首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 453 毫秒
1.
成都平原稻田甲烷排放的实验研究   总被引:9,自引:0,他引:9  
根据1996~1999年四个稻季的观测资料,分析了成都平原单季稻甲烷排放的季节变化和年际变化特征.结果表明:在水稻生长季节甲烷排放通量变化很大,在分蘖期和成熟期一般会出现峰值.年际间的通量变化也很大,其年均排放通量的变化范围在2.35~33.95mg m-2 h-1之间.4年的平均排放通量为12 mg m-2 h-1,与四川乐山的7年平均值30mg m-2 h-1相比,存在着明显的地区差异.同时分析讨论了温度、施肥、水稻品种、土壤氧化还原电位(Eh)以及稻田水位等诸多因素对稻田甲烷排放的影响.结果表明:在成都平原水稻生长季节的平均气温对CH4的平均排放通量影响不大;而气温对CH4排放的日变化有相对重要的影响,但气温对甲烷排放日变化的影响与水稻植物体的生长阶段有关;发现了水稻植物体(根、茎、叶)重量对CH4排放的重要作用.讨论了合理使用肥料和施肥量,控制水位和Eh值对稻田CH4的减排作用,提出优化组合诸影响因子,以充分发挥其减排潜力.  相似文献   

2.
太湖流域单季稻的甲烷排放研究   总被引:17,自引:1,他引:16       下载免费PDF全文
根据1994~1996年太湖流域单季稻的CH4排放的观测资料,分析了该地区稻田CH4排放的日变化的一些统计特征,对排放的季节变化和年际变化及相关因子对排放的影响进行了分析和研究。结果表明:太湖地区单季稻的CH4排放的特征值为0.07~0.11 g/(m2·d),而且存在巨大的年际变化,其中1995年的排放是1994年和1996年的5~7倍。与NH4HCO3相比,施用尿素使甲烷的排放增加10%~70%。晒田使CH4的排放减少,土壤的扰动则使CH4的排放增加。文中对CH4的排放与水稻的生长的关系及温度的变化对排放的影响也进行了讨论。  相似文献   

3.
稻田土壤中甲烷产生率的实验研究   总被引:12,自引:0,他引:12       下载免费PDF全文
本实验旨在研究稻田土壤中甲烷产生率对稻田CH_4排放的影响.观测结果表明:土壤各深度的甲烷产生率有很大的变化范围(1—4639ng·h~(-1)·g~(-1)d.w.).主要的甲烷产生区域是7—17cm深的土壤层,其中以13cm深的土壤层上的生成速率最大.土壤中甲烷产生率与稻田CH_4排放率在水稻生长的某些阶段有较好的相关性,但它的季节变化却不能与排放的季节变化完全耦合.在水稻生长期,土壤中甲烷产生率随时间而增大,并在8月份水稻收割前达到最大,其日平均值在38—767 ng·h~(-1)·g~(-1)d.w.间变动.稻田土壤中甲烷产生率也存在日变化,一般在下午达到最大值,但却没有发现它与土壤温度有明显的相关关系.在不同施肥及水稻品种的稻田土壤中也观测到不同的甲烷产生率.在土壤中产生的甲烷最多只有28.8%被排放到大气中,而其余多于71.2%的则被氧化在土壤中.  相似文献   

4.
稻田甲烷排放的初级模式   总被引:11,自引:1,他引:11       下载免费PDF全文
丁爱菊  王明星 《大气科学》1995,19(6):733-740
本文建立了一个区域尺度稻田生态系统CH4排放的初步模式,该模式能从理论上反映稻田CH4产生、传输与排放的机理,并提供了一种估计不同区域气候和土壤条件下稻田生态系统CH4排放总量的有效方法。模式主要包括三个部分:水稻的生长、土壤有机物的分解和CH4的产生、传输及排放过程。模式分别模拟了早稻和晚稻CH4的排放,模拟结果与实测比较接近,CH4的季平均排放量,模拟值与实测值的偏差在10% 左右。模式的敏感性实验表明,温度是稻田CH4排放规律的主要控制因子。  相似文献   

5.
采用静态箱-气相色谱法在江汉平原开展早稻、晚稻、中稻、虾稻和再生稻5种稻作类型温室气体排放监测试验,研究不同稻作模式下稻田CH4和N2O排放特征、总增温潜势及温室气体排放强度,为准确评估稻田生态系统温室气体排放提供参考依据。结果表明:CH4排放集中在水稻前期淹水阶段,排放峰值最高为虾稻(85.7 mg·m-2·h-1),较其他稻作模式高71.7%~191.5%。N2O排放峰值主要出现于中期晒田和施肥阶段,排放峰值最高为再生稻(1100.7 μg·m-2·h-1),较其他稻作模式高16.8%~654.9%。CH4累积排放量从大到小依次为虾稻、再生稻、早稻、晚稻、中稻;N2O累积排放量从大到小依次为再生稻、早稻、晚稻、中稻、虾稻;总增温潜势从大到小依次为虾稻、再生稻、早稻、晚稻、中稻;温室气体排放强度从大到小依次为虾稻、早稻、再生稻、晚稻、中稻。CH4排放占比为82.9%~99.0%,稻虾田高排放主要原因为持续淹水时间长、秸秆还田和饲料投入,探究该模式CH4减排举措最为关键;中稻由于水旱轮作,稻田温室气体排放最低,可作为低碳减排的主要稻作类型。  相似文献   

6.
清远地区晚稻田甲烷排放的实验   总被引:1,自引:1,他引:1  
根据2003年清远地区晚稻田甲烷(CH4)排放的实验观测资料,分析了该地区晚稻田生长期间CH4排放的变化规律,对影响排放的相关因子进行了分析。结果表明:晚稻田CH4排放的变化规律基本为3峰型,整个生长期间平均排放通量为6.09 mg.m-2.h-1。不同稻种之间的CH4排放通量差别不是很大,种植的2个水稻品种"金优99"和"七丝尖"相差1.08 mg.m-2.h-1。水位和土壤氧化还原电位对CH4排放通量有明显的影响。  相似文献   

7.
我国杭州地区秋和稻田的甲烷排放   总被引:10,自引:1,他引:10  
1987年秋季在杭州郊区采用一套全自动的观测系统,对稻田的甲烷排放进行了观测。在整个晚稻灌溉期内,稻田是大气甲烷的一个源地,其甲烷释放率最高可达240mg/m~2·h。甲烷释放率具有很强的季节性变化,在水稻成熟期之前,甲烷释放率一般在40-60mg·CH_4/m~2·h的水平上波动,在成熟期间则降为10mg·CH_4/m~2·h的水平。除移栽期外的整个水稻生长期间的甲烷平均释放率为39mg/m~2·h。甲烷释放率具有明显的日变化,一般在午夜至凌晨3—4点达最大值,白天较低,变化也较小。这可能与水稻植物体由于其生理上的日变化引起的甲烷气体传输能力的日变化有关。实验没有观测到不同施肥(K_2SO_4和菜饼)对甲烷释放率的明显影响。阴雨天的降温一般在2—3天后引起甲烷释放率的迅速下降,这可能是因土壤中发酵细菌如产甲烷菌数量的减少造成的。尽管甲烷释放率和土壤温度在整个生长期间基本上是逐步下降的,但两者之间并没有简单的正相关性。土壤中产生的甲烷气体只有一小部分释放到大气中,从土壤中冒出来的气泡往往可引起释放率的急剧上升。1985年全球稻田的甲烷释放量估计为134±3lTg(1Tg=10~(12)g),其中12±26Tg和30±6Tg分别来自亚太地区和中国稻田。  相似文献   

8.
半干旱草原温室气体排放/吸收与环境因子的关系研究   总被引:13,自引:3,他引:10  
静态箱一气相色谱法对内蒙古半干旱草原连续两年的实验观测研究结果表明,内蒙古草原是大气CO2和N2O的排放源,而是CH4的汇.在植物生长不同季节,草原生态系统排放/吸收温室气体CO2,CH4和N2O的日变化形式各有不同,其中在植物生长旺季日变化形式最具特征.3种温室气体的季节排放/吸收高峰主要出现在土壤湿度较大的春融和降雨较为集中时期.所有草原植物生长季节CO2净排放日变化形式均为白天出现排放低值,夜间出现排放高值.较高的温度有利于CO2排放,地上生物量决定着光合吸收CO2量值的高低.影响半干旱草原吸收CH4和排放N2O日变化形式的关键是土壤含水量和供氧状况,日温变化则主要影响日变化强度.吸收CH4和排放N2O的季节变化与土壤湿度季节变化分别呈线性反、正相关,相关系数均在0.4~0.6之间.自由放牧使CO2、N2O和CH4交换速率日较差降低,同时使N2O和CH4年度排放/吸收量减少和CO2年度排放量增加.  相似文献   

9.
半干旱草原温室气体排放/吸收与环境因子的关系研究   总被引:7,自引:0,他引:7  
静态箱—气相色谱法对内蒙古半干旱草原连续两年的实验观测研究结果表明,内蒙古草原是大气CO2和N2O的排放源,和CH4的汇。在植物生长不同季节,草原生态系统排放/吸收温室气体CO2、CH4和N2O的日变化形式各有不同,其中在植物生长旺季日变化形式最具特征。三种温室气体的季节排放/吸收高峰主要出现在土壤湿度较大的春融期和降雨较为集中时期。对所有草原植物生长季节,CO2净排放日变化形式均为白天出现排放低值,夜间出现排放高值。较高的温度有利于CO2排放,地上生物量决定着光合吸收CO2量值的高低。影响半干旱草原吸收CH4和排放N2O日变化形式的关键是土壤台水量和供氧状况,日温变化则主要影响日变化强度。吸收CH4和排放N2O的季节变化与土壤湿度季节变化分别呈线性反、正相关,相关系数均在0.4-0.6之间。自由放牧使CO2、N2O和CH4交换速率日较差降低,同时使N2O和CH4年度排放/吸收量减少和CO2年度排放量增加。  相似文献   

10.
华东稻麦轮作农田CH4、N2O和NO排放特征   总被引:2,自引:0,他引:2  
利用同步自动观测系统对华东稻麦轮作农田的CH4、N2O和NO排放进行了长期连续观测,分析了这3种气体排放的季节特征及决定因素,结果表明,华东稻麦轮作农田的CH4、N2O和NO排放具有完全不同的季节变化形式。CH4的排放发生在水稻生长期,其他阶段排放不明显,土壤水分状况是决定整个轮作周期内CH4排放变化的主要因素。N2O排放具有"冬季无,水田少,旱地多"的季节变化特点,尤其以旱地阶段的排放为主,土壤水分状况和温度共同决定着N2O排放的季节变化形式。NO排放具有"冬季无,水田很少,春季旱地多于秋季旱地"的季节分布特点,轮作周期内97.3%±0.6%的NO排放都发生在除冬季以外的旱地阶段,NO排放的季节变化形式由土壤水分状况和温度共同决定。大多数情况下稻田CH4和N2O排放呈互为消长的关系,但在烤田期间,二者却有时甚至同时出现高排放。在N2O日平均排放通量小于5 mg.m-2.h-1时,稻麦轮作农田的N2O和NO排放呈明显的互为消长关系,但大于5 mg.m-2.h-1时,N2O排放很强,同时NO排放也很强。  相似文献   

11.
In the rice field methane is produced in the soil layer with depths of 2-25 cm. The vertical profile of methane production rate in the paddy soil during the water covering period differs from that in the paddy soil in dry phase. Only a small part, about 30%. of the produced methane is emitted to the atmosphere through rice plant, air bubbles, and molecular diffusion. Therefore, the methane emission rate from the rice field depends not only on the methane production rate in the soil, but also on the transport efficiency of the rice plant, air bubble formation that in turn depends on the production rate, and molecular diffusion.Field measurements show that methane emission rates from a particular rice field have very large diurnal, seasonal and interannual variations, which are related to soil characteristics, water regime, farming procedure, local climate, and rice growing activities. The relationship between the methane emission rate and the above mentioned factors is very complicated. The emission rate  相似文献   

12.
1990年7—9月,在浙江临安(30°14'N,119°42'E),利用微气象学(梯度廓线)法及箱式技术对水稻田CH4排放通量进行了同步观测,取得了中稻整个生长期内的CH4排放资料。文章仅对箱式技术的观测结果作了介绍与分析。观测发现在整个灌溉期内,稻田CH4释放率为3.67—16.14 mg/m2·h,均值为10.58 mg/m2·h。CH4排放的季节变化明显,日变化也同样很明显。另外还发现,CH4排放通量与水(地)温及其他气象因素,如强风、阴雨等有关。与梯度廓线法的观测结果不同,箱式观测到的CH4排放通  相似文献   

13.
Summary The CH4 emission rates from Chinese rice fields have been measured in five typical areas representing all of the five major rice culture regions in People's Republic of China (P.R. China). Four types of diurnal variations (afternoon peak, night peak, afternoon-night double peaks and random pattern) of CH4 emission rates have been found. The first pattern was normally found in clear weather, the second and the third types were only found occasionally in particular place, while the fourth were found in cloudy or rainy weather. Due to the irregular pattern of the methane production observed in the morning-afternoon comparison experiment, the transport pathway influenced by certain factors, may be the major factor governing the diurnal variation of CH4 emission. Seasonal variation patterns of CH4 emission differ slightly with different field locations, where climate system, cropping system and other factors are different. Two and three emission peaks were generally found during single and early rice vegetation periods, with the peak magnitude and time of appearance differing to small degree in individual sites. A decreasing trend of seasonal variation was always observed in late rice season. A combination of seasonal change of transport efficiency and that of CH4 production rate in the paddy soil explains well the CH4 emission. The role of rice plant in transporting CH4 varied over a large range in different rice growing stages. The reasons for internnual changes of CH4 flux are not yet clear.Great spatial variation of the CH4 emission has been found, which can be attributed to the differences in soil type and soil properties, local climate condition, rice species, fertilizer and water treatment. Experiments showed that while the application of some mineral fertilizers will reduce the CH4 emission and CH4 production in the soil, the application of organic manure will enhance CH4 emission and CH4 production in the soil. Any measures which can get off easily decomposed carbon from organic manure may reduce C supply for CH4 production, and hence reduce CH4 emission. Fermented sludges from biogas generators and farmyard-stored manure seem to be promising. In some parts of China, separate application of the organic and mineral manure instead of mixed application could be another option. Frequent Scientific drainage and ridge cultivation, which are often used water management techniques in Chinese rice agriculture, have been proved in the experiments to be a very efficient mitigation measures to reduce CH4 emission from rice fields.By summarizing the present available data, China's rice fields contribute about 13.3 Tg yr–1 (11.4–15.2) CH4 to the atmosphere. The total methane emission from global rice fields can be estimated 33–60 Tg yr–1, much less than the estimates made before.If we extrapolate the measured data in China with a consideration of measured data in other Asian country, the total global emission of CH4 from rice fields are estimated to be about 35–60 Tg yr–1 With 2 Figures  相似文献   

14.
Model for Methane Emission from Rice Fields and Its Application in Southern ChinaDingAijuandWangMingxing(InstituteofAtmospher...  相似文献   

15.
华东稻田CH4和N2O排放   总被引:71,自引:1,他引:71       下载免费PDF全文
稻田CH4和N2O排放的季节变化规律完全不同,两者的排放通量随土壤水分条件变化而互为消长,但它们的日变化形式则比较一致。晴天时的CH4和N2O排放日变化规律明显,主要表现为下午单峰模态,有时CH4排放夜间出现一个次峰。CH4和N2O排放总量因肥料类型而不同,堆肥加尿素处理比NH4HCO3处理少排放N2O 30%,多排放CH4 12%。  相似文献   

16.
农田生态系统温室气体排放研究进展   总被引:39,自引:0,他引:39  
自1985年起,中国科学院大气物理研究所利用自行设计制造的自动观测仪器系统,历时十六年先后对我国四大类主要水稻产区的甲烷排放规律及其与土壤、气象条件和农业管理措施的关系进行了系统野外观测实验,并对稻田甲烷产生、转化和输送机理进行了理论研究,探讨了控制稻田甲烷排放的实用措施,建立了估算和预测稻田甲烷排放的数值模型.在甲烷排放的时空变化规律和转化率研究方面有一系列新的发现,在稻田甲烷产生率、排放率及其与环境条件的关系方面取得一系列新的成果,以充分证据改变了国际上关于全球和中国稻田甲烷排放总量的估算.在对稻田甲  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号