首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到12条相似文献,搜索用时 31 毫秒
1.
为进一步研究多回击地闪参数分布特征, 以便为雷电防护工程设计和雷电物理研究提供参考, 根据湖北省雷电定位系统(LLS)2007年1月—2018年12月监测资料, 采用计算机编程处理和数理统计方法, 对多回击地闪次数、多重回击次数和不同类型多回击地闪雷电流幅值等参数进行了统计分析。结果表明: 多回击正地闪、负地闪和总地闪次数占其地闪总数的百分比分别为2.06%、34.76%和32.64%, 多重回击次数分别占其回击总数的0.01%、0.42%和0.40%, 多回击负地闪回击次数占多回击总地闪回击总数的99.69%。首次回击强度大于后续回击强度的多回击正地闪和负地闪分别占多回击地闪总数的82.52%和57.87%;在多回击地闪后续回击中, 正地闪约有9%的后续回击强度大于首次回击强度, 负地闪约有20%的后续回击强度大于首次回击强度。多回击正地闪和负地闪中值电流分别为59.30 kA和35.10 kA, 首次回击分别为90.90 kA和40.00 kA, 后续回击中分别为43.90 kA和33.00 kA。首次回击中, 多回击正地闪和负地闪雷电流幅值大于100 kA的累积概率分别为44.06%和4.64%, 首次回击强度大于后续回击强度的多回击正地闪和负地闪雷电流幅值大于100 kA的累积概率最大分别为52.21%和7.94%;后续回击中, 多回击正地闪和负地闪雷电流幅值小于等于40 kA的累积概率分别为41.80%和69.92%, 首次回击强度大于后续回击强度的多回击负地闪, 雷电流幅值小于等于40 kA的累积概率最大为77.71%。多回击正地闪和负地闪后续回击与首次回击中值电流的比值分别为0.48和0.83。拟合得出的不同类型的多回击正地闪和负地闪雷电流幅值累积概率公式, 拟合效果显著; 拟合公式中a值附近的雷电流幅值累积概率与b值呈显著正相关关系。   相似文献   

2.
为研究揭阳地区雷电流幅值特征,本文利用2017-2020年揭阳地区雷电流数据,通过数理统计和matlab拟合工具箱,研究分析了雷电流幅值时间分布规律及幅值累积概率特征。结果表明:近4年揭阳地区共发生地闪回击62806次,其中0-200 kA幅值的回击次数占比约为99.81 %,正、负地闪回击频次随雷电流幅值变化整体呈现先增加后减少趋势。正地闪回击幅值大值区月份出现在3月和11月,负地闪回击幅值大值区月份为3月和10月,随着季节的推移,正地闪回击幅值大值区的出现时段逐渐推迟;负地闪回击电流幅值的大值区多出现在00:00-10:00。对比分析了IEEE和DL/T幅值累积概率推荐公式曲线,IEEE推荐公式曲线与实际值分布曲线基本重合,并得出了揭阳地区雷电流幅值累积概率拟合公式,与实际值的误差值介于-0.006-0.0005,为揭阳地区的防雷减灾工作提供参考。  相似文献   

3.
深圳市气象观测梯度塔自然闪电观测平台开展雷电流采集系统、高速摄像系统、大气平均电场测量、磁场测量、快慢电场测量等多要素的观测实验。主要介绍雷电流测量配置及前期测量遇到的问题,并提出了对采集系统进行浮地处理以及针对雷电测量设计的防护隔离解决方案,初步分析了测量结果、具体分析了雷电流C20170504-1的波形特征,指出该次自然雷击电流陡度较大且继后回击强度显著高于IEC62305给出的防雷设计的雷电流参数值。  相似文献   

4.
2006—2011年广州人工触发闪电   总被引:1,自引:1,他引:0       下载免费PDF全文
2006—2011年夏季在广州野外雷电试验基地开展了广东综合闪电观测试验 (GCOELD)。试验期间,针对人工触发闪电进行了近距离声、光、电、磁特征等综合测量,对自动气象站电源线和信号线上产生的感应电压特征进行了观测和分析,并对广东省地闪定位网的探测效率和定位精度与人工触发闪电进行了比对和校验。试验结果表明:人工触发闪电回击峰值电流范围为-31.93~-6.67 kA,回击电流波形的半峰宽度的范围为6.18~74.19 μs,10%—90%的上升时间范围为0.24~2.25 μs。触发闪电的上行正先导的发展速度在104~105 m/s量级;人工触发闪电的回击过程在架空电源线路 (1200 m长,2 m高) 上产生的感应过电压可达十几千伏;广东电网闪电定位系统对人工触发闪电事件的探测效率为95%,平均定位误差为759 m,闪电定位系统反演得到的电流峰值与实际测量的电流峰值平均相对偏差为16.3%。  相似文献   

5.
山东人工引发雷电综合观测实验及回击电流特征   总被引:3,自引:2,他引:1  
山东人工引发雷电实验 (SHATLE) 自2005年开始, 六年来共成功引发负极性雷电22次, 包含大电流回击过程88次, 实验获取了包括雷电放电通道底部电流、近距离电磁场、 高速摄像等在内的高质量同步观测资料。对36次实测回击电流的统计分析表明, 回击峰值电流的几何平均值为12.1 kA, 最大值为41.6 kA, 最小值为4.4 kA。回击电流波形的半峰值宽度范围在1~68 μs之间, 电流10%~90%峰值的上升时间几何平均值为1.9 μs, 中和电荷量为0.86 C, 作用积分(action integral, 或称比能量) 为2.6 ×103A2?s。人工触发闪电峰值电流约16.5 kA的回击在30 m处产生的电场变化可达56.0 kV/m, 60 m处的磁场几何平均值为52 μT。一些强烈的M分量可以具有与回击相当的电流峰值和中和电荷量。人工引雷初始阶段上行正先导的发展速度约为0.96×105 m/s。  相似文献   

6.
选取2017年6月15日和7月8日的2次人工引雷试验人工触发闪电数据,对采集系统记录了2次有明显残压波形的数据进行分析,结果表明:2次人工触发闪电的平均回击雷电流幅值为11.00kA,平均雷电流波形10%~90%的上升时间为0.24μs,平均雷电流的半峰宽度为10.98μs,平均雷电流的回击波形10%~90%的上升陡度38.20GA/s。2次人工触发闪电的平均残压持续时间为387.1μs,残压峰值平均值为969.4V,残压平均值为759.6V。自然闪电通常具有多回击、回击间隔时间短、放电过程复杂多样等特点,有可能破坏SPD热稳定性,加速老化,甚至可能被击穿;而该试验中SPD没有被损坏,主要是因为:人工触发闪电造成架空线路近距离发生闪电感应,尽管SPD的残压值高,但是电流比较小,所以SPD承受的能量不大。  相似文献   

7.
广州高建筑物雷电观测站光电同步观测系统于2017年6月16日记录到一次峰值电流达+141 kA的单回击正地闪触发两个并发上行闪电过程。利用高速摄像、普通摄像和电场变化数据分析了触发型上行闪电的始发特征和机理。结果表明:正地闪回击后约0.8 ms内,在距正地闪接地点约3.9 km的广州塔(高600 m)和4.1 km的东塔(高530 m)分别有上行闪电始发。正地闪回击过程中和大量正电荷以及之后可能有云内负先导朝高塔方向快速伸展造成塔顶局部区域的电场发生突变是两个上行闪电激发的原因。两个上行闪电在353 ms内发生7次回击,其中6次在广州塔上,仅1次在东塔上,且广州塔回击峰值电流平均值(-21.4 kA)约为东塔回击峰值电流(-7.3 kA)的3倍,表明广州塔上行闪电通道可能比东塔上行闪电通道伸展至分布范围更广、电荷量(或电荷密度)更大的负电荷区。两个上行闪电先导的二维速率变化范围为9.4×104~1.8×106 m·s-1,平均值为6.9×105 m·s-1。  相似文献   

8.
在中国东北大兴安岭林区进行了基于全球定位系统(GPS)时间同步的闪电地面电场变化多站观测.利用2010年7月14日一次过境雷暴多站同步的闪电电场变化资料,采用非线性最小二乘拟合法对雷暴成熟阶段的15次负地闪(包含57次回击和8次连续电流过程)中和的电荷源进行了拟合.大兴安岭林区负地闪单次回击中和的电荷量平均为1.0C(范围为0.1-5.0C),20%的继后回击中和电荷量大于首次回击,继后回击与首次回击中和电荷量的比为0.1-6.1,平均为0.8±1.0.单次连续电流中和的电荷量平均为3.8C(范围为0.4-7.3C),连续电流期间通道中的平均电流估计为25.3A(范围4.9-50.8A),一次负地闪中和的总电荷量平均为6.4C(范围为1.4-12.4C).负地闪回击和连续电流中和电荷源的高度分布与雷暴云的发展有关,对应的环境温度为-10--25℃.在雷暴成熟阶段前期,负地闪回击和连续电流中和电荷源距地面的高度从5.0km缓慢上升至10.5km;在雷暴成熟阶段后期,负地闪回击和连续电流中和电荷源距地面的平均高度从9.0km下降到6.0km,单次回击中和的电荷量也较前期减小约一个量级.与雷达回波的叠加显示,负地闪回击和连续电流中和的电荷源主要位于大于40dBz的强对流中心区,部分位于30-40dBz的强回波区边缘或较弱的回波区.  相似文献   

9.
合肥地区地闪特征   总被引:4,自引:2,他引:4  
根据观测资料 ,分析了利用闪电辐射场信号大容量采集系统观测到的合肥地区地闪回击特征。结果表明 ,每次地闪回击数频率分布并不表现为简单的指数衰减特征 ,回击数在 5次以下的各回击数出现频率几乎相当 ,单次回击地闪的比重只有约 1 5 %。平均地闪回击数为 4 .2次 ,观测到的最大回击数为 1 6次。地闪回击归一化电场强度近似服从对数正态分布。 1 69例首次回击平均电场强度为 9.3V·m- 1 (归一化到 1 0 0km ,下同 ) ,485例继后回击的平均电场强度只有 4 .5V·m- 1 。 480例继后回击与首次回击场强之比平均为 0 .6 ,有 1 8%地闪过程至少有一次比首次回击强的继后回击。相邻两次回击间隔时间呈现对数正态分布特征。观测到的最短回击间隔为 1 .6ms ,约 30 %的回击间隔 >1 0 0ms,在40~ 1 0 0ms之间的回击间隔比重约为 50 %。回击间隔时间与间隔前后回击相对强弱之间存在系统性的变化趋势 ,当两次回击间隔在 40ms以下时总是以‘前强后弱’的回击组合占主导地位 ,相反 ,当回击间隔时间增加到 >1 0 0ms时 ,约 55 %的回击间隔表现为‘前弱后强’的回击组合。  相似文献   

10.
陈军  孙轶  李京校  张骁  林伟  于梦颖 《气象科技》2022,50(1):139-146
采用2016-2020年浙江省闪电定位资料,利用Access和MATLAB对浙江省陆域、舟山海域地闪回击特征进行分析.结果显示:浙江省陆域年平均地闪回击密度为1.97次·km-2·a-1,正地闪回击密度为0.10次·km-2·a-1,正地闪回击占总地闪回击的5.1%,正地闪回击平均电流强度为42.49 kA,负地闪为3...  相似文献   

11.
A cloud-resolving model simulation of a mesoscale convective system (MCS) producing torrential rainfall is performed with the finest horizontal resolution of 444 m. It is shown that the model reproduces the observed MCS, including its rainfall distribution and amounts, as well as the timing and location of leading rainbands and trailing stratiform clouds. Results show that discrete convective hot towers, shown in Vis5D at a scale of 2-5 kin, are triggered by evaporatively driven cold outflows converging with the high-θe air ahead. Then, they move rearward, with respect to the leading rainbands, to form stratiform clouds. These convective towers generate vortical tubes of opposite signs, with more intense cyclonic vorticity occurring in the leading convergence zone. The results appear to have important implications for the improvement of summertime quantitative precipitation forecasts and the understanding of vortical hot towers, as well midlevel mesoscale convective vortices.  相似文献   

12.
The structure and organization of the extreme-rain-producing deep convection towers and their roles in the formation of a southwest vortex(SWV) event are studied using the intensified surface rainfall observations, weather radar data and numerical simulations from a high-resolution convection-allowing model. The deep convection towers occurred prior to the emergence of SWV and throughout its onset and development stages. They largely resemble the vortical hot tower(VHT) commonly seen in typhoons or hurricanes and are thus considered as a special type of VHT(sVHT). Each sVHT presented a vorticity dipole structure, with the upward motion not superpose the positive vorticity.A positive feedback process in the SWV helped the organization of sVHTs, which in turn strengthened the initial disturbance and development of SWV. The meso-γ-scale large-value areas of positive relative vorticity in the mid-toupper troposphere were largely induced by the diabatic heating and tilting. The strong mid-level convergence was attributed to the mid-level vortex enhancement. The low-level vortex intensification was mainly due to low-level convergence and the stretching of upward flow. The meso-α-scale large-value areas of positive relative vorticity in the low-level could expand up to about 400 hPa, and gradually weakened with time and height due to the decaying low-level convergence and vertical stretching in the matured SWV. As the SWV matured, two secondary circulations were formed,with a weaker mean radial inflow than the outflow and elevated to 300-400 hPa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号