首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 130 毫秒
1.
基于新一代天气雷达三维组网等多源气象数据分析了2009年7月30~31日的一次西南低涡触发的强降水天气过程以及主要降水时段雷达回波三维结构及演变特征,研究发现:(1)西南低涡降水与低涡强度发展存在不一致性,强降水出现在低涡强度达到最强之前;(2)中尺度对流系统的发生、发展是此次低涡降水的重要影响因素,西南低涡与中尺度对流系统既相互独立又相互影响,降水是两者共同作用的结果;(3)最强组合反射率因子同样出现在西南低涡发展到最强盛之前,西南低涡能显著影响盆地内降水雷达回波的强度与类型。   相似文献   

2.
本文应用动力分析方法,研究了无摩擦、绝热条件下,西南低涡的发生、发展问题。结果表明,在潮湿不稳定层大气中,惯性重力内波的不稳定发展是西南低涡发生,发展的一种物理机制。非线性作用对低涡发生、发展有着重要影响,考虑非线性作用所得结果与西南低涡发生、发展的天气事实更接近。  相似文献   

3.
主要回顾了近5年成都高原所围绕高原天气研究中的高原天气系统(包括高原涡、西南涡、高原切变线)活动,特别是东移出高原后的高原低涡活动,低涡暴雨机理以及西南涡加密观测资料在天气预报与分析中的应用等方面的研究成果,在此基础上指出研究存在的不足,如多尺度天气系统相互作用研究不多,高原天气系统的发展维持机理、加密观测资料的应用等还有待深入,以此推动高原天气研究向深入开展。   相似文献   

4.
青藏高原及邻近地区低涡系统(西南涡、高原涡)是造成我国暴雨等灾害性天气的主要系统之一,也是高原天气学的重点研究对象。过去十多年,关于西南涡、高原涡的研究已取得了大量有意义的成果。因此,本文重点针对高原低涡天气系统,总结了西南涡、高原涡的结构特征及其演变机制研究现状,评述了其取得的主要进展,指出了一些有待于深入研究的科学问题,在此基础上,展望了高原低涡天气系统未来的主要发展方向。  相似文献   

5.
西南低涡是形成于我国青藏高原东南侧的一种α中尺度涡旋,是导致中国夏半年暴雨的主要天气系统之一。文中简要回顾了2000年以来有关西南低涡的最新研究成果,主要包括西南低涡的人工智能识别、西南低涡频数的长期变化及其气候学特征、西南低涡的集合预报、双核西南低涡的首次发现等。在此基础上,归纳出该研究领域需要深入探讨的若干问题,包括西南低涡频数变化的外强迫因素,青藏高原特殊地形导致的地形Rossby波、重力波与西南低涡之间的相互关系,双核西南低涡的形成机制以及双核西南低涡与经典西南低涡形成机制的差异等。  相似文献   

6.
基于CloudSat卫星数据,结合多源常规和遥感等气象资料,研究分析了2013年8月6~7日的一次受西南低涡向西北方向移动发展影响的强降水天气过程中,对流云发展的三维结构和演变特征,结果表明:西南低涡发展有利于受其影响的对流云团发展为深厚对流云。西南低涡发展和成熟阶段低涡中心与强对流中心均不一致,强对流中心位于低涡中心以南。西南低涡不同发展阶段对流云团发展均符合“撒播-供水”机制。低涡发展成熟阶段对流云内部存在高温高湿中心。   相似文献   

7.
西南涡是影响我国降水的重要天气系统之一。统计分析是较早运用于研究西南涡活动的方法。本文回顾了从20世纪80年代末期至今关于西南涡的气候统计分析结果,简要总结了关于西南涡的属性、多尺度时间变化、活动特征及其对天气影响等方面基于统计分析的主要成果,在此基础上,分析、归纳出今后需要深入分析和进一步研究的若干问题。  相似文献   

8.
西南低涡与不同系统相互作用形成暴雨的异同特征分析   总被引:1,自引:0,他引:1  
利用1°×1°NCEP 再分析资料和地面加密自动站资料,通过对2007年四川盆地盛夏3次西南低涡与不同系统相互作用时形成四川盆地暴雨过程的环流特征、影响系统以及风暴相对螺旋度、湿位涡、水汽通量等物理量场特征进行对比分析,找出西南低涡与不同系统相互作用形成暴雨过程中各物理量的异同点.分析表明,西南低涡与不同系统相互作用形成暴雨机制的共同点是:暴雨发生在西南低涡中心附近,西南低涡暴雨区内存在着稳定的上升气流和水汽辐合,伴有明显的能量释放特征,西南低涡暴雨都是发生在对流层中层螺旋度大值区,强降水一般出现在对流层低层MPV1<0同时MPV2≧0的范围内,都具有"低层正涡度辐合,高层负涡度辐散"的典型暴雨动力结构.西南低涡与不同系统相互作用形成暴雨机制的不同点是:在西南低涡与高原低涡形成暴雨机制中高空急流的作用十分重要,在西南低涡与切变线形成暴雨机制中低空急流的动力作用十分明显,而深厚的西南低涡暴雨高低空急流作用不是十分重要.在西南低涡与切变线或深厚的西南低涡形成暴雨机制中锋面抬升作用明显,对流层高层MPV1正值区叠加在低层MPV1负值中心上,而与高原低涡相配合形成暴雨机制中锋面抬升作用不明显,不具有MPV1下负上正的结构.深厚的西南低涡暴雨是非移动的,而西南低涡与高原低涡或切变线形成的暴雨是移动性的.  相似文献   

9.
西南低涡与不同系统相互作用形成暴雨的异同特征分析   总被引:1,自引:0,他引:1  
利用1°×1°NCEP再分析资料和地面加密自动站资料,通过对2007年四川盆地盛夏3次西南低涡与不同系统相互作用时形成四川盆地暴雨过程的环流特征、影响系统以及风暴相对螺旋度、湿位涡、水汽通量等物理量场特征进行对比分析,找出西南低涡与不同系统相互作用形成暴雨过程中各物理量的异同点。分析表明,西南低涡与不同系统相互作用形成暴雨机制的共同点是:暴雨发生在西南低涡中心附近,西南低涡暴雨区内存在着稳定的上升气流和水汽辐合,伴有明显的能量释放特征,西南低涡暴雨都是发生在对流层中层螺旋度大值区,强降水一般出现在对流层低层MPV1〈0同时MPV2≥0的范围内,都具有“低层正涡度辐合,高层负涡度辐散”的典型暴雨动力结构。西南低涡与不同系统相互作用形成暴雨机制的不同点是:在西南低涡与高原低涡形成暴雨机制中高空急流的作用十分重要,在西南低涡与切变线形成暴雨机制中低空急流的动力作用十分明显,而深厚的西南低涡暴雨高低空急流作用不是十分重要。在西南低涡与切变线或深厚的西南低涡形成暴雨机制中锋面抬升作用明显,对流层高层MPV1正值区叠加在低层MPV1负值中心上,而与高原低涡相配合形成暴雨机制中锋面抬升作用不明显,不具有MPV1下负上正的结构。深厚的西南低涡暴雨是非移动的,而西南低涡与高原低涡或切变线形成的暴雨是移动性的。  相似文献   

10.
为了揭示低涡暴雨发生机制,认识高分辨率的区域数值模式对低涡暴雨类天气的预报能力,应用多种观测资料,NCEP再分析资料和区域数值模式WRF和GRAPES预报资料,分析了2012年7月20—23日西南地区一次高原涡和西南涡带来的大暴雨过程。研究结果表明:(1)高原低涡与西南低涡耦合有利于低涡发展维持,中层的正涡度平流、低层的辐合上升运动是低涡发展的重要机制。低涡强烈发展时期,对流系统发展极为强盛,-64℃云盖呈圆形。(2)对流层中低层低涡的维持和发展,使四川盆地处于辐合上升环流控制中,提供了有利于降水的动、热力条件,是盆地强降水发生的重要机制。(3)两个模式都较好地反映了低涡影响下的盆地大暴雨过程。与实况的差异主要表现在降水发生时间提前,降水落区移动偏快或偏慢,有利于降水的动、热力场更强等等。相对而言,WRF模式预报与实况更接近。模式预报的低涡位置及伴随的物理量演变决定了降水预报的差异。  相似文献   

11.
高原涡、西南涡研究的新进展及有关科学问题   总被引:2,自引:0,他引:2  
简要回顾了青藏高原天气研究的历史,重点综述了进入21世纪后的近十年来青藏高原天气研究领域中有关高原低涡、西南低涡的若干重要进展,总结了相关研究取得的主要成果,在此基础上归纳出了当前高原天气研究存在的主要问题和需要加强的研究方向,以期有助于更好地梳理青藏高原天气影响的科学问题,推动青藏高原大气科学试验及研究的有序开展。  相似文献   

12.
东北冷涡研究概述   总被引:12,自引:1,他引:11       下载免费PDF全文
简述了东北冷涡的形势特征、气候特征、天气特征与强对流特征;回顾、综述了东北冷涡形成、发展、维持、消退期的研究成果,特别是东北冷涡强对流特征的研究进展;讨论了东北冷涡强降水、强天气等预报业务的难点及其研究方面存在的问题。认为:需要依靠现代雷达、卫星等观测设备和数值模拟手段,加强东北冷涡暴雨及强天气机制研究,提高东北冷涡天气的预报水平。  相似文献   

13.
一次西南涡路径预报偏差分析及数值模拟   总被引:2,自引:0,他引:2  
2008年7月21-23日,在川东的西南涡移出后东北上.参考各数值模式对22-23日西南涡路径预报后,河南省气象台于21日发布暴雨预报,出现了落区偏差.为加深对西南涡移动路径机理的认识,利用常规和NCEP资料,从大气环流、热力、动力等方面对这次西南涡移动路径特征进行探讨;对数值预报产品作天气学检验;利用WRF模式对本次过程进行模拟.结果表明:(1)这次西南涡呈现南掉-东北上-东东北再东北上的曲折路径;(2)低涡结构显示了中尺度特征,涡度轴向、K指数等对低涡的移动路径有指示意义;(3)由于过于依赖数值预报,加之对东北南下冷空气影响考虑不足,是造成这次低涡路径预报偏差的主要原因;(4)WRF模式对这次低涡路径有较好的预报能力.  相似文献   

14.
西南低涡是形成于青藏高原东侧的特殊天气系统,国内学者目前对于西南低涡的识别没有统一的标准。通过分析西南低涡的主要特征,结合高度场、涡度场、风场,设计了一种适应于西南低涡的HVW识别方法,将其应用于2014年6—8月GRAPES-MESO高分辨率格点分析资料,对比与西南低涡天气图实况的差异。通过对西南低涡的识别、低涡生成和消亡时间、低涡中心位置以及低涡中心强度这几方面的具体分析,得到以下几点结论:1)HVW识别方法能够有效识别出高精度格点资料中的西南低涡过程,与格点实况的吻合率达到87.5%;对于天气图和格点资料都能够再现的西南低涡个例,HVW识别方法的准确度能够达到90.9%,说明HVW识别方法能够有效捕捉西南低涡。2)以天气图实况资料为西南低涡生命时长检验标准,HVW识别方法能够合理分析低涡的生成和消亡时间。3)对西南低涡中心位置偏差进行分析发现,HVW识别的西南低涡中心位置不仅位于西南低涡气压低值附近,更位于风场辐合中心。4)对西南低涡中心强度的评估发现,格点实况与HVW识别方法分析的西南低涡强度差异几乎可以忽略,充分说明了HVW识别方法包含了格点实况的高度场信息,也说明该识别方法的西南低涡中心强度可以用来代替格点实况结果。通过对2014年6—8月西南低涡过程的具体分析,验证了HVW逐步循环定位方法的可行性、合理性以及准确性。  相似文献   

15.
低纬高原西南涡暴雨分析   总被引:7,自引:10,他引:7  
张秀年  段旭 《高原气象》2005,24(6):941-947
选取了由西南涡造成的低纬高原暴雨的8个个例,利用中尺度滤波和物理量诊断方法,对低纬高原西南涡暴雨进行了分析研究。研究表明,向东南方向移出的西南涡是造成低纬高原暴雨的重要天气系统,暴雨主要出现在西南涡的西南象限的中尺度辐合线、变形场和气旋之中。造成低纬高原暴雨的西南涡是比较深厚的,其正涡度区在垂直方向通常可达300-400hPa。这种西南涡不仅具有动力性的作用,而且其后部常伴有较强的冷空气活动。正是由于西南涡的动力扰动、冷空气活动和偏南暖湿气流的爬坡抬升共同导致了暴雨的发生。  相似文献   

16.
一次西南低涡东移引发长江中下游暴雨的诊断研究   总被引:1,自引:0,他引:1  
刘晓波  储海 《气象》2015,41(7):825-832
利用常规观测资料和NECP再分析资料,对2013年6月6—7日西南低涡东移加强发展造成长江中下游大暴雨过程进行了诊断分析,重点探讨了西南低涡东移和发展维持的物理机制以及最强降水的变化特征。结果表明,沿着700 hPa高空切变线东移的西南低涡是造成此次长江中下游地区暴雨的直接影响系统,西南低涡沿着700 hPa切变线东移发展,深厚阶段正涡度柱伸展到400 hPa高度,自下而上呈近垂直结构。西南低涡附近低层辐合与高层辐散的大尺度环境条件、西南低涡与西南低空急流耦合发展动力结构、低空暖平流和高空槽前正涡度平流输送等条件是导致西南低涡东移到长江中下游后加强发展的主要因子。与西南低涡相伴随的强降雨区主要位于低涡南部3个纬距以内,该处的西南季风和副高西南侧东南气流两支水汽输送的汇合为暴雨发生提供了充沛的水汽和对流不稳定能量,而对流层中低层携带的冷空气侵入低层低涡的后部,不仅加强了低涡的斜压性,也促进了上冷下暖不稳定层结的产生和发展,为强降水的发生提供了不稳定对流触发条件。  相似文献   

17.
陈涛  张芳华  端义宏 《气象学报》2011,69(3):472-485
基于多种观测和数值模式模拟资料,在位涡守恒和反演理论的框架下,对2008年广西"6.12"特大暴雨过程中的西南低涡系统发展过程及其伴随的中尺度对流系统活动特征进行了分析.从天气系统的综合分析看,低涡系统在初始阶段发展相当迅速,东移过程中低空西南急流有明显增强,为中尺度对流系统的活动提供了良好的环境条件.对位涡的诊断分析...  相似文献   

18.
利用2003年7月7—8日NCEP/NCAR资料和地面高空常规探测资料,利用客观分析方法,研究了东北冷涡积层混合云系形成的环境条件。结果表明:这一冷涡天气系统是由北部和南部两个低压系统组成,且均比较深厚,有明显低温区配合。东北地区的降水主要受南部低压系统影响。该系统有气旋性环流配合,气旋中心区、气流辐合区和气旋东南侧西南气流中均存在相对湿度高于80%的湿度区。湿度区中含有湿度高于90%的区域,积层混合云系产生在这个区域内,而且降水区与系统的不稳定区和动力场辐合区配合一致。研究表明,东北冷涡天气系统中积层混合云系是在冷涡系统东南部的西南气流中形成的,水汽输送条件较好,而且有高湿不稳定区配合,对研究其生成和发展有指示意义。  相似文献   

19.
一次西南涡暴雨的等熵位涡特征分析   总被引:3,自引:0,他引:3  
应用常规资料和0.5°×0.5°的GFS再分析资料,对2010年7月19日发生在河北山东的一次西南涡暴雨过程产生的条件及其等熵位涡演变特征进行了分析。结果表明:西南涡、高、低空急流、地面低压是这次暴雨过程的主要影响系统;等熵位涡的演变和形态对冷空气活动有很好的示踪作用;等熵位涡中心两侧气流辐合,利于地面低压发展;高位涡下传,导致了大暴雨产生;等熵位涡大值区及移动方向与降水落区有很好的对应关系。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号