首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
El Ni?o(厄尔尼诺)事件对东亚和南亚次年夏季降水影响及其机理已经得到充分研究,但其对夏季青藏高原降水是否有显著影响还不清楚。本研究根据1950年后El Ni?o事件次年衰减期演变速度,对比分析衰减早型与晚型El Ni?o事件对南亚季风区与青藏高原夏季(6~9月)季节平均和月平均气候影响差异。结果显示在衰减早型次年夏季热带太平洋海温转为La Ni?a(拉尼娜)型且持续发展,引起Walker环流上升支西移,印度洋和南亚季风区上升运动加强,同时激发异常西北太平洋反气旋(NWPAC),阿拉伯海异常气旋和伊朗高原异常反气旋性环流响应,增加7~9月对流层偏南气流和印度洋水汽输送,导致南亚和高原西南侧降水偏多。衰减晚型次年6~8月热带太平洋El Ni?o型海温仍维持,印度洋暖异常海温显著,对应的印度洋和南亚季风区上升运动较弱,NWPAC西伸控制南亚季风区,阿拉伯海和中西亚分别呈现异常反气旋和气旋性环流,导致青藏高原西风加强,水汽输送减少,南亚北部和高原降水一致偏少。结果表明:(1)El Ni?o显著影响次年青藏高原西南部夏季季节和月平均降水与温度,是印度和高原西南部夏季降水显著相关的重要原因;(2)El Ni?o衰减快慢速度对南亚和青藏高原西南部夏季季节内降水的影响有着重要差异。  相似文献   

2.
This work attempts to reconcile in a common and comprehensive framework the various conflicting results found in the literature regarding Indian Summer Monsoon (ISM) rainfall-Sea Surface Temperature (SST) relationships, especially the links with El-Ni?o Southern Oscillation (ENSO) and the Indian Ocean Dipole (IOD). To do so, we first examine the linear relationships between ISM rainfall and global SST anomalies during 1950–1976 and 1979–2006 periods. Our results highlight the existence of significant modulations in SST teleconnections and precursory patterns between the first (June–July, JJ) and second part (August–September, AS) of the monsoon. This JJ–AS rainfall dichotomy is more pronounced after the 1976–1977 climate regime shift and tends to blur the global ISM-ENSO signal during the recent period, leading to an apparent weakening of this relationship at the seasonal time scale. Although ISM rainfall in JJ and AS is still strongly linked to ENSO over both periods, the lead-lag relationships between ENSO and AS Indian rainfall have changed during recent decades. Indeed, ENSO variability in the preceding boreal winter has now a significant impact on rainfall variability during the second half of ISM. To evaluate in more details the impact of this JJ-AS dichotomy on the ISM-ENSO-IOD relationships, ISM correlations are also examined separately during El Ni?o and La Ni?a years. Results indicate that the early onset of El Ni?o during boreal spring causes deficient monsoon rainfall in JJ. In response to weaker monsoon winds, warm SST anomalies appear in the west equatorial IO, generating favorable conditions for the development of a positive IOD in AS. Local air-sea processes triggered by the SST anomalies in the eastern node of IOD seem, in turn, to have a more active role on AS rainfall variability, as they may counteract the negative effect of El Ni?o on ISM rainfall via a modulation of the local Hadley circulation in the eastern IO. The JJ–AS rainfall dichotomy and its recent amplification may then result from an enhancement of these IO feedbacks during recent El Ni?o years. This explains why, although El Ni?o events are stronger, a weakening of the ISM-ENSO relationship is observed at the seasonal scale after 1979. Results during La Ni?a years are consistent with this hypothesis although local processes in the southeast IO now play a more prominent role and act to further modulate ISM rainfall in AS. Finally, our results highlight the existence of a biennal rhythm of the IOD-ENSO-ISM system during the recent period, according to which co-occurring El Ni?o and positive IOD events tend to be followed by a warming of the IO, a wet ISM during summer and, finally, a La Ni?a event during the following boreal winter.  相似文献   

3.
The year 2019 experienced an excess monsoon season over the Indian region, with the seasonal rainfall being 110 % of the long period average (LPA). Several zones across the country suffered multiple extreme rainfall events and flood situations resulting in a massive loss of life and property. The first half of 2019 experienced a moderate El Niño Modoki event that lasted till mid-summer. Another important feature of 2019 was the strongest recorded positive Indian Ocean Dipole (IOD) that lasted approximately seven months from May to November. This study has examined the reasons for the intra-seasonal variability of rainfall over India during the 2019 monsoon using available remote sensing and reanalysis data. Our analysis has shown that the presence of El Niño and the formation of a very severe cyclonic storm (VSCS) in the Arabian Sea were unfavorable for the monsoon onset and its northward advancement during June. However, the Walker circulation associated with El Niño helped strengthen the IOD developed early in the Indian Ocean, much before the monsoon onset. The anomalously strong IOD strengthened the monsoon circulation during July-September and resulted in excess rainfall over India.  相似文献   

4.
The relative impacts of Indian and Pacific Ocean processes on Tanzanian rainfall was evaluated using composite and correlation analyses. It was found that the seasonal responses of rainfall to positive Indian Ocean Dipole (pIOD) and El Niño events are substantial from September–October–November (SON) to December–January–February (DJF), whereas the Indian Ocean Dipole (IOD) exerts more control than El Niño–Southern Oscillation (ENSO) in both seasons. The associated relationship with the sea surface temperature (SST) and large-scale atmospheric circulations revealed distinct features. For the pure pIOD years, there is above-normal rainfall over the entire country. A strong rainfall condition is evident over the Lake Victoria basin and coastal and northeastern highland parts of the country during SON, while areas of the central and southern highlands exhibit substantial rains during DJF. For the pure El-Niño events, Tanzania has suffered from insignificant, weak, and non-coherent rainfall conditions during SON. However, a contrasting insignificant rainfall signature is found between the northern and southern parts of the country during the subsequent DJF season. For the co-occurrence of pIOD and El Niño, significant, excessive rainfall conditions are restricted to over the northern coast and northeastern areas of the country during SON, consistent with the rainfall pattern for pIOD. A weak, positive rainfall condition is observed over the entire country in the following season of DJF. Generally, in terms of Tanzanian rainfall, the IOD/ENSO variability and the associated impacts can be explained by the anomalous SST and circulation anomalies.  相似文献   

5.
Lim  Eun-Pa  Hendon  Harry H.  Shi  Li  de Burgh-Day  Catherine  Hudson  Debra  King  Andrew  Trewin  Blair  Griffiths  Morwenna  Marshall  Andrew 《Climate Dynamics》2021,56(11):3625-3641

We explore the causes and predictability of extreme low minimum temperatures (Tmin) that occurred across northern and eastern Australia in September 2019. Historically, reduced Tmin is related to the occurrence of a positive Indian Ocean Dipole (IOD) and central Pacific El Niño. Positive IOD events tend to locate an anomalous anticyclone over the Great Australian Bight, therefore inducing cold advection across eastern Australia. Positive IOD and central Pacific El Niño also reduce cloud cover over northern and eastern Australia, thus enhancing radiative cooling at night-time. During September 2019, the IOD and central Pacific El Niño were strongly positive, and so the observed Tmin anomalies are well reconstructed based on their historical relationships with the IOD and central Pacific El Niño. This implies that September 2019 Tmin anomalies should have been predictable at least 1–2 months in advance. However, even at zero lead time the Bureau of Metereorolgy ACCESS-S1 seasonal prediction model failed to predict the anomalous anticyclone in the Bight and the cold anomalies in the east. Analysis of hindcasts for 1990–2012 indicates that the model's teleconnections from the IOD are systematically weaker than the observed, which likely stems from mean state biases in sea surface temperature and rainfall in the tropical Indian and western Pacific Oceans. Together with this weak IOD teleconnection, forecasts for earlier-than-observed onset of the negative Southern Annular Mode following the strong polar stratospheric warming that occurred in late August 2019 may have contributed to the Tmin forecast bust over Australia for September 2019.

  相似文献   

6.
After compositing three representative ENSO indices,El Nio events have been divided into an eastern pattern(EP) and a central pattern(CP).By using EOF,correlation and composite analysis,the relationship and possible mechanisms between Indian Ocean Dipole(IOD) and two types of El Nio were investigated.IOD events,originating from Indo-Pacific scale air-sea interaction,are composed of two modes,which are associated with EP and CP El Ni o respectively.The IOD mode related to EP El Nio events(named as IOD1) is strongest at the depth of 50 to 150 m along the equatorial Indian Ocean.Besides,it shows a quasi-symmetric distribution,stronger in the south of the Equator.The IOD mode associated with CP El Nio(named as IOD2) has strongest signal in tropical southern Indian Ocean surface.In terms of mechanisms,before EP El Nio peaks,anomalous Walker circulation produces strong anomalous easterlies in equatorial Indian Ocean,resulting in upwelling in the east,decreasing sea temperature there;a couple of anomalous anticyclones(stronger in the south) form off the Equator where warm water accumulates,and thus the IOD1 occurs.When CP El Nio develops,anomalous Walker circulation is weaker and shifts its center to the west,therefore anomalous easterlies in equatorial Indian Ocean is less strong.Besides,the anticyclone south of Sumatra strengthens,and the southerlies east of it bring cold water from higher latitudes and northerlies west of it bring warm water from lower latitudes to the 15° to 25°S zone.Meanwhile,there exists strong divergence in the east and convergence in the west part of tropical southern Indian Ocean,making sea temperature fall and rise separately.Therefore,IOD2 lies farther south.  相似文献   

7.
Summary A study of the skill of the ECHAM version 4 atmospheric general circulation model and two reanalyses in simulating Indonesian rainfall is presented with comparisons to 30 years of rain gauge data. The reanalyses are those performed by the European Centre for Medium-Range Weather Forecasts and of the National Centers for Environmental Prediction jointly with National Center for Atmospheric Research. This study investigates the skill of the reanalyses and ECHAM4 with regard to three climate regions of Indonesia, the annual and interannual variability of rainfall and its responses to El Ni?o-Southern Oscillation (ENSO) events. The study is conducted at two spectral resolutions, T42 and T106. The skill of rainfall simulations in Indonesia depends on the region, month and season, and the distribution of land and sea. Higher simulation skills are confined to years with ENSO events. With the exception of the northwest region of Indonesia, the rainfall from June (Molucca) and July (south Indonesia) to November is influenced by ENSO, and is more sensitive to El Ni?o than La Ni?a events. Observations show that the Moluccan region is more sensitive to ENSO, receives a longer ENSO impact and receives the earliest ENSO impact in June, which continues through to December. It is found that the reanalyses and the climate model simulate seasonal variability better than monthly variability. The seasonal skill is highest in June/July/August, followed by September/October/November, December/January/February and March/April/May. The correlations usually break down in April (for monthly analysis) or in the boreal spring (for seasonal analysis). This period seems to act as a persistent barrier to Indonesian rainfall predictability and skill. In general, the performance of ECHAM4 is poor, but in ENSO sensitive regions and during ENSO events, it is comparable to the reanalyses.  相似文献   

8.
Various SST indices in the Indo-Pacific region have been proposed in the literature in light of a long-range seasonal forecasting of the Indian Summer Monsoon (ISM). However, the dynamics associated with these different indices have never been compared in detail. To this end, the present work re-examines the variabilities of ISM rainfall, onset and withdrawal dates at interannual timescales and explores their relationships with El Ni?o-Southern Oscillation (ENSO) and various modes of coupled variability in the Indian Ocean. Based on recent findings in the literature, five SST indices are considered here: Ni?o3.4 SST index in December?CJanuary both preceding [Nino(?1)] and following the ISM [Nino(0)], South East Indian Ocean (SEIO) SST in February?CMarch, the Indian Ocean Basin (IOB) mode in April?CMay and, finally, the Indian Ocean Dipole (IOD) averaged from September to November, also, both preceding [IOD(?1)] and following the ISM [IOD(0)]. The respective merits and associated dynamics of the selected indices are compared through various correlation and regression analyses. Our first result is a deceptive one: the statistical relationships with the ISM rainfall at the continental and seasonal scales are modest and only barely significant, particularly for the IOD, IOB and Nino(?1) indices. However, a detailed analysis shows that statistical relationships with the ISM rainfall time series are statistically biased as the ISM rainfall seems to be shaped by much intraseasonal variability, linked in particular to the timing of the onset and withdrawal of the ISM. Surprisingly, analysis within the ISM season shows that Nino(?1), IOB and SEIO indices give rise to prospects of comparatively higher ISM previsibility for both the ISM onset and the amount of rainfall during the second half of the ISM season. The IOD seems to play only a secondary role. Moreover, our work shows that these indices are associated with distinct processes occurring within the Indian Ocean from late boreal winter or early spring onwards. The regression analyses also illustrate that these (local) mechanisms are dynamically and remotely linked to different phases of ENSO in the equatorial Pacific, a result which may have useful implications in terms of forecasting strategies since the choice of the better indices then hinges on the concurrent phasing of the ENSO cycle.  相似文献   

9.
After its maturity, El Ni?o usually decays rapidly in the following summer and evolves into a La Ni?a pattern. However, this was not the case for the 2018/19 El Ni?o event. Based on multiple reanalysis data sets, the space-time evolution and triggering mechanism for the unusual second-year warming in late 2019, after the 2018/19 El Ni?o event, are investigated in the tropical Pacific. After a short decaying period associated with the 2018/19 El Ni?o condition, positive sea surface temperature anomalies (SSTAs) re-intensified in the eastern equatorial Pacific in late 2019. Compared with the composite pattern of El Ni?o in the following year, two key differences are evident in the evolution of SSTAs in 2019. First, is the persistence of the surface warming over the central equatorial Pacific in May, and second, is the re-intensification of the positive SSTAs over the eastern equatorial Pacific in September. Observational results suggest that the re-intensification of anomalous westerly winds over the western and central Pacific, induced remotely by an extreme Indian Ocean Dipole (IOD) event, acted as a triggering mechanism for the second-year warming in late 2019. That is, the IOD-related cold SSTAs in the eastern Indian Ocean established and sustained anomalous surface westerly winds over the western equatorial Pacific, which induced downwelling Kelvin waves propagating eastward along the equator. At the same time, the subsurface ocean provided plenty of warm water in the western and central equatorial Pacific. Mixed-layer heat budget analyses further confirm that positive zonal advection, induced by the anomalous westerly winds, and thermocline feedback played important roles in leading to the second-year warming in late 2019. This study provides new insights into the processes responsible for the diversity of El Ni?o evolution, which is important for improving the physical understanding and seasonal prediction of El Ni?o events.  相似文献   

10.
The seasonal change in the relationship between El Nino and Indian Ocean dipole (IOD) is examined using the European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis (ERA-40), and the twentieth century simulations (20c3m) from the Geophysical Fluid Dynamics Laboratory Coupled Model, version 2.1. It is found that, both in ERA-40 and the model simulations, the correlation between El Nino (Nino3 index) and the eastern part of the IOD (90?C110°E; 10°S-equator) is predominantly positive from January to June, and then changes to negative from July to December. Correlation maps of atmospheric and oceanic variables with respect to the Nino3 index are constructed for each season in order to examine the spatial structure of their seasonal response to El Nino. The occurrence of El Nino conditions during January to March induces low-level anti-cyclonic circulation anomalies over the southeastern Indian Ocean, which counteracts the climatological cyclonic circulation in that region. As a result, evaporation decreases and the southeastern Indian Ocean warms up as the El Nino proceeds, and weaken the development of a positive phase of an IOD. This warming of the southeastern Indian Ocean associated with the El Nino does not exist past June because the climatological winds there develop into the monsoon-type flow, enhancing the anomalous circulation over the region. Furthermore, the development of El Nino from July to September induces upwelling in the southeastern Indian Ocean, thereby contributing to further cooling of the region during the summer season. This results in the enhancement of a positive phase of an IOD. Once the climatological circulation shifts from the boreal summer to winter mode, the negative correlation between El Nino and SST of the southeastern Indian Ocean changes back to a positive one.  相似文献   

11.
Extreme summers of Europe are usually affected by blocking highs that shift between Western and Eastern Europe to cause regional variations in the surface temperature anomalies. Generally, the blocking high induces a regional temperature dipole with poles of warm and cold anomalies on two sides of Europe. The extreme summers of Western Europe, when the Eastern Europe is colder than normal, are usually associated with the teleconnections arising from positive Indian Ocean Dipole (IOD) events. In contrast, analogous warm events in Eastern Europe are usually associated with La Niña. The western Pacific conditions that prevail during the turnaround phase of El Niño to La Niña are found to be responsible for developing the extreme Eastern Europe events. The role of North Atlantic Oscillation (NAO) is not blatant for the Eastern Europe summers though it has a weaker influence on Western Europe summers for which IOD plays a dominant role: The seasonal July–August correlation for Western Europe temperature with IOD index is higher than that with the NAO index. The teleconnections for both types of extremes are associated with a Rossby wavetrain that travel around the globe to reach the Europe. This circumglobal teleconnection is largely determined by the location of the tropospheric heat source. For Western Europe warm events, major contributions come from the atmospheric convections/diabatic heating over northwest India and southern Pakistan. For the Eastern Europe events, the convections over northwest Pacific, south of Japan, are found to project the signals on to the mid-latitude wave-guide. These patterns of teleconnection are so robust that those can be seen on daily to seasonal time-scales of atmospheric anomalies. The wavetrains are found to set-in a couple of weeks prior to the development of blocking highs and extreme hot conditions over Europe.  相似文献   

12.
This study aims to examine the effect of El Nino and La Nina on the monthly and seasonal climate of Hong Kong against the ENSO-neutral situation from a statistical perspective. Monthly and seasonal temperature and rainfall of Hong Kong and monthly number of tropical cyclones (TCs) coming within 500 km of the city over the 59-yr (1950-2008) period are examined under three ENSO situations, namely El Nino, La Nina, and ENSO-neutral. It is found that, compared with the ENSO-neutral situation, El Nino tends...  相似文献   

13.
Sea-surface temperature interannual anomalies (SSTAs) in the thermocline ridge of the southwestern tropical Indian Ocean (TRIO) have several well-documented climate impacts. In this paper, we explore the physical processes responsible for SSTA evolution in the TRIO region using a combination of observational estimates and model-derived surface layer heat budget analyses. Vertical oceanic processes contribute most to SSTA variance from December to June, while lateral advection dominates from July to November. Atmospheric fluxes generally damp SSTA generation in the TRIO region. As a result of the phase opposition between the seasonal cycle of vertical processes and lateral advection, there is no obvious peak in SSTA amplitude in boreal winter, as previously noted for heat content anomalies. Positive Indian Ocean Dipole (IOD) events and the remote influence of El Niño induce comparable warming over the TRIO region, though IOD signals peak earlier (November–December) than those associated with El Niño (around March–May). Mechanisms controlling the SSTA growth in the TRIO region induced by these two climate modes differ strongly. While SSTA growth for the IOD mostly results from southward advection of warmer water, increased surface shortwave flux dominates the El Niño SSTA growth. In both cases, vertical oceanic processes do not contribute strongly to the initial SSTA growth, but rather maintain the SSTA by opposing the effect of atmospheric negative feedbacks during the decaying phase.  相似文献   

14.
基于NCEP、SODA等再分析资料,采用合成分析和2.5层简化海洋模型数值模拟等方法,分析了El Ni?o和正印度洋偶极子(IOD)事件不同配置情形下印度洋海温异常的演变特征,并重点探讨了联合IOD和独立IOD事件中,关键海区海温异常的发展演变及其可能机制。对于联合IOD事件,初期马里沿岸的增暖可能对其发生起主要的激发作用;而对于独立IOD事件的发生,则可能是赤道东南印度洋的降温起主导作用。不同类型IOD事件中,热带印度洋海表温度异常(SSTA)和海面高度异常(SSHA)的演变特征有明显差别,孟加拉湾上空降水异常所起的作用也不一样,印度洋不同海区混合层温度异常的演变机制也有显著不同。基于2.5层简化海洋模式结果的分析表明,各个海区的热力、动力过程在不同IOD事件有着不同的作用。例如在索马里沿岸海区:对于联合IOD事件,西印度洋赤道东风异常和索马里沿岸东北风异常,有利于该海区出现纬向平流热输送和海表热通量正异常,从而增暖。而对于独立IOD事件,阿拉伯海上空的强西南风异常,加强了索马里沿岸底层冷水的上翻和海表的热通量损失,导致前期纬向平流和夹卷混合的负异常以及后期海表热通量的负异常,使得该海区变冷。   相似文献   

15.
An analysis of streamflow characteristics (i.e. mean annual and seasonal flows and extreme high and low flows) in current and future climates for 21 watersheds of north-east Canada covering mainly the province of Quebec is presented in this article. For the analysis, streamflows are derived from a 10-member ensemble of Canadian Regional Climate Model (CRCM) simulations, driven by the Canadian Global Climate Model simulations, of which five correspond to current 1970–1999 period, while the other five correspond to future 2041–2070 period. For developing projected changes of streamflow characteristics from current to future periods, two different approaches are used: one based on the concept of ensemble averaging while the other approach is based on merged samples of current and similarly future simulations following multiple comparison tests. Verification of the CRCM simulated streamflow characteristics for the 1970–1999 period suggests that the model simulated mean hydrographs and high flow characteristics compare well with those observed, while the model tends to underestimate low flow extremes. Results of projected changes to mean annual streamflow suggest statistically significant increases nearly all over the study domain, while those for seasonal streamflow show increases/decreases depending on the season. Two- and 5-year return levels of 15-day low flows are projected to increase significantly over most part of the study domain, though the changes are small in absolute terms. Based on the ensemble averaging approach, changes to 10- and 30-year return levels of high flows are not generally found significant. However, when a similar analysis is performed using longer samples, significant increases to high flow return levels are found mainly for northernmost watersheds. This study highlights the need for longer samples, particularly for extreme events in the development of robust projections.  相似文献   

16.
The Puelo River is a watershed shared between Chile and Argentina with a mean annual streamflow of 644 m3 s?1. It has a high ecologic and economic importance, including introduced farmed salmon, tourism, sports fishing and projected hydroelectricity. Using Austrocedrus chilensis and Pilgerodendron uviferum tree-ring records we reconstructed summer–fall (December–May) Puelo River streamflow, which is the first of such reconstructions developed in the Pacific domain of South America. The reconstruction goes back to 1599 and has an adjusted r 2 of 0.42. Spectral analysis of the reconstructed streamflow shows a dominant 84-year cycle which explains 25.1% of the total temporal variability. The Puelo River summer–fall streamflow shows a significant correlation (P?>?0.95, 1943–2002) with hydrological records throughout a vast geographic range within the Valdivian eco-region (35 to 46°S). Seasonal Puelo River interannual streamflow variability is related to large-scale oceanic and atmospheric circulation features. Summer–fall streamflows showed a significant negative correlation with the Antarctic Oscillation (AAO), whereas winter–spring anomalies appear to be positively connected with sea surface temperature variations in the tropical Pacific. In general, above- and below-average discharges in winter–spring are related to El Niño and La Niña events, respectively. The temporal patterns of the observed and reconstructed records of the Puelo River streamflow show a general decreasing trend in the 1943–1999 period. Projected circulation changes for the next decades in the Southern Hemisphere would decrease summer–fall Puelo River streamflows with significant impacts on salmon production, tourism and hydropower generation.  相似文献   

17.
Summary The dominant climatic mode responsible for seasonal rainfall variability across central southern Africa has been well-established as ENSO. Hence, the El Ni?o signal of the equatorial Pacific has been used extensively to predict droughts in this sub-region. Although this paper acknowledges that El Ni?o influences rainfall deficits over eastern southern Africa, an earlier signal of extreme positive sea level pressure (SLP) anomalies at Darwin for the averaged March to June period (MAMJ Darwin) has proved to have a superior remote connection to droughts in the sub-region. Simple linear statistical tools including composite techniques and correlation methods have been employed on century long data sets (1901–2000) to identify the emerging paramount connection between MAMJ Darwin SLP anomalies and southern African rainfall. Both MAMJ Darwin SLP anomalies and the Zimbabwe seasonal rainfall time series are significantly correlated (above the 95% significant level) with sea surface temperature anomalies. These represent the Indian Ocean Dipole mode in the tropical Indian Ocean and ENSO in the tropical Pacific for the averaged September to December period. ‘Pure’ MAMJ Darwin (that occur in the absence of El Ni?o in the Pacific) coincide with droughts more significantly (83% hit rate) than ‘pure’ El Ni?o events (not preceded by a high MAMJ Darwin) (38% hit rate). Co-occurrences (MAMJ Darwin preceded by El Ni?o) do not only have the highest hit rate of 93% but subsequent droughts are noticeably more severe. The ‘pure’ El Ni?os however, are not only poorly related to Zimbabwe seasonal rainfall deficits, but are apparently not connected to extreme droughts of the 20th century. Thus, MAMJ Darwin is a good simple predictor of droughts associated with or without ENSO in the Pacific. The high prediction skill of these results, especially the inherent longer lead-time than ENSO, makes MAMJ Darwin SLP anomalies an ideal additional input candidate for sub-regional drought monitoring and forecasting schemes. In this way, drought early warning and disaster preparedness activities can be enhanced over the sub-region. Authors’ addresses: D. Manatsa, W. Chingombe, H. Matsikwa, Faculty of Science, Bindura University of Science Education, P. Bag 1020, Bindura, Zimbabwe; C. H. Matarira, Department of Geography and Environmental Science, National University of Lesotho, Roma 180, Lesotho.  相似文献   

18.
The different impacts of El Ni?o during peak phases with and without a positive Indian Ocean Dipole (P-IOD) on the Northwest Pacific circulation were studied. The authors focused on the Northwest Pacific circulation features in the mature phase of El Ni?o from September to February of the next year. Composite maps and simulations demonstrate that the atmospheric circulation under the impact of El Ni?o with and without P-IOD exhibits large differences in temporal evolution and intensity. In single El Ni?o (SE) years without a P-IOD, an anomalous low-level anticyclonic circulation around the Philippines (PSAC) is instigated by the single El Ni?o-induced Indonesian subsidence. However, during the years when El Ni?o and a P-IOD matured simultaneously, a much greater anomalous subsidence over the western Pacific and the Maritime Continent occurred. The PSAC tends to occur earlier, is much stronger and has a longer lifetime than that during SE. More importantly, the PSAC shows a characteristic of an eastward movement from the southern South China Sea (SCS) to the Philippine Sea. This characteristic does not appear during SE. These patterns imply that a positive IOD event tends to exert a prominent influence on the PSAC during El Ni?o events and there is a combined impact of El Ni?o and P-IOD on the development of the PSAC.  相似文献   

19.
Drought patterns across monsoon and temperate Asia over the period 1877–2005 are linked to Indo-Pacific climate variability associated with the El Niño-Southern Oscillation (ENSO) and the Indian Ocean Dipole (IOD). Using the Monsoon Asia Drought Atlas (MADA) composed of a high-resolution network of hydroclimatically sensitive tree-ring records with a focus on the June–August months, spatial drought patterns during El Niño and IOD events are assessed as to their agreement with an instrumental drought index and consistency in the drought response amongst ENSO/IOD events. Spatial characteristics in drought patterns are related to regional climate anomalies over the Indo-Pacific basin, using reanalysis products, including changes in the Asian monsoon systems, zonal Walker circulation, moisture fluxes, and precipitation. A weakening of the monsoon circulation over the Indian subcontinent and Southeast Asia during El Niño events, along with anomalous subsidence over monsoon Asia and reduced moisture flux, is reflected in anomalous drought conditions over India, Southeast Asia and Indonesia. When an IOD event co-occurs with an El Niño, severe drought conditions identified in the MADA for Southeast Asia, Indonesia, eastern China and central Asia are associated with a weakened South Asian monsoon, reduced moisture flux over China, and anomalous divergent flow and subsidence over Indonesia. Insights into the relative influences of Pacific and Indian Ocean variability for Asian monsoon climate on interannual to decadal and longer timescales, as recorded in the MADA, provide a useful tool for assessing long-term changes in the characteristics of Asian monsoon droughts in the context of Indo-Pacific climate variability.  相似文献   

20.
This paper assesses the impacts of climate change on water resources in the upper Ping River Basin of Thailand. A rainfall-runoff model is used to estimate future runoff based on the bias corrected and downscaled ECHAM4/OPYC general circulation model (GCM) precipitation scenarios for three future 5-year periods; the 2023–2027 (2025s), the 2048–2052 (2050s) and 2093–2097 (2095s). Bias-correction and spatial disaggregation techniques are applied to improve the characteristics of raw ECHAM4/OPYC precipitation. Results of future simulations suggest a decrease of 13–19 % in annual streamflow compared to the base period (1998–2002). Results also indicate that there will be a shift in seasonal streamflow pattern. Peak flows in future periods will occur in October–November rather than September as observed in the base period. There will be a significant increase in the streamflow in April with overall decrease in streamflow during the rainy season (May–October) and an increase during the dry season (November–April) for all future time periods considered in the study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号