separated warmer and dryer pre-frontal air from cooler and moister post-frontal air. Wind direction and wind speedvariability accompanied the MABL front. The sea-surface roughness signatures of both fronts were detected by an X-band pulsed Doppler radar. Supporting data are used to identify each front detected by the radar and to calculate each front's velocity. In an attempt to explain the sea-surface roughness variations associated with each front, the radar data are compared to corresponding variations in wind speed, wind direction, and air-sea temperature difference.  相似文献   

5.
Aerodynamic roughness of the sea surface at high winds   总被引:2,自引:0,他引:2  
The role of the surface roughness in the formation of the aerodynamic friction of the water surface at high wind speeds is investigated. The study is based on a wind-over-waves coupling theory. In this theory waves provide the surface friction velocity through the form drag, while the energy input from the wind to waves depends on the friction velocity and the wind speed. The wind-over-waves coupling model is extended to high wind speeds taking into account the effect of sheltering of the short wind waves by the air-flow separation from breaking crests of longer waves. It is suggested that the momentum and energy flux from the wind to short waves locally vanishes if they are trapped into the separation bubble of breaking longer waves. At short fetches, typical for laboratory conditions, and strong winds the steep dominant wind waves break frequently and provide the major part of the total form drag through the air-flow separation from breaking crests, and the effect of short waves on the sea drag is suppressed. In this case the dependence of the drag coefficient on the wind speed is much weaker than would be expected from the standard parameterization of the roughness parameter through the Charnock relation. At long fetches, typical for the field, waves in the spectral peak break rarely and their contribution to the air-flow separation is weak. In this case the surface form drag is determined predominantly by the air-flow separation from breaking of the equilibrium range waves. As found at high wind speeds up to 60 m s−1 the modelled aerodynamic roughness is consistent with the Charnock relation, i.e. there is no saturation of the sea drag. Unlike the aerodynamic roughness, the geometrical surface roughness (height of short waves) could be saturated or even suppressed when the wind speed exceeds 30 m s−1.  相似文献   

6.
7.
Historically, our understanding of the air-sea surface stress has been derived from engineering studies of turbulent flows over flat solid surfaces, and more recently, over rigid complex geometries. Over the ocean however, the presence of a free, deformable, moving surface gives rise to a more complicated drag formulation. In fact, within the constant-stress turbulent atmospheric boundary layer over the ocean, the total air-sea stress not only includes the traditional turbulent and viscous components but also incorporates surface-wave effects such as wave growth or decay, air-flow separation, and surface separation in the form of sea-spray droplets. Because each individual stress component depends on and alters the sea state, a simple linear addition of all stress components is too simplistic. In this paper we present a model of the air-sea surface stress that incorporates air-flow separation and its effects on the other stress components, such as a reduction of the surface viscous stress in the separated region as suggested by recent measurements. Naturally, the inclusion of these effects leads to a non-linear stress formulation. This model, which uses a variable normalized dissipation rate of breaking waves and normalized length of the separation bubble, reproduces the observed features of the drag coefficient from low to high wind speeds despite extrapolating empirical wave spectra and breaking wave statistics beyond known limits. The model shows the saturation of the drag coefficient at high wind speeds for both field and laboratory fetches, suggesting that air-flow separation over ocean waves and its accompanying effects may play a significant role in the physics of the air-sea stress, at least at high wind speeds.  相似文献   

8.
Drag of the sea surface   总被引:6,自引:1,他引:6  
It is shown how the drag of the sea surface can be computed from the wind speed and the sea state. The approach, applicable both for fully developed and for developing seas, is based on conservation of momentum in the boundary layer above the sea, which allows one to relate the drag to the properties of the momentum exchange between the sea waves and the atmosphere.The total stress is split into two parts: a turbulent part and a wave-induced part. The former is parameterized in terms of mixing-length theory. The latter is calculated by integration of the wave-induced stress over all wave numbers. Usually, the effective roughness is given in terms of the empirical Charnock relation. Here, it is shown how this relation can be derived from the dynamical balance between turbulent and wave-induced stress. To this end, the non-slip boundary conditions is assigned to the wave surface, and the local roughness parameter is determined by the scale of the molecular sublayer.The formation of the sea drag is then described for fully developed and developing seas and for light to high winds.For the Charnock constant, a value of about 0.018–0.030 is obtained, depending on the wind input, which is well within the range of experimental data.It is shown that gravity-capillary waves with a wavelength less than 5 cm play a minor role in the momentum transfer from wind to waves. Most of the momentum is transferred to decimeter and meter waves, so that the drag of developing seas depends crucially on the form of the wave spectrum in the corresponding high wavenumber range.The dependence of the drag on wave age depends sensitively on the dependence of this high wavenumbertail on wave age. If the tail is wave-age independent, the sea drag appears to be virtually independent of wave age. If the tail depends on wave age, the drag also does. There is contradictory evidence as to the actual dependence. Therefore, additional experiments are needed.The investigation was in part supported by the Netherlands Geosciences Foundation (GOA) with financial aid from the Netherlands Organization for Scientific Research (NWO).  相似文献   

9.
The impact of sea waves on sensible heat and momentum fluxes is described. The approach is based on the conservation of heat and momentum in the marine atmospheric surface layer. The experimental fact that the drag coefficient above the sea increases considerably with increasing wind speed, while the exchange coefficient for sensible heat (Stanton number) remains virtually independent of wind speed, is explained by a different balance of the turbulent and the wave-induced parts in the total fluxes of momentum and sensible heat.Organised motions induced by waves support the wave-induced stress which dominates the surface momentum flux. These organised motions do not contribute to the vertical flux of heat. The heat flux above waves is determined, in part, by the influence of waves upon the turbulence diffusivity.The turbulence diffusivity is altered by waves in an indirect way. The wave-induced stress dominates the surface flux and decays rapidly with height. Therefore the turbulent stress above waves is no longer constant with height. That changes the balance of the turbulent kinetic energy and of the dissipation rate and, hence the diffusivity.The dependence of the exchange coefficient for heat on wind speed is usually parameterized in terms of a constant Stanton number. However, an increase of the exchange coefficient with wind speed is not ruled out by field measurements and could be parametrized in terms of a constant temperature roughness length. Because of the large scatter, field data do not allow us to establish the actual dependence. The exchange coefficient for sensible heat, calculated from the model, is virtually independent of wind speed in the range of 3–10 ms-1. For wind speeds above 10 ms-1 an increase of 10% is obtained, which is smaller than that following from the constant roughness length parameterization.The investigation was in part supported by the Netherlands Geosciences Foundation (GOA) with financial aid from the Netherlands Organization for Scientific Research (NWO).  相似文献   

10.
Determination Of The Surface Drag Coefficient   总被引:1,自引:0,他引:1  
This study examines the dependence of the surface drag coefficienton stability, wind speed, mesoscale modulation of the turbulent flux and method of calculation of the drag coefficient. Data sets over grassland, sparse grass, heather and two forest sites are analyzed. For significantly unstable conditions, the drag coefficient does not depend systematically on z/L but decreases with wind speed for fixed intervals of z/L, where L is the Obukhov length. Even though the drag coefficient for weak wind conditions is sensitive to the exact method of calculation and choice of averaging time, the decrease of the drag coefficient with wind speed occurs for all of the calculation methods. A classification of flux calculation methods is constructed, which unifies the most common previous approaches.The roughness length corresponding to the usual Monin–Obukhovstability functions decreases with increasing wind speed. This dependence on wind speed cannot be eliminated by adjusting the stability functions. If physical, the decrease of the roughness length with increasing wind speed might be due to the decreasing role of viscous effectsand streamlining of the vegetation, although these effects cannot be isolated from existing atmospheric data.For weak winds, both the mean flow and the stress vector often meander significantly in response to mesoscale motions. The relationship between meandering of the stress and wind vectors is examined. For weak winds, the drag coefficient can be sensitive to the method of calculation, partly due to meandering of the stress vector.  相似文献   

11.
12.
The air flow above breaking monochromatic Stokes waves is studied using a numerical nonlinear model of the turbulent air flow above waves of finite amplitude. The breaking event (spilling breaker) is parameterized by increasing the local roughness at the downwind slope of the wave, just beyond the crest. Both moderate slope waves and steep waves are considered. Above steep breaking waves, a large increase (typically 100%) in the total wind stress — averaged over the wave profile — is found compared to nonbreaking moderate slope waves. This is due to the drastic increase of the form drag, which arises from the asymmetrical surface pressure pattern above breaking waves. Both increase of wave slope (sharpening of the crest) and increase of local roughness in the spilling breaker area cause this asymmetrical surface pressure pattern. A comparison of the numerical results with the recent experimental measurements of Banner (1990) is carried out and a good agreement is found for the structure of the pressure pattern above breaking waves and for the magnitude of enhanced momentum transfer. Also: Dept. of Applied Physics, Techn. Univ. Delft, Netherlands.  相似文献   

13.
The inertial coupling model of the surface shear stress at the sea surface (Bye, 1995) which takes account of the surface wavefield, has been applied to couple the Ekman layers of the ocean and atmosphere. We determine the surface shear stress and geostrophic drag coefficient, under barotropic conditions. The results are expressed in terms of the shear between the inertially weighted (i.e. velocity×square root of the density) relative geostrophic velocities in the two fluids, in which the reference velocity need not be specified, a priori. We find, in particular, that the deflection of the relative surface geostrophic wind to the surface shear stress in naturally occurring seastates, is about 9°. In the application of the analysis to general circulation models, it is argued that, since the inertially weighted relative geostrophic velocities in air and water are of similar magnitude, this implies that the surface shear stress can be significantly reduced by the current component of the inertially weighted geostrophic shear, with a corresponding reduction in importance of the Ekman transport.  相似文献   

14.
A regional numerical model of the atmosphere was applied to an inland sea, the Seto Inland Sea in Japan, to study the influence of sea-surface temperature (SST) variations, accompanied by a tidal front, on the coastal winds in summer when tidal fronts fully develop. After confirmation of the model performance, two sensitivity simulations, which used spatially uniform SST with the highest and lowest values over the study area, were performed. The control and sensitivity simulations show that the mean wind speeds were apparently reduced by the low SST and the SST gradient accompanying the tidal front. The comparison of the terms in the momentum equations in control and sensitivity simulations indicates that the change of the perturbation pressure gradient force with the SST gradient is the most important factor in the modification of near-surface winds with SST variations. When the air flows across a tidal front, the air cools over the low SST area and warms over the high SST area. Consequently, the surface perturbation pressure increases over the low SST area and decreases over the high SST area. This adjustment in surface perturbation pressure produces an additional pressure gradient force with direction from the low SST area to the high SST area that decelerates the surface wind in the area upwind of the tidal front and accelerates the surface wind downwind of the tidal front.  相似文献   

15.
水平风作用下雨滴水平速度的数值仿真   总被引:1,自引:0,他引:1       下载免费PDF全文
为了研究雨滴在水平风作用下的水平移动情况,在分析水平风作用下雨滴受力情况的基础上,通过对曳力系数与雷诺数对应关系的研究,采用数值仿真的方法分别对海平面大气条件和不同大气条件下雨滴水平运动速度进行仿真.结果表明:当有水平风作用时,雨滴的水平运动速度不等于风的速度,而是随雨滴直径和水平风速的变化而变化;在水平风作用下,雨滴的水平移动速度可以在较短的时间内(一般小于15 s)达到一个稳定的值;在水平风速相同的情况下,气压越高、温度越低,雨滴达到平衡时的水平移动末速度相对越大,反之则越小.这些结论对基于图像采集原理的光学降水自动观测仪器进行雨滴图像拼合有重要的应用价值.  相似文献   

16.
利用观测数据、雷达产品、ERA5再分析资料对2021年4月15日河北保定一次天气过程进行综合分析,结果表明:(1)天气背景高层干冷,低层有暖脊,整层大气较为干燥。冷锋过境引起地面风力加大,锋面触发干对流后,冷池出流进一步加大了地面风速,湍流加强并出现扬沙。(2)对流云内存在水平弱风区,其径向速度近于0 m/s,弱风区后侧的雷达回波强度呈增加趋势。雷达低仰角0径向速度区的上方有水凝物粒子迅速集中、生长,生长区内径向速度为5~10 m/s,降雹区域上空各仰角均为0径向速度。(3)下击暴流和动量下传引发了干对流大风,降水粒子的蒸发、拖曳作用进一步加剧了气流下沉,其中蒸发作用的贡献更显著。(4)干对流消亡后,锋面东移,锋后西北风减弱,扬沙天气结束,较小的近地层风通量有利于沙尘粒子缓慢下降,地面能见度好转但PM10浓度依然较高。(5)夜间冷空气下沉,上游输送的沙尘粒子随之沉降,造成了浮尘天气。  相似文献   

17.
The forcing mechanisms for Antarctic coastal polynyas and the thermodynamic effects of existing polynyas are studied by means of an air-sea-ice interaction experiment in the Weddell Sea in October and November 1986.Coastal polynyas develop in close relationship to the ice motion and form most rapidly with offshore ice motion. Narrow polynyas occur frequently on the lee side of headlands and with strong curvature of the coastline. From the momentum balance of drifting sea ice, a forcing diagram is constructed, which relates ice motion to the surface-layer wind vector v z and to the geostrophic ocean current vector c g . In agreement with the data, wind forcing dominates when the wind speed at a height of 3 m exceeds the geostrophic current velocity by a factor of at least 33. This condition within the ocean regime of the Antarctic coastal current usually is fulfilled for wind speeds above 5 m/s at a height of 3 m.Based on a nonlinear parameter estimation technique, optimum parameters for free ice drift are calculated. Including a drift dependent geostrophic current in the ice/water drag yields a maximum of explained variance (91%) of ice velocity.The turbulent heat exchange between sea ice and polynya surfaces is derived from surface-layer wind and temperature data, from temperature changes of the air mass along its trajectory and from an application of the resistance laws for the atmospheric PBL. The turbulent heat flux averaged over all randomly distributed observations in coastal polynyas is 143 W/m2. This value is significantly different over pack ice and shelf ice surfaces, where downward fluxes prevail. The large variances of turbulent fluxes can be explained by variable wind speeds and air temperatures. The heat fluxes are also affected by cloud feedback processes and vary in time due to the formation of new ice at the polynya surface.Maximum turbulent fluxes of more than 400 W/m2 result from strong winds and low air temperatures. The heat exchange is similarly intense in a narrow zone close to the ice front, when under weak wind conditions, a local circulation develops and cold air associated with strong surface inversions over the shelf ice is heated above the open water.  相似文献   

18.
The air–water exchange of momentum and scalars (temperature and water vapour) is investigated using the Lake-Atmosphere Turbulent EXchange (LATEX) dataset. The wind waves and swell are found to affect the coupling between the water surface and the air differently. The surface-stress vector aligns with the wind velocity in the presence of wind waves, but a wide range of stress–wind misalignment angles is observed during swell. The momentum transport efficiency decreases when significant stress–wind misalignment is present, suggesting a strong influence of surface wave properties on surface drag. Based on this improved understanding of the role of wave–wind misalignment, a new relative wind speed for surface-layer similarity formulations is proposed and tested using the data. The new expression yields a value of the von Kármán constant (\(\kappa \)) of 0.38, compared to 0.36 when using the absolute wind speed, as well as reduced data fitting errors. Finally, the ratios of aerodynamic to scalar roughness lengths are computed and various existing models in the literature are tested using least-square fitting to the observed ratios. The tests are able to discriminate between the performance of various models; however, they also indicate that more investigations are required to understand the physics of scalar exchanges over waves.  相似文献   

19.
Atmospheric turbulence measurements made at the U.S. Army Corps of Engineers Field Research Facility (FRF) located on the Atlantic coast near the town of Duck, North Carolina during the CASPER-East Program (October–November 2015) are used to study air–sea/land coupling in the FRF coastal zone. Turbulence and mean meteorological data were collected at multiple levels (up to four) on three towers deployed at different landward distances from the shoreline, with a fourth tower located at the end of a 560-m-long FRF pier. The data enable comparison of turbulent fluxes and other statistics, as well as investigations of surface-layer scaling for different footprints, including relatively smooth sea-surface conditions and aerodynamically rough dry inland areas. Both stable and unstable stratifications were observed. The drag coefficient and diurnal variation of the sensible heat flux are found to be indicators for disparate surface footprints. The drag coefficient over the land footprint is significantly greater, by as much as an order of magnitude, compared with that over the smooth sea-surface footprint. For onshore flow, the internal boundary layer in the coastal zone was either stable or (mostly) unstable, and varied dramatically at the land-surface discontinuity. The offshore flow of generally warm air over the cooler sea surface produced a stable internal boundary layer over the ocean surface downstream from the coast. While the coastal inhomogeneities violate the assumptions underlying Monin–Obukhov similarity theory (MOST), any deviations from MOST are less profound for the scaled standard deviations and the dissipation rate over both water and land, as well as for stable and unstable conditions. Observations, however, show a poor correspondence with MOST for the flux-profile relationships. Suitably-averaged, non-dimensional profiles of wind speed and temperature vary significantly among the different flux towers and observation levels, with high data scatter. Overall, the statistical dependence of the vertical gradients of scaled wind speed and temperature on the Monin–Obukhov stability parameter in the coastal area is weak, if not non-existent.  相似文献   

20.
It is shown that if the wind-wave spectrum in shallow water is approximately independent of wind speed due to the combined effects of white-capping and bottom friction, then the wave-induced drag coefficient has a maximum value when the wind speed is twice the maximum wave-speed; as the wind speed increases further, the drag coefficient slowly decreases. This result is consistent with the observations of Hicks et al. (1974).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号