首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 122 毫秒
1.
双线偏振雷达的降水估测:II.误差分类分析   总被引:4,自引:4,他引:0  
楚荣忠  李小平 《高原气象》1999,18(1):109-117
详细地定量地分析了降水估测中的Z-R关系和各类误差。由此可知,指数函数形式与幂函数形式的Z-R关系之间无明显差别,ZH的参数因子AH不能太大,双线偏振雷达的测量误差导致的降雨强度估测误差在各类误差中最小,Z-R关系的不可拟合误差之标准差约为0.215,因而不容忽视。降雨强度的估测误差可人为呈一偏差逼近0而标准差约为0.265的近正态分布,这对提高区域降水的估测精度尤为重要。  相似文献   

2.
双线偏振雷达的降水估测Ⅰ. 排序配对逼近法   总被引:6,自引:5,他引:1  
提出使用新的途径──排序配对逼近法得出的双线偏振雷达降水估测ZR关系参数因子比线性拟合法具有更好的代表性,且能体现提高区域降水估测精度,也能根据实际情形采用其它的误差类型作为获取及衡量参数的标准。对指数函数形式的ZR关系来说,其参数因子A0,AH及ADR分别为0.01684,0.096和-0.4165。该方法可以推广应用到多个变元及参数因子的复杂函数中。  相似文献   

3.
双线偏振雷达的降水估测:I.排序配对逼近法   总被引:4,自引:4,他引:0  
楚荣忠  贾伟 《高原气象》1999,18(1):97-108
提出使用新的途径-排序配对逼近法得出的双线偏振雷达降水估测Z-R关系参数因子比线性拟合法具有更好的代表性,且能体现提高区域降水估测精度,也能根据实际情形采用其它的误差类型作获取及衡量参数的标准,对指数函数形式的Z-R关系来说,其参数因子A0,AH及ADR分别为0.01684,0.096和-0.4165。该方法可以推广以多个变元及参数因子的复杂函数中。  相似文献   

4.
双线偏振多普勒雷达测量参数KDP在定量估测降雨强度和识别降水粒子相态方面都有着很重要的作用。鉴于雷达实测KDP值来源于S波段双线偏振雷达信号处理器(RVP8)的结果,没有具体的计算过程,不便于进行雷达资料预处理和质量控制,探讨了KDP的3种算法,通过实测数据,将雷达信号处理器(RVP8)观测的KDP作为参考值,进行了对比分析。结果表明:最小二乘法误差最小,精度最高;讨论了沿雷达径向,不同平滑距离对最小二乘法KDP计算的影响。同时研究雷达实测KDP与通过Z-R关系计算的降雨强度之间的关系表明5,km的距离长度既能起到足够的平滑作用,又能保持足够的气象信息,不至于影响测量降水效果;KDP与降雨强度之间存在较好的对应关系,在强降雨阶段尤为显著,可以利用KDP来估算反演降雨强度。  相似文献   

5.
双线偏振多普勒雷达测量的参数KDP在定量估测降雨强度和识别降水粒子相态方面都有着很重要的作用。鉴于雷达实测KDP值来源于S波段双线偏振雷达信号处理器(RVP8)的结果,没有具体的计算过程,不便于进行雷达资料预处理和质量控制。探讨总结了KDP的3种算法,通过实测数据,将雷达信号处理器(RVP8)观测的KDP作为参考值,进行了对比分析。结果表明:最小二乘法误差最小,精度最高;讨论了沿雷达径向,不同平滑距离对最小二乘法KDP计算的影响;同时研究了雷达实测KDP与通过Z-R关系计算的降雨强度之间的关系显示,5 km的距离长度既能起到足够的平滑作用,又能保持足够的气象信息,不至于影响测量降水效果;同时,KDP与降雨强度之间存在较好的对应关系,在强降雨阶段尤为显著,可以利用KDP来估算反演降雨强度。  相似文献   

6.
黄旋旋  朱科锋  赵坤 《气象》2017,43(10):1198-1212
文章发展了一种利用雷达垂直反射率因子廓线改进复杂地形下台风降雨的雷达定量估测方法。该方法通过全局与区域最优拟合的垂直反射率因子廓线(VPR)获取近地面的最优反射率,并获取最优的动态Z-R关系。该方法充分考虑了复杂地形下的垂直降雨结构特征以及地形增雨增幅影响,因此有效弥补了雷达在复杂地形下VPR监测不完整问题。利用浙江地区三个典型登陆台风对方法进行检验,结果表明,反演的VPR能够较好地反映洋面、平原与山区的低层反射率因子结构差异,符合实际降水系统低层结构特征。相比传统的定量降水估计方法.改进算法较好地解决了复杂地形区域的强降水低估问题,其估测的小时降水与地面检验的雨量站观测相关系数达到0.85~0.94,降水累积估测误差减少约50%。  相似文献   

7.
舟山地区台风降水Z-R关系研究及其应用   总被引:2,自引:1,他引:2       下载免费PDF全文
利用2004—2005年舟山多普勒天气雷达台风基数据资料和浙江省自动雨量站网资料, 拟合适合于舟山地区台风降水的Z-R关系:Z=70R1.38, 并对其进行有效性确认。应用此关系对台风“南玛都”和“卡努”的降水进行雨量估测并与美国WSR-88D默认Z-R关系及实时雨量资料进行对比。结果表明:对于小雨量地区, 应用美国WSR-88D默认Z-R关系估测台风降水比较接近于实际。但是, 对于大雨量地区来说, 应用此关系估测台风降水更接近实际雨量, 而应用默认Z-R关系估测台风降水, 大雨雨量被严重低估。文中并进一步分析了产生误差的主要原因。  相似文献   

8.
黄安明  冷谦  袁博  周佑云 《气象科技》2020,48(2):178-184
新一代天气雷达系统使用Z-I关系式反演降水,在估测降雨时不同地域具有不同误差;在观测降水时受到水平阵风或短时大风、回波强度、地形、大气折射等因素影响,可能降低雷达定量估测降水的精度。本文利用湖南郴州雷达基数据不同低仰角反射率因子分别估算出降水量,对比分析了不同仰角雷达反演估测降水量与自动雨量站雨量数据之间的误差。通过对雷达估测降水的误差来源分析、估测降水误差并应用数学统计分析误差,初步得出:2.4°仰角估测降水与雨量站的观测数据线性相关系数最高,雷达估测的降水较为真实。而0.5°、1.5°仰角受地型影响估测降水可行性不高。  相似文献   

9.
利用对流云降水的雷达回波资料,根据雷达反射率因子Ze与雨强I关系式,定量测量了对流云的降雨强度,并利用我省57个站点的地面自记雨量计实测资料进行了误差分析。对由于Ze~I关系不稳定性造成的测量误差,采用多点基准雨量计校准法作了订正,提高了雷达测量精度。  相似文献   

10.
通过计算分析用双线偏振雷达可测到的差分反射率ZDR(dB)和反射率ZH(dBz)与降雨率R(mm·h-1)的关系,得知ZDR与滴谱尺度分布和不同截断直径谱的谱型变化有关。用(ZDR,ZH)双参数技术可以推测雨滴尺度分布的形状变化在测量降雨上的影响,能有效提高测而精度,并可提供相态雨区水成物粒子信息。  相似文献   

11.
利用乌鲁木齐2018年1-12月雨滴谱仪观测数据,分析了两种类型降水(雨、雨加雪)滴谱的微物理参量,以探究乌鲁木齐不同类型降水的雨滴谱特征,此外,对Nt-R、Z-R等关系也进行了研究。结果表明:(1)两类降水的雨滴谱均为单峰分布,粒子浓度峰值均在低谱段,雨夹雪的滴谱宽度约为0.31~7.50 mm,雨的谱宽为0.31~5.50 mm。(2)雨的平均粒子尺度参数(如质量加权平均直径Dm)和降水强度R均略大于雨夹雪,而雨夹雪的平均总粒子数浓度Nt比雨的大23.7%。(3)文中拟合得到的雨、雨加雪Z-R关系分别为Z=181.7R1.45、Z=205.4R1.27,与传统天气雷达降水估测关系Z=300R1.4对比分析后,发现利用Z=300R1.4进行降水估测时存在低估现象,而对降雨的估测误差更大。  相似文献   

12.
分组Z—I关系及其在淮河流域雷达测雨中应用   总被引:13,自引:1,他引:12       下载免费PDF全文
刘娟  徐胜 《气象科学》1999,19(2):213-220
本文使用713雷达及其数字化终端,对淮河正阳关以上流域进行了定量测量降雨的试验。用最优化处理方法,按DBZ值大小分组统计,得到了这一地区Z-I关系的序列。然后,用这组关系得到降雨的雷达估算值。试验结果表明,距雷达50-100km之间的区域雷达定量测雨的精度较好。和雨量计测值比较,雷达估算的单站一小时雨量的平均相对误差为46%,单站过程雨量的平均相对误差为30%。雷达定量测雨可以作为常规雨量站网的补充,准实时地提供多种雨情信息。  相似文献   

13.
双线偏振雷达定量降水估计精度受多种因素影响,为了更好地应用双偏振雷达估计降水并进一步提高降雨估测精度,需对雷达降水估计进行误差分析和建模.基于2015—2016年南京信息工程大学C波段双偏振雷达、雨滴谱仪观测资料以及南京地区雨量计数据,统计分析雷达估测降水的误差分布,分离雨量计代表性误差,并对随机误差和系统误差量化建模...  相似文献   

14.
雨滴轴比订正对雷达参量及其关系的影响研究   总被引:1,自引:0,他引:1  
利用Parsivel雨滴谱仪在山西祁县、介休两地2008年7、8月观测的数据资料,对比分析了两地的总雨滴谱样本特征和雷达参量的分布概率,研究了雨滴轴比订正对降雨率R、雨滴含水量W和反射率因子Z计算的影响,结果表明雨滴轴比对雷达参量影响不可忽略。雨滴轴比订正效果随着R的增大而增大,当R>5mm·h-1时,轴比订正效果明显,而因Z正比于尺度D的6次方,其订正效果更加明显。最后,在雨滴轴比订正基础上给出两地的Z-R关系,同时确定了未经过轴比订正的反射率因子Znoncorr与订正后的降雨率Rcorr之间的Znoncorr-Rcorr关系,以及反射率因子Z与雨水含量W的Z-W关系,为当地雷达定量测量降水、深入研究云降水形成的微物理过程和雷电对区域降水的影响等提供了科学依据。  相似文献   

15.
BP神经网络在多普勒雷达降水量的估测中的应用   总被引:8,自引:3,他引:5       下载免费PDF全文
利用2005年4次降雨过程的多普勒雷达体扫的回波强度资料及相应的雨量计观测资料, 通过BP神经网络方法来估测临沂地区的降雨量, 同时以改进的最佳窗概率配对法建立的Z-R关系估测的降雨量为对照, 进一步验证BP神经网络方法的优越性。根据各个站点的平均相对误差、 均方根差、 相关系数和相关曲线斜率4个指标的比较, 小时雨量和累计降雨量估测结果表明: BP神经网络估测精度要明显优于Z-R关系式, 训练样本的精度高于检验样本的精度, BP神经网络估测的降雨量与站点实测雨量吻合性较好, 能够较真实地反映地面降雨情况; Z-R关系式估测的降雨量随着雨强的不同表现为不同程度的低估现象。  相似文献   

16.
While heavy rainfall frequently takes place in southern China during summer monsoon seasons,quantitative precipitation forecast skills are relatively poor.Therefore,detailed knowledge about the raindrop size distribution(DSD)is useful in improving the quantitative precipitation estimation and forecast.Based on the data during 2018-2022 from 86stations in a ground-based optical disdrometer measurement network,the characteristics of the DSD in Guangdong province are investigated in terms of the pa...  相似文献   

17.
在使用雷达资料进行降水估测(QPE)时,对动态分级Z-I关系算法进行大幅度优化后,发现当时间精度较高时,使用CTF2判别函数所得QPE结果误差较大。提出了用同时满足偏差为0且方差最小作为最优解判别式的快速动态分级法(FDC)。通过留出法进行交叉验证,结果表明,快速动态分级法得到的结果整体相关性好,能较好地表现出降水的时空分布特征,反演降水的平均误差为-0.13 mm/h,计算速度快,具有较高的业务应用价值。   相似文献   

18.
中国降水测量误差的研究   总被引:19,自引:0,他引:19  
20世纪 ,国际上许多国家对降水测量进行了对比试验工作 ,以研究降水测量中的误差大小与分布。由于各个国家降水测量仪器的型式、尺寸以及安装高度不同 ,试验对比的降水测量误差的大小也就不同。为了弄清中国降水测量误差的大小 ,中国气象局选择了 30个基准基本站 ,建立标准雨量站网进行试验对比。本文介绍了中国标准雨量站网的设置以及对比资料的获取情况 ,对比分析了中国降水测量的随机误差、沾湿与蒸发误差、风场变形误差。经 30个标准雨量站 7a 2 90 0 0多次的 1台坑式雨量器、2台台站雨量器的对比观测 ,给出了中国降水量测量误差的大小、降水测量中的随机误差与系统误差的分布情况。经分析 ,对于收集口口径为 2 0cm ,安装高度为 70cm的台站普通雨量器 ,每次测量随机误差累计平均值为 0 .0mm ,沾湿误差为 0 .2mm ,蒸发误差为 0 .0mm ,降雨风场变形误差为 0 .19mm ,降雪为 0 .32mm。降雨测量的平均相对误差约为 4 .34%~ 15 .2 8% ,降雪测量的平均相对误差约为 6 .17%~ 39.99%。  相似文献   

19.
Abstract

A reflectivity‐rainfall rate (Z‐R) relationship is derived from Carvel radar and Edmonton rain gauge measurements. Our analysis indicates that the traditional point‐by‐point comparison method is not accurate for Alberta summertime precipitation due to timing errors in fast moving convective storms. The Window Probability Matching Method (WPMM) was superior and provided a robust Z‐R relationship in the form of Z = 32.5 R1.65.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号