首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 190 毫秒
1.
The diurnal surface temperature range(DTR) has become significantly smaller over the Tibetan Plateau(TP) but larger in southeastern China, despite the daily mean surface temperature having increased steadily in both areas during recent decades.Based on ERA-Interim reanalysis data covering 1979–2012, this study shows that the weakened DTR over TP is caused by stronger warming of daily minimum surface temperature(Tmin) and a weak cooling of the daily maximum surface temperature(Tmax); meanwhile, the enhanced DTR over southeastern China is mainly associated with a relatively stronger/weaker warming of Tmax/Tmin. A further quantitative analysis of DTR changes through a process-based decomposition method—the Coupled Surface–Atmosphere Climate Feedback Response Analysis Method(CFRAM)—indicates that changes in radiative processes are mainly responsible for the decreased DTR over the TP. In particular, the increased low-level cloud cover tends to induce the radiative cooling/warming during daytime/nighttime, and the increased water vapor helps to decrease the DTR through the stronger radiative warming during nighttime than daytime. Contributions from the changes in all radiative processes(over-2?C) are compensated for by those from the stronger decreased surface sensible heat flux during daytime than during nighttime(approximately 2.5?C), but are co-contributed by the changes in atmospheric dynamics(approximately-0.4?C) and the stronger increased latent heat flux during daytime(approximately-0.8?C). In contrast, the increased DTR over southeastern China is mainly contributed by the changes in cloud, water vapor and atmospheric dynamics. The changes in surface heat fluxes have resulted in a decrease in DTR over southeastern China.  相似文献   

2.
The IAP/LASG GOALS coupled model is used to simulate the climate change during the 20th century using historical greenhouse gases concentrations, the mass mixing ratio of sulfate aerosols simulated by a CTM model, and reconstruction of solar variability spanning the period 1900 to 1997. Four simulations, including a control simulation and three forcing simulations, are conducted. Comparison with the observational record for the period indicates that the three forcing experiments simulate reasonable temporal and spatial distributions of the temperature change. The global warming during the 20th century is caused mainly by increasing greenhouse gas concentration especially since the late 1980s; sulfate aerosols offset a portion of the global warming and the reduction of global temperature is up to about 0.11℃ over the century; additionally, the effect of solar variability is not negligible in the simulation of climate change over the 20th century.  相似文献   

3.
Using the latest daily observational rainfall datasets for the period 1961–2008, the present study investigates the interannual variability of June–September (JJAS) mean rainfall in northern China. The regional characteristics of JJAS mean rainfall are revealed by a rotated empirical orthogonal function (REOF) analysis. The analysis identifies three regions of large interannual variability of JJAS rainfall: North China (NC), Northeast China (NEC), and the Taklimakan Desert in Northwest China (TDNWC). Summer rainfall over NC is shown to have displayed a remarkable dry period from the late 1990s; while over NEC, decadal-scale variation with a significant decreasing trend in the last two decades is found, and over TDNWC, evidence of large interannual variability is revealed. Results also show that the interannual variability of JJAS rainfall in northern China is closely associated with the Northern Hemisphere circumglobal teleconnection (CGT). Correlation coefficients between the CGT index and regional-averaged JJAS mean rainfall over NC and NEC were calculated, revealing values of up to 0.50 and 0.53, respectively, both of which exceeded the 99% confidence level.  相似文献   

4.
This study investigates the changes in January diurnal temperature range(DTR) in China during 1961-2000.The observed DTR changes during 1981-2000 relative to 1961-80 are first analyzed based on the daily temperature data at 546 weather stations.These observed DTR changes are classified into six cases depending on the changes in daily maximum and minimum temperatures,and then the occurrence frequency and magnitude of DTR change in each case are presented.Three transient simulations are then performed to understand the impact of greenhouse gases(GHGs) and aerosol direct forcing on DTR change:one without anthropogenic radiative forcing,one with anthropogenic GHGs,and another one with the combined forcing of GHGs and five species of anthropogenic aerosols.The predicted daily DTR changes during the years 1981-2000 are also classified into six cases and are compared with the observations.Results show that the previously proposed reason for DTR reduction,a stronger nocturnal warming than a daytime warming,explains only 19.8%of the observed DTR reduction days.DTR reductions are found to generally occur in northeastern China,coinciding with significant regional warming.The simulation with GHG forcing alone reproduces this type of DTR reduction with an occurrence frequency of 32.9%,which is larger than the observed value.Aerosol direct forcing reduces DTR mainly by daytime cooling.Consideration of aerosol cooling improves the simulation of occurrence frequencies of different types of DTR changes as compared to the simulation with GHGs alone,but it cannot improve the prediction of the magnitude of DTR changes.  相似文献   

5.
Diurnal temperature range (DTR) is an im- portant measure in studies of climate change and variability. The changes of DTR in different regions are affected by many different factors. In this study, the degree of correlation between the DTR and atmospheric precipitable water (PW) over China is explored using newly homogenized surface weather and sounding observations. The results show that PW changes broadly reflect the geographic patterns of DTR long-term trends over most of China during the period 1970-2012, with significant anticorrelations of trend patterns between the DTR and PW, especially over those regions with higher magnitude DTR trends. PW can largely explain about 40% or more (re 0.40) of the DTR changes, with a d(PW)/d(DTR) slope of -2% to -10% K^-1 over most of northwestern and southeastern China, despite certain seasonal dependencies. For China as whole, the significant anticorrelations between the DTR and PW anomalies range from -0.42 to -0.75, with a d(PW)/d(DTR) slope of-6% to -11% K^-1. This implies that long-term DTR changes are likely to be associated with opposite PW changes, approximately following the Clausius-Clapeyron equation. Furthermore, the relationship is more significant in the warm season than in the cold season. Thus, it is possible that PW can be considered as one potential factor when exploring long-term DTR changes over China. It should be noted that the present study has a largely statistical focus and that the underlying physical processes should therefore be examined in future work.  相似文献   

6.
The long-term trends of total surface solar radiation(SSR),surface diffuse radiation,and surface air temperature were analyzed in this study based on updated 48-yr data from 55 observational stations in China,and then the correlation between SSR and the diurnal temperature range(DTR) was studied.The effect of total solar radiation on surface air temperature in China was investigated on the basis of the above analyses.A strong correlation between SSR and DTR was found for the period 1961-2008 in China.The highest correlation and steepest regression line slope occurred in winter,indicating that the solar radiation effect on DTR was the largest in this season.Clouds and water vapor have strong influences on both SSR and DTR,and hence on their relationship.The largest correlations between SSR and DTR occurred in wintertime in northern China,regardless of all-day(including clear days and cloudy days) or clear-day cases.Our results also showed that radiation arriving at the surface in China decreased significantly during 1961-1989(dimming period),but began to increase during 1990-2008(brightening period),in agreement with previous global studies.The reduction of total SSR offset partially the greenhouse warming during 1961-1989.However,with the increase of SSR after 1990,this offsetting effect vanished;on the contrary,it even made a contribution to the accelerated warming.Nonetheless,the greenhouse warming still played a controlling role because of the increasing of minimum and mean surface temperatures in the whole study period of 1961-2008.We estimated that the greenhouse gases alone may have caused surface temperatures to rise by 0.31-0.46℃(10 yr) 1 during 1961-2008,which is higher than previously estimated.Analysis of the corresponding changes in total solar radiation,diffuse radiation,and total cloud cover indicated that the dimming and brightening phenomena in China were likely attributable to increases in absorptive and scattering aerosols in the atmosphere,respectively.  相似文献   

7.
The spatiotemporal variability of the greenhouse gas methane(CH_4) in the atmosphere over the Amazon is studied using data from the space-borne measurements of the Atmospheric Infrared Sounder on board NASA's AQUA satellite for the period 2003–12. The results show a pronounced variability of this gas over the Amazon Basin lowlands region, where wetland areas occur. CH_4 has a well-defined seasonal behavior, with a progressive increase of its concentration during the dry season, followed by a decrease during the wet season. Concerning this variability, the present study indicates the important role of ENSO in modulating the variability of CH_4 emissions over the northern Amazon, where this association seems to be mostly linked to changes in flooded areas in response to ENSO-related precipitation changes. In this region, a CH_4 decrease(increase) is due to the El Nino-related(La Ni ?na-related) dryness(wetness). On the other hand, an increase(decrease) in the biomass burning over the southeastern Amazon during very dry(wet) years explains the increase(decrease) in CH_4 emissions in this region. The present analysis identifies the two main areas of the Amazon, its northern and southeastern sectors, with remarkable interannual variations of CH_4. This result might be useful for future monitoring of the variations in the concentration of CH_4, the second-most important greenhouse gas, in this area.  相似文献   

8.
Climate changes in 21st century China are described based on the projections of 11 climate models under Representative Concentration Pathway (RCP) scenarios. The results show that warming is expected in all regions of China under the RCP scenarios, with the northern regions showing greater warming than the southern regions. The warming tendency from 2011 to 2100 is 0.06°C/10 a for RCP2.6, 0.24°C/10 a for RCP4.5, and 0.63°C/10 a for RCP8.5. The projected time series of annual temperature have similar variation tendencies as the new greenhouse gas (GHG) emission scenario pathways, and the warming under the lower emission scenarios is less than under the higher emission scenarios. The regional averaged precipitation will increase, and the increasing precipitation in the northern regions is significant and greater than in the southern regions in China. It is noted that precipitation will tend to decrease in the southern parts of China during the period of 2011-2040, especially under RCP8.5. Compared with the changes over the globe and some previous projections, the increased warming and precipitation over China is more remarkable under the higher emission scenarios. The uncertainties in the projection are unavoidable, and further analyses are necessary to develop a better understanding of the future changes over the region.  相似文献   

9.
Conflicting results have been presented regarding the link between Arctic sea-ice loss and midlatitude cooling, particularly over Eurasia. This study analyzes uncoupled(atmosphere-only) and coupled(ocean–atmosphere) simulations by the Climate Forecast System, version 2(CFSv2), to examine this linkage during the Northern Hemisphere winter, focusing on the simulation of the observed surface cooling trend over Eurasia during the last three decades. The uncoupled simulations are Atmospheric Model Intercomparison Project(AMIP) runs forced with mean seasonal cycles of sea surface temperature(SST)and sea ice, using combinations of SST and sea ice from different time periods to assess the role that each plays individually,and to assess the role of atmospheric internal variability. Coupled runs are used to further investigate the role of internal variability via the analysis of initialized predictions and the evolution of the forecast with lead time.The AMIP simulations show a mean warming response over Eurasia due to SST changes, but little response to changes in sea ice. Individual runs simulate cooler periods over Eurasia, and this is shown to be concurrent with a stronger Siberian high and warming over Greenland. No substantial differences in the variability of Eurasian surface temperatures are found between the different model configurations. In the coupled runs, the region of significant warming over Eurasia is small at short leads, but increases at longer leads. It is concluded that, although the models have some capability in highlighting the temperature variability over Eurasia, the observed cooling may still be a consequence of internal variability.  相似文献   

10.
In this study,we investigate the decadal variability of subsurface ocean temperature anomaly(SOTA)in the tropical Pacific and associated anomalous atmospheric circulation over Asia-North Pacific-North America by analyzing 50 years of atmosphere-ocean data from the National Center for Environmental Prediction(NCEP)reanalysis project and Simple Ocean Data Assimilation(SODA).Relationship between the ENSO-Like variability and climate of China is also revealed.The results show that the decadal variability of tropical Pacific SOTA has two dominant ENSO-like modes:the primary mode is an ENSO-Like mature phase pattern,and the second mode is associated with the ENSO-like transition(developing or decaying)phase.These two modes consist of a cycle of ENSO-Like variability,which exhibits a quasi-40a fluctuation,superimposed with an oscillation of a 13a period.The ENSO-Like variability in the tropical Pacific influences the atmosphere system at the mid-and higher-latitudes and subtropical regions,resulting in decadal variability of south wind over North China,the East Asian monsoon and climate of China.During the mature phase of El Ni o-Like variability,the anomalous north wind prevails over the north part of China and the East Asian monsoon weakens,with little rain in North China but much rain in the middle-and lower-reaches of the Yangtze River.With El Ni o-Like decaying(La Ni a-Like developing),anomalous northerly wind also prevails over North China,then the East Asian monsoon weakens with drought occurring in North China.The situation during the La Ni a-Like variability is the opposite.The pattern of anomalous climate of China is primarily dominated by the first ENSO-like variability,while the second mode can modulate the contribution of the first one,depending on whether its phase agrees with that of the first mode.The climate shift in China around 1978 and successive occurrence of drought for more than 20 years in North China are primarily induced by the first two ENSO-like variabilities.The latest La Ni a-Like phase starts from 1998 and will presumably end around 2018.It is expected that more rainfall would be in North China and less rainfall would appear in the middle-and lower-reaches of the Yangtze River valley during this period.  相似文献   

11.
Observations show that the surface diurnal temperature range (DTR) has decreased since 1950s over most global land areas due to a smaller warming in maximum temperatures (T max) than in minimum temperatures (T min). This paper analyzes the trends and variability in T max, T min, and DTR over land in observations and 48 simulations from 12 global coupled atmosphere-ocean general circulation models for the later half of the 20th century. It uses the modeled changes in surface downward solar and longwave radiation to interpret the modeled temperature changes. When anthropogenic and natural forcings are included, the models generally reproduce observed major features of the warming of T max and T min and the reduction of DTR. As expected the greenhouse gases enhanced surface downward longwave radiation (DLW) explains most of the warming of T max and T min while decreased surface downward shortwave radiation (DSW) due to increasing aerosols and water vapor contributes most to the decreases in DTR in the models. When only natural forcings are used, none of the observed trends are simulated. The simulated DTR decreases are much smaller than the observed (mainly due to the small simulated T min trend) but still outside the range of natural internal variability estimated from the models. The much larger observed decrease in DTR suggests the possibility of additional regional effects of anthropogenic forcing that the models can not realistically simulate, likely connected to changes in cloud cover, precipitation, and soil moisture. The small magnitude of the simulated DTR trends may be attributed to the lack of an increasing trend in cloud cover and deficiencies in charactering aerosols and important surface and boundary-layer processes in the models.  相似文献   

12.
Dissimilarities in temperature trends in space and time over the Indian region have been examined to look for signatures of aerosols’ influence. Separate temperature time series for North and South India were constructed for dry (November–May) and wet (June–October) seasons. Temperature trend for the entire period 1901–2007 and different subperiods of 1901–1950, 1951–1990, 1971–2007, and 1991–2007 have been examined to isolate the aerosol and other greenhouse gas influences on temperatures. Maximum (daytime) temperatures during dry season corresponding to North and South India show significant warming trend of 0.8 and 1.0?°C per hundred years during the period 1901–2007, while minimum temperature shows nebulous trend of 0.2 and 0.3?°C per hundred years over North and South India, respectively. During the wet season, maximum temperature shows nearly half of dry season maximum temperature warming trend. However, asymmetry is observed in dry season maximum temperature trend during post-industrial period 1951–1990 wherein the North/South India shows decreasing/increasing trends, while during the recent period 1991–2007 trends are uniformly positive for both the regions. Spatial and temporal asymmetry in observed trends clearly point to the role of aerosols in lowering temperature trends over northern India. Atmospheric aerosols could cause a negative climate forcing that can modulate the regional surface temperature trends in a significant way. As this forcing acts differentially on day and night temperatures, trends in diurnal temperature range (DTR) provide a direct assessment of impacts of aerosols on temperature trends. Time series of diurnal temperature range for dry and wet seasons have been examined separately for North and South India. Over North India, the DTR for dry season has increased gradually during the period 1901–1970 and thereafter showed decreasing trend, while trends in temperature range over Southern India were almost opposite in phase with North India. The aerosol and greenhouse gases seem to play an important role in the spatial and temporal variability of temperature range over India.  相似文献   

13.
East Asian (EA) summer monsoon shows considerable differences in the mean state and principal modes of interannual variation between early summer (May–June, MJ) and late summer (July–August, JA). The present study focuses on the early summer (MJ) precipitation variability. We find that the interannual variation of the MJ precipitation and the processes controlling the variation have been changed abruptly around the mid-1990s. The rainfall anomaly represented by the leading empirical orthogonal function has changed from a dipole-like pattern in pre-95 epoch (1979–1994) to a tripole-like pattern in post-95 epoch (1995–2010); the prevailing period of the corresponding principal component has also changed from 3–5 to 2–3 years. These changes are concurrent with the changes of the corresponding El Nino-Southern Oscillation (ENSO) evolutions. During the pre-95 epoch, the MJ EA rainfall anomaly is coupled to a slow decay of canonical ENSO events signified by an eastern Pacific warming, which induces a dipole rainfall feature over EA. On the other hand, during the post-95 epoch the anomalous MJ EA rainfall is significantly linked to a rapid decay of a central Pacific warming and a distinct tripolar sea surface temperature (SST) in North Atlantic. The central Pacific warming-induced Philippine Sea anticyclone induces an increased rainfall in southern China and decreased rainfall in central eastern China. The North Atlantic Oscillation-related tripolar North Atlantic SST anomaly induces a wave train that is responsible for the increase northern EA rainfall. Those two impacts form the tripole-like rainfall pattern over EA. Understanding such changes is important for improving seasonal to decadal predictions and long-term climate change in EA.  相似文献   

14.

By characterizing the patterns of temperature extremes over nine integrated agricultural regions (IARs) in China from 1961 to 2011, this study performed trend analyses on 16 extreme temperature indices using a high-resolution (0.5° × 0.5°) daily gridded dataset and the Mann-Kendall method. The results show that annually, at both daytime and nighttime, cold extremes significantly decreased but warm extremes significantly increased across all IARs. Overall, nighttimes tended to warm faster than daytimes. Diurnal temperature ranges (DTR) diminished, apart from the mid-northern Southwest China Region and the mid-Loess Plateau Region. Seasonally, DTR widely diminished across all IARs during the four seasons except for spring. Higher minimum daily minimum temperature (TNn) and maximum daily maximum temperature (TXx), in both summer and winter, were recorded for most IARs except for the Huang-Huai-Hai Region; in autumn, all IARs generally encountered higher TNn and TXx. In all seasons, warming was observed at daytime and nighttime but, again, nighttimes warmed faster than daytimes. The results also indicate a more rapid warming trend in Northern and Western China than in Southern and Eastern China, with accelerated warming at high elevations. The increases in TNn and TXx might cause a reduction in agriculture yield in spring over Northern China, while such negative impact might occur in Southern China during summer. In autumn and winter, however, the negative impact possibly occurred in most of the IARs. Moreover, increased TXx in the Pearl River Delta and Yangtze River Delta is possibly related to rapid local urbanization. Climatically, the general increase in temperature extremes across Chinese IARs may be induced by strengthened Northern Hemisphere Subtropical High or weakened Northern Hemisphere Polar Vortex.

  相似文献   

15.
The estimates of spatiotemporal variability of climatic parameters in West Siberia are obtained over the period of 1976-2014. It is revealed that this variability is affected by the parameters of atmospheric circulation such as wind speed components, relative vorticity, and large-scale circulation indices. It is found that in winter the warming changed into the cooling that is particularly associated with the change in atmospheric circulation patterns described by the SCAND index.  相似文献   

16.
In early summer (May–June, MJ) the strongest rainfall belt of the northern hemisphere occurs over the East Asian (EA) subtropical front. During this period the South China (SC) rainfall reaches its annual peak and represents the maximum rainfall variability over EA. Hence we establish an SC rainfall index, which is the MJ mean precipitation averaged over 72 stations over SC (south of 28°N and east of 110°E) and represents superbly the leading empirical orthogonal function mode of MJ precipitation variability over EA. In order to predict SC rainfall, we established a physical-empirical model. Analysis of 34-year observations (1979–2012) reveals three physically consequential predictors. A plentiful SC rainfall is preceded in the previous winter by (a) a dipole sea surface temperature (SST) tendency in the Indo-Pacific warm pool, (b) a tripolar SST tendency in North Atlantic Ocean, and (c) a warming tendency in northern Asia. These precursors foreshadow enhanced Philippine Sea subtropical High and Okhotsk High in early summer, which are controlling factors for enhanced subtropical frontal rainfall. The physical empirical model built on these predictors achieves a cross-validated forecast correlation skill of 0.75 for 1979–2012. Surprisingly, this skill is substantially higher than four-dynamical models’ ensemble prediction for 1979–2010 period (0.15). The results here suggest that the low prediction skill of current dynamical models is largely due to models’ deficiency and the dynamical prediction has large room to improve.  相似文献   

17.
Anthropogenic greenhouse gas emissions are expected to lead to more frequent and intense summer temperature extremes, not only due to the mean warming itself, but also due to changes in temperature variability. To test this hypothesis, we analyse daily output of ten PRUDENCE regional climate model scenarios over Europe for the 2071–2100 period. The models project more frequent temperature extremes particularly over the Mediterranean and the transitional climate zone (TCZ, between the Mediterranean to the south and the Baltic Sea to the north). The projected warming of the uppermost percentiles of daily summer temperatures is found to be largest over France (in the region of maximum variability increase) rather than the Mediterranean (where the mean warming is largest). The underlying changes in temperature variability may arise from changes in (1) interannual temperature variability, (2) intraseasonal variability, and (3) the seasonal cycle. We present a methodology to decompose the total daily variability into these three components. Over France and depending upon the model, the total daily summer temperature variability is projected to significantly increase by 20–40% as a result of increases in all three components: interannual variability (30–95%), seasonal variability (35–105%), and intraseasonal variability (10–30%). Variability changes in northern and southern Europe are substantially smaller. Over France and parts of the TCZ, the models simulate a progressive warming within the summer season (corresponding to an increase in seasonal variability), with the projected temperature change in August exceeding that in June by 2–3 K. Thus, the most distinct warming is superimposed upon the maximum of the current seasonal cycle, leading to a higher intensity of extremes and an extension of the summer period (enabling extreme temperatures and heat waves even in September). The processes driving the variability changes are different for the three components but generally relate to enhanced land–atmosphere coupling and/or increased variability of surface net radiation, accompanied by a strong reduction of cloudiness, atmospheric circulation changes and a progressive depletion of soil moisture within the summer season. The relative contribution of these processes differs substantially between models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号