首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A nondivergent barotropic model (Model 1) and a barotropic primitive equation vortex model (Model 2) are linearized respectively in this paper. Then their perturbation wave spectrums are computed with a normal mode approach to study the instability problem on an appointed tropical cyclone (TC)-like vortex, thereby, the dynamic instability properties of spiral cloud bands of TCs are discussed. The results show that the unstable mode of both models exhibits a spiral band-like structure that propagates away from the vortex outside the radius of maximum winds. The discrete modal instability of the pure vortex Rossby wave can account for the generation of the eyewall and the inner spiral band. The unstable mode in Model 2 has three parts, i.e., eyewall, inner and outer spiral bands. This mode can be interpreted as a mixed vortex Rossby-inertia gravitational wave. The unbalanced property of the wave outside the stagnation radius of the vortex Rossby wave is one of the important reasons for the formation of the outer spiral band in TCs. Accordingly, the outer spiral band can be identified to possess properties of an inertial-gravitational wave. When the formation of unstable inner and outer spiral bands is studied, a barotropic vortex model shall be used. In this model, the most unstable perturbation bears the attributes of either the vortex Rossby wave or the inertial-gravitational wave, depending on the vortex radius. So such perturbations shall be viewed as an unbalanced and unstable mixed wave of these two kinds of waves.  相似文献   

2.
Variational principle of instability of atmospheric motions   总被引:2,自引:0,他引:2  
Problems of instability of rotating atmospheric motions are investigated by using nonlinear governing equations and the variational principle. The method suggested in this paper is universal for obtaining criteria of instability in all models with all possible basic flows. For example, the model can be barotropic or baroclinic, layer or continuous, quasi-geostrophic or primitive equations; the basic flow can be zonal or nonzonal, steady or unsteady.Although the basic flows possess a great deal of variety, they all are the stationary points in the functional space determined by an appropriate invariant functional. The basic flow is an unsteady one if the conservation of angular momentum is included in the associated functional.The second variation, linear or nonlinear, gives the criteria of instability. Especially, the general criteria of instability for unsteady basic flow, orographically disturbed flow as well as nongeostrophic flow are first obtained by the method described in this paper.It is also shown that the difference between the criteria of instability obtained by the linear theory and our variational principle clearly indicates the importance of using nonlinear governing equations.In the appendix the theory is extended to cases such as in a β-plane where the fluid does not possess finite total energy, hence the variational principle can not be directly applied. However, a generalized Liapounoff norm can still be obtained on the basis of variational consideration.  相似文献   

3.
The linear two-layer barotropic primitive equations in cylindrical coordinates are used to derive a gen- eralized energy equation, which is subsequently applied to explain the instability of the spiral wave in the model. In the two-layer model, there are not only the generalized barotropic instability and the super high- speed instability, but also some other new instabilities, which fall into the range of the Kelvin-Helmholtz instability and the generalized baroclinic instability, when the upper and lower basic flows are different. They are perhaps the mechanisms of the generation of spiral cloud bands in tropical cyclones as well.  相似文献   

4.
Based on diagnostic analysis of reanalysis data for 58-year, the distribution characteristics of decadal variability in diabatic heating, transient eddy heating and transient eddy vorticity forcing related to the sea surface temperature (SST) anomalies over the North Pacific, as well as their relationship with anomalous atmospheric circulation have been investigated in this paper. A linear baroclinic model(LBM) was used to investigate atmospheric responses to idealized and realistic heat and vorticity forcing anomalies, and then to compare relative roles of different kinds of forcing in terms of geopotential height responses. The results illustrate that the responses of atmospheric height fields to the mid-latitude heating can be either baroclinic or barotropic. The response structure is sensitive to the relative horizontal location of heating with respect to the background jet flow, as well as to the vertical profile of heating. The response to the idealized deep heating over the eastern North Pacific, mimicking the observed heating anomaly, is baroclinic. The atmospheric response to the mid-latitude vorticity forcing is always barotropic, resulting in a geopotential low that is in phase with the forcing. The atmospheric responses to the realistic heat and vorticity forcing show the similar results, suggesting that diabatic heating, transient eddy heating and transient eddy vorticity forcing can all cause atmospheric anomalies and that the vorticity forcing plays a relatively more important role in maintaining the equivalent-barotropic structure of geopotential height anomalies.  相似文献   

5.
Based on a barotropic vortex model, generalized energy-conserving equation was derived and two necessary conditions of basic flow destabilization are gained. These conditions correspond to generalized barotropic instability and super speed instability. They are instabilities of vortex and gravity inertial wave respectively. In order to relate to practical situation, a barotropic vortex was analyzed, the basic flow of which is similar to lower level basic wind field of tropical cyclones and the maximum wind radius of which is 500 km. The results show that generalized barotropic instability depending upon the radial gradient of relative vorticity can appear in this vortex. It can be concluded that unstable vortex Rossby wave may appear in barotropic vortex.  相似文献   

6.
The instability of geostrophic wave circulations related to the nonlinear processes involved in the zonal mean heat balance equations is studied. It is found that the planetary waves may be destabilized by thermal forcing in specific baroclinic layers, called the breaking layers. The critical conditions of the instability will be given. In the troposphere, these conditions may be provided in blocking regions and the development of planetary perturbations is characterized distinctly by the unset, maintenance and decay of observed blocks. The whole blocking episode cannot be described as either the barotropic or baroclinic process only. The limitations on the study of wave-wave interaction using spectral models or spectrum analyses will be discussed also.  相似文献   

7.
The barotropic and baroclinic disturbances axisymmetrized by the barotropic basic vortex are examined in an idealized modeling framework consisting of two layers.Using a Wentzel-Kramers-Brillouin approach,the radial propagation of a baroclinic disturbance is shown to be slower than a barotropic disturbance,resulting in a slower linear axisymmetrization for baroclinic disturbances.The slower-propagating baroclinic waves also cause more baroclinic asymmetric kinetic energy to be transferred directly to the barotropic symmetric vortex than from barotropic disturbances,resulting in a faster axisymmetrization process in the nonlinear baroclinic wave case than in the nonlinear barotropic wave case.  相似文献   

8.
Variational Principle of Instability of Atmospheric Motions   总被引:6,自引:4,他引:2  
Problems of instability of rotating atmospheric motions are investigated by using nonlinear governing equations and the variational principle. The method suggested in this paper is universal for obtaining criteria of instability in all models with all possible basic flows. For example, the model can be barotropic or baroclinic, layer or continuous, quasi-geostrophic or primitive equations; the basic flow can be zonal or nonzonal, steady or unsteady.Although the basic flows possess a great deal of variety, they all are the stationary points in the functional space determined by an appropriate invariant functional. The basic flow is an unsteady one if the conservation of angular momentum is included in the associated functional.The second variation, linear or nonlinear, gives the criteria of instability. Especially, the general criteria of instability for unsteady basic flow, orographically disturbed flow as well as nongeostrophic flow are first obtained by the method described in this paper.It is also sh  相似文献   

9.
In this paper, the adaptation process in low latitude atmosphere is discussed by means of a two-layer baroclinic model on the equator β plane, showing that the adaptation process in low latitude is mainly dominated by the internal inertial gravity waves. The initial ageostrophic energy is dispersed by the internal inertial gravity waves, and as a result, the geostrophic motion is obtained in zonal direction while the ageostro-phic motion maintains in meridional direction, which can be called semi-geostrophic balance in barotropic model as well as semi-thermal-wind balance in baroclinic model. The vertical motion is determined both by the distribution of the initial vertical motion and that of the initial vertical motion tendency, but it is unrelated to the initial potential vorticity. Finally, the motion tends to be horizontal. The discussion of the physical mechanism of the semi-thermal-wind balance in low latitude atmosphere shows that the achievement of the semi-thermal-wind balance is due to the adjustment between the stream field and the temperature field through the horizontal convergence and divergence which is related to the vertical motion excited by the internal inertial gravity waves. The terminal adaptation state obtained shows that the adaptation direction between the mean temperature field and the shear flow field is determined by the ratio of the scale of the initial ageostrophic disturbance to the scale of one character scale related to the baroclinic Rossby radius of deformation. The shear stream field adapts to the mean temperature field when the ratio is greater than 1, and the mean temperature field adapts to the shear stream field when the ratio is smaller than 1.  相似文献   

10.
CISK-rossby wave and the 30-60 Day Oscillation in the Tropics   总被引:1,自引:0,他引:1  
The 30-60 day oscillation is an important aspect of the atmospheric variance in the tropical area. A number of works have been done on this phenomenon, this article is a further one. A quasi-geostrophic linear model that consists of a two-layer free atmosphere and a well-mixed boundary layer is used to investigate the instability of intraseasonal oscillation, its propagation and vertical structures. Results show that the dynamical coupling and interaction between the barotropic and baroclinic components via boundary layer convergence / divergence are responsible for the appearance of a new kind of low-frequency wave. Such wave is very different from the traditional tropical Rossby wave. It can propagate westward and eastward. Some behaviours of it appear to resemble the observed 30-60 day oscillation mode in many aspects, such,as vertical structures, zonal and meridional propagations. Now many researchers emphasize the direct relationship between CISK-Kelvin mode and the tropical atmospheric 30-60 oscil  相似文献   

11.
Helicity Dynamics of Atmospheric Flow   总被引:17,自引:0,他引:17  
Helicity is an important physical variable which is similar to the energy and enstrophy in three-dimensional fluid. It can be used to describe the motion in the direction of fluid rotation and also can be regarded as a new physi-cal variable in turbulence theory. In recent years, it has been used in atmospheric dynamics. In this paper, helicity of atmospheric flow, especially helicity in the boundary layer and in the vicinity of front was discussed. These results show that helicity is usually positive in the boundary layer due to the effect of friction. The helicity of boundary layer flow is larger in anticyclone than that in cyclone, resulting from the different wind structures of boundary layers in an-ticyclone and cyclone under the geostrophic momentum approximation. It is possible that the helicity is negative at certain height in the baroclinic boundary layer. The influences of nonlinearity and baroclinity on the helicity are im-portant. The so called “Cloud Street” in the boundary layer is related to the dynamics of helicity. Helicity in the at-mosphere can be expressed as the temperature advection under some conditions, so helicity would be allowed to des-cribe the frontogenesis and development of frontal structure. The amplitude of helicity increases with time in the frontogenesis. A large gradient of helicity is generated in the region located to the northeast of the surface low and in which the front is formed. In warm frontal region, as well as behind the trough of temperature, the helicity is positive, while the helicity is negative in cold frontal sector and in the ahead ridge of temperature. The largest helicity occurs in the boundary.  相似文献   

12.
The interaction between tropical cyclone (TC) and the large-scale mean flows such as the inter-tropical convergence zone (ITCZ) is investigated using a three-dimensional primitive equation model. Once a TC develops in the vicinity of the ITCZ region where satisfies both barotropic and baroclinic instabilities, the southeastward energy dispersion from the TC may disturb the ITCZ and thus help its breakdown. Cumulus convection can be organized in the region of cyclonic circulation, and the interaction between convective heating and the perturbation circulation may enhance the development of the waves, leading to the generation of a new tropical cyclone to the east. While the TC moves to the high latitude, the ITCZ will reform. Though repeating of this process, a synoptic-scale wave train oriented in the northwest-southeast direction can be generated and self-maintained. The results suggest that the mutual interaction among the low-frequency background flow, wave train pattern and TCs provides a possible mechanism for the origin of the summer synoptic scale wave train pattern over the western North Pacific.  相似文献   

13.
The effect of baroclinicity on vortex axisymmetrization is examined within a two-layer dynamical model.Three basic state vortices are constructed with varying degrees of baroclinicity:(i) barotropic,(ii) weak baroclinic,and (iii) strong baroclinic.The linear and nonlinear evolution of wavenumber-2 baroclinic disturbances are examined in each of the three basic state vortices.The results show that the radial propagating speed of the vortex Rossby wave at the lower level is larger with the stronger baroclinicity,resulting in a faster linear axisymmetrization process in the stronger baroclinic vortex.It is found that the nonlinear axisymmetrization process takes the longest time in the strongest baroclinic vortex among the three different basic vortices due to the weaker kinetic energy transfer from asymmetric to symmetric circulations at the lower level.A major finding in this study is that the same initial asymmetric perturbation can have different effects on symmetric vortices depending on the initial vortex baroclinicity.In numerical weather prediction models,this implies that there exists a sensitivity of the subsequent structural and intensity change solely due to the specification of the initial vertical shear of the tropical cyclone vortex.  相似文献   

14.
In operating the quasi-geostrophic two-layer model,the quasi-resonance occurs possibly in two cases:(1)pure barotropic waves;(2) two baroclinic and one barotropic waves.For case (2),we find the analytical solution of triad amplitude of quasi-resonance and approximate expression for the period of wave energy variation.Both the approximate expression and numerical calculation indicate that this period tends to approach the period (2πε)/(△ω) of the quasi-resonance frequency mismatch △ω itself for the baroclinic atmosphere than for the barotropic atmosphere.Physically,there is a feedback mechanism between the wave phase and amplitude,and the slowly varying phase difference between the barotropic wave and the baroclinic wave causes the conversion of kinetic energy and available potential energy,which gives rise to the wave-related low-frequency oscillation alternatively strengthening and weakening with the oscillation period identical to the above approximate formula.For △ω~(0.1-0.02) 0(ωj),the averaged energy period is 12-43 days and when △ω=0,it is 366 days.Therefore,the occurrence of frequency mismatch △ω is probably a new important mechanism for the formation of extratropical low-frequency oscillation in baroclinic atmosphere as well.  相似文献   

15.
Based on instability theory and some former studies, the Simple Ocean Data Assimilation (SODA) data are analyzed to further study the difference between the propagation of the ENSO-related oceanic anomaly in the off-equatorial North Pacific Ocean before and after 1976. The investigation shows that after 1976 in the off-equatorial North Pacific Ocean, there is a larger area where the necessary conditions for baroclinic and/or barotropic instability are satisfied, which may help oceanic anomaly signals propagating in the form of Rossby waves to absorb energy from the mean currents so that they can grow and intensify. The baroclinic energy conversion rate in the North Pacific after 1976 is much higher than before 1976, which indicates that the baroclinic instability has intensified since 1976. Prom another perspective, the instability analysis gives an explanation of the phenomena that the ENSO-related oceanic anomaly signal in the North Pacific has intensified since 1976.  相似文献   

16.
Mesoscale ensemble is an encouraging technology for improving the accuracy of heavy rainfall predictions. Occurrences of heavy rainfall are closely related to convective instability and topography. In mid-latitudes, perturbed initial fields for medium-range weather forecasts are often configured to focus on the baroclinic instability rather than the convective instability. Thus, alternative approaches to generate initial perturba- tions need to be developed to accommodate the uncertainty of the convective instability. In this paper, an initial condition perturbation approach to mesoscale heavy rainfall ensemble prediction, named as Different Physics Mode Method (DPMM), is presented in detail. Based on the PSU/NCAR mesoscale model MM5, an ensemble prediction experiment on a typical heavy rainfall event in South China is carried out by using the DPMM, and the structure of the initial condition perturbation is analyzed. Further, the DPMM ensem- ble prediction is compared with a multi-physics ensemble prediction, and the results show that the initial perturbation fields from the DPMM have a reasonable mesoscale circulation structure and could reflect the prediction uncertainty in the sensitive regions of convective instability. An evaluation of the DPMM ini- tial condition perturbation indicates that the DPMM method produces better ensemble members than the multi-physics perturbation method, and can significantly improve the precipitation forecast than the control non-ensemble run.  相似文献   

17.
Deep convection in the Labrador Sea is confined within a small region in the southwest part of the basin.The strength of deep convection in this region is related to the local atmospheric and ocean characteristics,which favor processes of deep convection preconditioning and intense air-sea exchange during the winter season.In this study,we explored the effect of eddy-induced flux transport on the stratification of the Labrador Sea and the properties of deep convection.Simulations from an eddy-resolving ocean model are presented for the Labrador Sea.The general circulation was well simulated by the model,including the seasonal cycle of the deep Labrador Current.The simulated distribution of the surface eddy kinetic energy was also close to that derived from Topex-Poseidon satellite altimeter data,but with smaller magnitude.The energy transfer diagnostics indicated that Irminger rings are generated by both baroclinic and barotropic processes; however,when they propagate into the interior basin,the barotropic process also disperses them by converting the eddy energy to the mean flow.In contrast to eddy-permitting simulations,deep convection in the Labrador Sea was better represented in the eddyresolving model regarding their lateral position.Further analysis indicated that the improvement might be due to the lateral eddy flux associated with the resolved Irminger rings in the eddy-resolving model,which contributes to a realistic position of the isopycnal dome in the Labrador Sea and correspondingly a realistic site of deep convection.  相似文献   

18.
OBSERVATIONAL AND THEORETICAL STUDIES OF THE MOIST BAROCLINIC ATMOSPHERE   总被引:1,自引:0,他引:1  
In this paper, the main scientific conclusions of a national wide project of heavy summer rainstorms are presented. The active role of the moisture in the large scale motion of the atmosphere is stressed when the water vapour is saturated. The concept of moist baroclinity is introduced, and moist baroclinic processes are studied. Theoretical results, i. e., moist solenoid, moist available potential energy, moist jet, moist baroclinic instability, etc. are presented. Some observational and numerically experimental results are also shown.  相似文献   

19.
In this paper, Wu and Blumen's boundary layer geostrophic momentum approximation model (Wu and Blu-men, 1982) is applied to baroclinic and non-neutral PBL, the motion equations for the PBL under the geostrophic momentum approximation are solved, in which the eddy transfer coefficient is a function of the distributions of the wind and temperature. The results are compared with those in barotropic and neutral conditions with the geostrophic momentum approximation. It is found that in the baroclinic condition, the wind distribution has both the characteristics of a steady, homogeneous and baroclinic PBL and those caused by the geostrophic momentum approximation. Those in non-neutral conditions show that they retain the intrinsic characteristics for the wind in non-neutral PBL, at the same time, the effects of the large-scale advection and local variation are also included. We can predict the wind in the non-neutral and baroclinic PBL by use of the geostrophic momentum approximation when the temporal and sp  相似文献   

20.
The barotropic processes associated with the development of a precipitation system are investigated through analysis of cloud-resolving model simulations of Mei-yu torrential rainfall events over eastern China in mid-June 2011. During the model integration period, there were three major heavy rainfall events: 9–12, 13–16 and 16–20 June. The kinetic energy is converted from perturbation to mean circulations in the first and second period, whereas it is converted from mean to perturbation circulations in the third period. Further analysis shows that kinetic energy conversion is determined by vertical transport of zonal momentum. Thus, the prognostic equation of vertical transport of zonal momentum is derived, in which its tendency is associated with dynamic, pressure gradient and buoyancy processes. The kinetic energy conversion from perturbation to mean circulations in the first period is mainly associated with the dynamic processes. The kinetic energy conversion from mean to perturbation circulations in the third period is generally related to the pressure gradient processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号