首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 109 毫秒
1.
陈双  符娇兰 《气象》2021,(1):36-48
利用加密降雪观测资料、地面常规观测、FY-2E卫星观测及ERA5再分析资料对华北地区两次融化比存在显著差异的降雪过程其降雪特征、云内垂直热动力结构、降水粒子垂直分布、地面气温和地表温度等进行了对比分析,揭示了热动力垂直结构和水汽条件对降雪过程的雪密度影响。结果表明:融化比较大降雪过程(简称“0103”过程)整层温度偏低,位于对流层低层的-18~-12℃温度层较为深厚,与最大上升运动中心、水汽饱和区相重合,有利于树枝状雪花的形成进而产生较大融化比,其云中粒子以冰相粒子为主;融化比较小降雪过程(简称“1129”过程)整层温度偏高,前述温度层位于对流层高层,较为浅薄,且位于最大上升运动中心下方,其云层下部存在较多过冷水滴,有利于凇附作用进而产生较小融化比;“0103”过程短波槽较浅,导致最大动力抬升层次低,-18~-12℃温度层位于暖锋锋区附近,锋前暖平流有利于深厚温度层的建立和维持,水汽主要来自低层偏东气流输送,导致其水汽含量偏小;“1129”过程主要由高空槽前暖湿气团沿冷锋锋面爬升所引起,动力抬升位于中高层,-18~-12℃温度层位于冷锋锋区上部,温度直减率大,导致-18~-12℃温度层较为浅薄,中层西南风水汽输送提供了有利水汽条件。  相似文献   

2.
利用NCEP 1°×1°格距逐6 h再分析资料、FY-2F逐时云顶亮温(TBB)资料、国家气象站常规探空和地面气象观测资料、湖北省区域气象自动站资料,对2019年5月25日湖北省东部一次大暴雨过程进行诊断分析。结果表明:500 hPa中高纬低槽不断分裂南下,盆地低槽稳定维持,中低层低涡扰动,切变线和低空急流维持,是本次大暴雨的有利天气背景;有西南向的水汽输送通道并在暴雨区强烈辐合,水汽辐合中心位于900~950 hPa,500 hPa以下整层温度露点差都在4℃以下;暴雨区在150 hPa以下为正平均涡度;400 hPa以上为正平均散度,其下为负平均散度,最强降水时段高层辐散低层辐合的配置明显向对流层下层压缩,高层负涡度低层正涡度的配置催生了高层辐散低层辐合的散度配置,有利于垂直上升运动加强;暴雨区上升运动从1 000 hPa延伸到200 h Pa,整层以上升运动为主,在最强降水时段上升运动中心明显下移;有明显的上冷下暖层结结构,形成低层暖平流高层冷平流的温度平流配置,有利于产生对流不稳定;降水云顶亮温TBB≤-50℃区域与降水区对应,近似圆形的中尺度对流系统对湖北东部强降水十分有利。  相似文献   

3.
诊断分析技术在山西强降雪预报中的应用   总被引:1,自引:0,他引:1  
利用常规探测资料和诊断分析方法,对2009年11月9 12日山西大范围持续强降雪天气过程进行了综合分析。结果表明:(1)500 hPa阻塞形势和低空低涡切变线稳定维持,700 hPa西南急流、850 hPa偏东急流、850 hPa和925 hPa强偏东北气流等三支强气流稳定维持,地面回流形势与河套倒槽共同强烈发展并稳定维持,是造成此次大范围持续强降雪的重要原因。(2)强降雪出现前,低层中纬度持续有暖湿空气向山西地区输送,暖湿中心强度持续增强;从其水平结构变化看,可将此次过程分为锢囚降雪、回流降雪、暖倒槽降雪和持续降温四个阶段,各个阶段降雪特点不同。(3)强降雪区上空垂直热力结构为上冷、中暖、下冷,低层冷平流强度为普通暴雪的3倍;对流层中低层持续存在对流性不稳定,不稳定区内存在空气辐散,且持续有暖湿平流输入,导致对流性不稳定及其降水不断增强。(4)此次强降雪天气过程中,山西上空大气可降水量累计达到35~88 mm;随着低层和近地层风场的加强和辐合,大气可降水量不断增加,强降雪也呈现持续增加的趋势。(5)强降雪前及整个强降雪期间,强降雪区上空300 hPa以下为水汽散度通量正值区,其强度在500~600 hPa达到最强,且强度为普通暴雪的6倍,而高层和低层均存在弱的辐散。  相似文献   

4.
主要对2010年3月14日华北强降雪进行了模拟、诊断和特征分析.此次华北降雪在中、低层主要受西风槽、低涡及切变线影响,蒙古气旋东移加强、地面倒槽发展及东风回流建立构成了有利地面天气形势,西北涡、强势的西南暖湿气流及稳定的环渤海高压对此次强降雪至关重要.垂直速度、散度、涡度、螺旋度的分布和演变反映出在此次降雪过程中,强降雪区出现了很强的辐合上升运动,降雪区上空螺旋度呈“下负上正”的垂直结构,螺旋度大值区对应强降雪中心;而锋生条件为降雪的形成和维持提供了一定的能量;相对湿度和水汽通量散度的分布说明强降雪区整层湿度较大,且水汽供应充足.  相似文献   

5.
利用NCEP/NCAR再分析数据和其他常规观测数据,对湖北省两类典型极端降水型(南北气流汇合型、南北槽叠加型)的天气背景及气象因子异常特征进行分析,结果表明:南北气流汇合型500 hPa上形成南北气流汇合形势,低层切变线南侧南风发展异常强盛,地面上冷锋入暖槽形成静止锋,动力因子(850 hPa涡度、200 hPa散度)和水汽因子(大气可降水量)异常特征显著;南北槽叠加型500 hPa上形成南北槽叠加形势,低层或边界层形成显著低涡切变,地面上暖低压强烈发展,动力因子(200 hPa散度、925 hPa涡度)和不稳定因子(700 hPa温度平流)异常度比例偏高。最后给出了两类集天气背景与气象因子异常度配置于一体的极端降水天气概念模型。  相似文献   

6.
利用中国气象局MICAPS地面、高空等常规观测资料及欧洲中心ERA-Interim的0.25°(纬度)×0.25°(经度)逐6 h再分析资料,对2015年11月5日至7日影响北京、河北的一次降雪过程的环流形势和动热力物理量进行了诊断分析,揭示了降雪特征及其形成原因。环流形势分析发现,此次降雪是在高空两槽一脊叠加短波槽活动天气背景下的“回流型”降雪。500 hPa有西伯利亚脊的发展和内蒙古地区气旋性涡旋及其向南发展出的弱槽,使得偏北冷空气与西南暖气流在河北地区相遇,伴随低层700 hPa的低涡发展,造成了此次降雪天气。500 hPa多小槽波动东移,使得雨雪天气维持较长时间;700 hPa受偏南暖湿气流影响,850 hPa为偏东风,地面高压底部偏东风配合倒槽,有较好的上升运动和水汽输送条件;高湿的大气环境条件和低层水汽辐合及抬升为降雪发生提供了充沛的水汽;高低空急流的形成,与散度场、涡度场和垂直速度场的高低空耦合配置,为降雪天气的发生创造了动力条件。  相似文献   

7.
河北北部两次强降雪过程对比分析   总被引:1,自引:0,他引:1  
选取河北北部承德市2010年1月3—4日和2015年2月20—21日两次强降雪过程,利用常规观测资料和NECP(1°×1°)逐6 h再分析资料,对环流形势和物理量场进行对比分析。结果表明,两次过程影响系统虽有不同,但500 hPa贝加尔湖附近有冷涡、低层有切变线缓慢东移、地面上贝加尔湖以西存在冷高压,海平面气压场呈"西北高东南低"是其共同特征,也是承德出现强降雪的有利天气形势。物理量场在强降雪期间有以下共同特征:低层水汽通量呈辐合,辐合中心与强降雪有很好对应关系;700 hPa以下为强上升运动,且850 hPa附近有上升中心;850 hPa以上涡度为正值;垂直螺旋度整层为正值或呈"上负下正"结构。  相似文献   

8.
本文主要对2010年3月14日华北强降雪进行了模拟、诊断和特征分析。此次华北降雪在中、低层主要受西风槽、低涡及切变线影响,蒙古气旋东移加强、地面倒槽发展及东风廽流建立构成了有利地面天气形势,西北涡、强势的西南暖湿气流及稳定的环渤海高压对此次强降雪至关重要。垂直速度、散度、涡度、螺旋度的分布和演变反映出在此次降雪过程中,强降雪区出现了很强的辐合上升运动,降雪区上空螺旋度呈“下负上正”的垂直结构,螺旋度大值区对应强降雪中心;而锋生条件为降雪的形成和维持提供了一定的能量;相对湿度和水汽通量散度的分布说明强降雪区整层湿度较大,且水汽供应充足。  相似文献   

9.
利用常规观测资料、NCEP FNL(1o×1o)再分析资料以及卫星、雷达资料,对乌鲁木齐2015年12月10日-12日的极端暴雪天气过程的环流演变及暴雪产生和维持的机制进行了初步分析。结果表明:此次暴雪过程是欧洲脊发展推动乌拉尔山地区长波槽东移南压,同时配合低层风场的辐合切变、地面冷锋及地形强迫抬升等共同作用造成此次过程。500hPa偏南气流,700hPa、850hPa的偏北气流在乌鲁木齐的交汇有利于加强冷暖空气的汇合和水汽的聚集,为乌鲁木齐强降雪提供了有利的动力条件。各物理量场的配合及地形作用使得此次乌鲁木齐大暴雪持续时间长,降雪强度大;降雪前期乌鲁木齐逆温使不稳定能量集中释放;散度辐合中心最强时段及上升运动均与降雪时段对应,乌鲁木齐地形引起的强迫抬升为暴雪提供有利的垂直环流;水汽的主要来源为阿拉伯海及孟加拉湾,且水汽在中低层的辐合上升明显,水汽通量散度辐合中心的出现时间对本次乌鲁木齐大暴雪的最强降水时段有很好的指示意义。  相似文献   

10.
利用地面观测资料和MICAPS资料,分析了泰安3次秋季强降雪产生的天气形势、物理量及其演变特征,同时对欧洲中心数值预报的温度预报进行了检验。结果表明:泰安秋季强降雪发生的天气形势均为回流形势;雨雪转化时850hPa均有东南气流建立,当850hPa东南气流转为北西北气流、925hPa东北气流转为西北气流控制时,降雪趋于结束;强降雪发生时850~400hPa均有较强的上升运动,水汽辐合中心在800~850hPa;雨雪相变基本发生在08时和20时前后,欧洲中心数值预报850hPa温度预报≤-2℃可作为泰安秋季雨(雨夹雪)转为雪的温度指标。  相似文献   

11.
“2009.2”沈阳暴雪天气诊断与预报误差分析   总被引:4,自引:1,他引:3       下载免费PDF全文
针对2009年2月12—13日沈阳暴雪过程,运用Micaps资料和自动站资料,分析了大尺度天气形势及相关物理量场。结果表明:500 hPa南北两支槽在辽宁的叠加和地面蒙古气旋及江淮气旋的合并是此次暴雪过程的主要成因。强降雪出现在850 hPa涡度和200 hPa散度大值区内,对流层中低层辐合、高层辐散为强降雪提供了有利的动力条件;低空急流为暴雪区水汽来源,亦为对流不稳定能量释放的触发源,暴雪区还具备上干冷下暖湿的热力不稳定条件;降水性质的转换与850 hPa的温度、温度平流和地面气温有直接联系;暴雪过程无论从量级,还是降水起止、雨转雪时间均预报得较为准确,但对降雪量和积雪深度估计不足。  相似文献   

12.
北方一次强降雪过程的中尺度数值模拟   总被引:12,自引:13,他引:12  
利用中尺度数值模式MM5对2003年3月14~16日发生在内蒙古中部偏南地区的一次强降雪过程进行了二重嵌套的48 h数值模拟研究。结果表明:模式较好地模拟了本次过程强降雪中心的强度、位置以及强降雪的时间变化。导致本次过程降雪产生的主要影响系统是地面倒槽和700 hPa中α尺度低涡,其影响时间相对持久。强降雪的出现则是由于高空短波槽产生的高层强辐散强迫与低层增强的辐合相互耦合所致。高低层系统这一适宜配置的维持时间相对短暂,却导致了本次过程降雪强度的两个峰值的出现。同时,中α尺度低涡的形成和加强及其与低空暖湿急流的适宜配置也是强降雪产生的一个有利因素。阴山山脉对本次过程强降雪的强度和位置具有重要影响:山脉使降雪在其南麓增强,北麓减弱。山地强迫抬升是导致这一结果的直接原因。另外,山地在其迎风坡使上升运动增强的同时也使正涡度减小和低层辐散增强。  相似文献   

13.
鹰潭市一次冻雨暴雪天气过程分析   总被引:1,自引:1,他引:0  
利用常规气象资料、T213资料等,对鹰潭市2008年2月1-2日出现的冻雨、暴雪天气过程进行分析。结果表明,暴雪出现在500hPa槽前、700hPa急流轴与切变线之间、850hPa切变线附近和地面冷高压底部的区域。高空低槽东移,700hPa西南急流的南压,使得700hPa温度下降为-3.7℃,温度条件变化有利于产生降雪。中低层辐合、高层辐散及较强的上升运动,为强降雪提供较好的动力条件。850—700hPa的逆温层有利于冻雨、暴雪出现,当700hPa温度≥-1℃时,出现冻雨;当温度≤-3℃时,出现暴雪。对流层中层较好的水汽输送,是暴雪发生的重要原因之一。  相似文献   

14.
华北冷季一次大范围雷暴与暴雪共存天气过程分析   总被引:2,自引:1,他引:1  
孔凡超  李江波  张迎新  买文明 《气象》2015,41(7):833-841
利用常规气象资料、多普勒雷达及NCEP客观分析资料,对2013年3月12日华北出现的一次比较罕见的大范围雷暴和暴雪共存天气过程进行了诊断分析。结果表明:本次大范围的雷暴为发生在低层冷空气堆之上的高架雷暴。虽然雷暴区中低层水汽通量辐合较弱,但中高层θe平流差造成中层出现条件不稳定,在850 hPa切变线前部西南风中辐合配合冷平流以及切变线的先后触发下,不稳定能量得以释放,这是河北中部发生大范围雷暴的主要原因。暴雪区中层较强的水汽通量辐合及辐合层厚度爆发性增长、700 hPa槽区以及槽前西南气流和偏西气流的强辐合是造成北部暴雪天气的重要原因。此外,中低层正的差动涡度平流较散度场对暴雪及雷暴区的动力作用的反映更明显。  相似文献   

15.
利用常规观测资料和NCEP资料,对2009年11月9—12日石家庄特大暴雪进行分析。结果表明:暴雪过程与高空西槽、河套地区南部南支槽以及中低空切变有着密切联系。高低空急流的较好配合利于暴雪区内上升运动的加强,上升区始终位于高空偏西急流右侧的辐散区内及低空西南急流出口区左前部的辐合区内,且700 hPa北支西北急流对暴雪的增强有着至关重要的作用;上升运动与正涡度区相对应,垂直上升最强区与正涡度中心相吻合;上升运动与湿度场的交汇对暴雪的发生及加强显著,石家庄上空自地面至200 hPa维持一相对湿度为90%的高湿柱,西南气流带来的南方暖湿气流及东北回流带来的渤海湾高湿大气是产生大暴雪的能量及水汽源地。  相似文献   

16.
针对辽宁2009年2月中旬旬初雨转暴雪过程和旬末大雪过程,利用常规观测资料和NCEP 10×10 逐6 h分析资料,从环流形势、影响系统、水汽和动力条件及热力结构等方面入手,对这两次过程进行对比分析。结果表明:这两次过程在许多方面显著不同。两次过程均发生在乌山阻高稳定的形势下,均受中纬度东移的中尺度低值系统影响,但雨转暴雪过程中高纬度为两脊一槽型,中纬度短槽与南支低槽结合携强冷空气东移,与低空急流在辽宁上空交汇。大雪过程为东低西高型,中纬度气旋性波动东移,切变线北抬过程中与西南暖湿气流作用影响辽宁。两次过程均发生在600 hPa以下相对湿度为80%以上的大气中,均具有低层辐合高层辐散的特征和深厚的上升运动,但雨转暴雪过程水汽含量更高,辐合层更深厚、强度更强,垂直速度较大雪过程大一个量级;两次过程都有明显的风垂直切变特征,但雨转暴雪过程发生在风垂直切变迅速增大的条件下,大雪过程风垂直切变相对稳定;雨转暴雪过程降水随湿位涡的发展而增强,两者有较好的对应关系,而大雪过程湿位涡表现微弱;雨转暴雪过程槽前0 ℃层达到850 hPa,槽后各层温度迅速下降至0 ℃以下,而大雪过程整层温度始终在0 ℃以下。  相似文献   

17.
2009年深冬辽宁雨转暴雪和大雪过程对比分析   总被引:2,自引:1,他引:1       下载免费PDF全文
针对辽宁2009年2月中旬旬初雨转暴雪过程和旬末大雪过程,利用常规观测资料和NCEP 10×10 逐6 h分析资料,从环流形势、影响系统、水汽和动力条件及热力结构等方面入手,对这两次过程进行对比分析。结果表明:这两次过程在许多方面显著不同。两次过程均发生在乌山阻高稳定的形势下,均受中纬度东移的中尺度低值系统影响,但雨转暴雪过程中高纬度为两脊一槽型,中纬度短槽与南支低槽结合携强冷空气东移,与低空急流在辽宁上空交汇。大雪过程为东低西高型,中纬度气旋性波动东移,切变线北抬过程中与西南暖湿气流作用影响辽宁。两次过程均发生在600 hPa以下相对湿度为80%以上的大气中,均具有低层辐合高层辐散的特征和深厚的上升运动,但雨转暴雪过程水汽含量更高,辐合层更深厚、强度更强,垂直速度较大雪过程大一个量级;两次过程都有明显的风垂直切变特征,但雨转暴雪过程发生在风垂直切变迅速增大的条件下,大雪过程风垂直切变相对稳定;雨转暴雪过程降水随湿位涡的发展而增强,两者有较好的对应关系,而大雪过程湿位涡表现微弱;雨转暴雪过程槽前0 ℃层达到850 hPa,槽后各层温度迅速下降至0 ℃以下,而大雪过程整层温度始终在0 ℃以下。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号