首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2022年夏季中国东部地区遭遇了一次持续性极端高温干旱事件.本文利用CMIP6检测归因比较计划(DAMIP)数据,量化了人为强迫对类2022年极端干旱事件发生概率的影响,并基于未来不同增暖情景试验给出了此类极端干旱事件的未来变化预估.通过分析不同外强迫因子作用下此类极端干旱事件的发生概率变化,发现人为强迫使此类极端干旱事件的发生概率提高约56%,这主要与人为强迫下中国东部平均水汽减少和平均上升运动减弱有关.进一步通过分析此类极端干旱事件对不同温室气体排放情景(SSP1-2.6,SSP2-4.5,SSP5-8.5)的响应,发现在低排放情景下类2022年极端干旱事件的发生概率较当今气候显著下降,这主要与中国东部平均水汽的增加和平均环流的变化有关,而在高排放情景(SSP5-8.5)下,此类极端干旱事件的发生概率较当今气候增加约79%,这主要与高排放情景下平均下沉运动增强有关.该研究表明,人为强迫通过调制气候平均背景场从而引起极端事件发生频次的变化是人类活动影响极端气候事件的重要途径之一,极端干旱事件对温室气体排放量的响应可能是非线性的.  相似文献   

2.
蒸散发是水文循环和能量传输的中间环节,同时也是联结土壤、植被、大气过程的纽带。基于第六次国际耦合模式比较计划(CMIP6)12个全球气候模式数据,研究了SSP1-2.6、SSP2-4.5和SSP5-8.5三种情景下,长江流域2020-2099年实际蒸散发ET(Evapotranspiration,简称ET)的时空变化及其影响因素。研究结果表明,在3种气候变化情景下长江流域ET相较基准期(1995-2014年)均存在显著增加趋势,且长江中下游地区增加趋势最为显著;SSP1-2.6情景ET较基准期先快速增加,21世纪60年代之后减缓并趋于平稳,SSP2-4.5和SSP5-8.5情景下均呈持续增加趋势。研究了降水(Precipitation,简称Pr)、气温(Air Temperature,简称T)和叶面积指数LAI(Leaf Area Index,简称LAI)对长江流域ET的影响;SSP1-2.6和SSP2-4.5情景下,长江流域ET受T影响最为显著,而SSP5-8.5情景下,LAI是影响ET的主导因素。在3种气候情景下,辐射强迫越大,植被增加趋势越显著,对ET的影响越强(SSP5-8.5、SSP2-4.5、SSP1-2.6情景下影响逐渐减弱),而ET对LAI的敏感性则逐渐降低(SSP1-2.6、SSP2-4.5、SSP5-8.5情景下敏感性逐渐降低)。  相似文献   

3.
全球变化导致极端天气事件频发,尤其是高温热浪严重影响我国农业生态系统及人类健康。关于热浪事件的定义一直存在着许多争议,对热浪变化趋势空间分布特征的认识有待进一步提高。本文使用气温日较差、绝对温度与相对温度相结合的热浪指标,基于9个CMIP6气候模式的多模式集合结果,评估了可持续发展情景(SSP1-2.6)、中度发展情景(SSP2-4.5)及常规排放情境(SSP5-8.5)下未来中国高温热浪事件的时空分布及变化特征。结果表明:(1)SSP1-2.6情景下未来热浪事件在2050年前后达到顶峰,之后趋于稳定,而在SSP2-4.5情景下,热浪频次、日数及最长持续时间均呈现上升态势,SSP5-8.5情景下热浪的增长趋势及严重程度均为最高;(2)华南、华中地区未来面临更大的热浪风险,SSP5-8.5情景下的热浪频次及强度约是SSP1-2.6的2倍及以上,SSP2-4.5约是SSP1-2.6的1.5倍;(3)西部干旱/半干旱地区、内蒙古东部干旱地区出现较大范围的热浪,结合本文中热浪定义,预示着夜间变暖是全球变暖的一个重要特征。研究结果有助于理解可持续发展、中等强迫情景下我国未来的热浪频次和强度的变化特征,为区域发展节能减排方案的制定提供有效参考。  相似文献   

4.
新疆未来暖湿化的预估分析可为区域气候变化减缓和适应提供重要的科学基础。国际耦合模式比较计划第六阶段(CMIP6)全球气候模式在三种共享社会经济路径(SSPs)下的结果显示,新疆地区未来2021~2100年总体呈现气温升高、降水增加的“暖湿化”现象,但这种变化的具体数值和空间分布存在一定差异。其中SSP2-4.5情景下,相对于1995~2014年,预估2021~2040年新疆地区年平均气温将升高1.2℃左右,年平均降水将增加6.8%。对极端事件的预估结果表明,新疆地区未来暖事件将增加,冷事件将减少;极端强降水事件将增多,且高排放情景下的增加更为显著。新疆地区的未来预估分析,将有助于对新疆地区灾害风险时空变化格局的认识,对未来农业方面等风险防范也有重要的指示作用。  相似文献   

5.
利用政府间气候变化专门委员会第5次评估报告(IPCC AR5)耦合模式相互比较计划第5阶段(CMIP5)中所包含的8个模式资料,对长江中下游强降水的气候特征在21世纪的变化进行预估,并与此前基于第3阶段(CMIP3)的7个模式的预估结果进行了对比。所用资料既包括模式对20世纪的历史模拟,也包括它们在未来高、中、低三种排放情景(即RCP8.5、RCP4.5、RCP2.6三种代表性浓度路径)下的预估试验资料。结果表明:1)不同模式的预估结果有较好的一致性。相对于20世纪最后20 a(1980—1999年),21世纪不仅强降水事件频次、强降水事件的平均强度增加,且年际变率也有所增强。就增加幅度而言,西部强度较小,东部强度较大。2)就不同排放情景相互比较而言,在低排放情景和高排放情景(RCP2.6和RCP8.5)下,降水强度和频次的增长均比在中等排放情景(RCP4.5)下大。3)与之前CMIP3的结果相比,尽管二者均预估未来降水强度和频次增长,但二者增加幅度的空间分布并不一致。在CMIP5中,表现为自西向东幅度递增的特点,而在CMIP3中则中部地区增幅最大。  相似文献   

6.
马阳  崔洋  张雯  李欣 《干旱气象》2023,(1):43-53
为预估黄河流域宁夏段不同地区未来气候特征及其变化趋势,利用宁夏区内19个国家气象站观测资料和CMIP6(Coupled Model Intercomparison Project 6)模式数据,在检验CMIP6模式对宁夏气温模拟能力的基础上,对不同情景下宁夏引黄灌区、中部干旱带和南部山区未来气温变化进行预估。结果表明:(1)CMIP6大部分模式对黄河流域宁夏段年平均气温模拟能力较好,空间相关系数为0.603~0.930,时间相关系数为0.381~0.782,多模式集合优于单个模式模拟效果。(2)在SSP1-2.6、SSP2-4.5、SSP3-7.0、SSP5-8.5 4种情景下,预计2021—2099年黄河流域宁夏段年平均气温均呈明显增温趋势,增温速率为0.09~0.68℃·(10 a)-1。不同情景下增温速率差异明显,SSP1-2.6情景下呈减小趋势,SSP2-4.5情景下先增后减,SSP3-7.0情景下呈“增大、减小、增大”特征,SSP5-8.5情景下呈增大趋势。(3)预计4种情景下21世纪30年代引黄灌区、中部干旱带和南部山区年平均气温分别达10.91~11...  相似文献   

7.
杨崧  徐连连 《大气科学》2024,(1):333-346
泛南海地区是全球海—陆—气相互作用最敏感的区域之一,该区域极端降水释放的潜热加热可以调节局地的温度和湿度廓线对大气环流进行调整,进而影响周边地区甚至全球的天气气候。因此,泛南海地区极端降水的时空变化特征及变异机理一直是国内外学者关注的焦点。本文利用观测数据(1951~2014年)和国际耦合模式比较计划第六阶段(CMIP6)两种共享社会经济路径(SSP1-2.6和SSP5-8.5)的统计降尺度数据(2015~2100年),分析了泛南海地区年平均和季节平均的日降水的最大值(RX1day)、连续5日降水的最大值(RX5day)、极端强降水天数(R20)和非常湿润天(R95p)的时空变化特征。RX1day、RX5day、R20和R95p常用于表征极端强降水、持续性强降水、极端强降水的频率和极端累计降雨量的特征。1951~2014年泛南海地区年平均和季节平均的四个极端降水指数的较大值均分布在东南亚、中国东南部以及青藏高原南坡地区,即这些区域不仅是极端强降水发生的区域,也是持续性强降水以及高频极端降水发生的区域。季节平均的极端降水指数特征表现为:东南亚一年四季都极易发生强降水、持续性强降水和高频极...  相似文献   

8.
利用CMIP5耦合模式RCP2.6、RCP4.5和RCP8.5情景预估结果,以1890一1900年为基准气候,确定了2℃全球变暖时间、对应时期青藏高原平均气候和极端气候事件变化幅度,多模式集合平均结果表明:RCP2.6、RCP4.5和RCP8.5情景下2℃全球变暖分别发生在2063年、2040年和2036年;对应着2℃全球变暖,三种情景下青藏高原平均气温分别升高2.99℃、3.22℃和3.28℃,均超过全球2℃的升温水平;年降水量亦增加,分别增加8.35%、7.16%和7.63%。受气温升高和降水量增多影响,RCP4.5情景下霜冻日数、冰封日数减少,暖夜日数、暖昼日数增多;RCP4.5情景下中雨日数、强降水量、降水强度均增加,持续干期天数减少。从各地平均气候和极端气候事件变化结果来看,柴达木盆地是青藏高原气候变化的敏感区。  相似文献   

9.
采用应用于跨行业影响模式比较计划(ISIMIP)的5个CMIP5全球气候模式模拟的历史和未来RCP排放情景下的逐日降水数据,在评估模式对汉江流域1961—2005年极端降水变化特征模拟能力的基础上,进一步计算了RCP2.6、RCP4.5和RCP8.5排放情景下汉江流域未来2016—2060年极端降水总量(R95p)、极端降水贡献率(PEP)、连续5 d最大降水(RX5d)和降水强度(SDII),结果表明:RCP4.5情景下的极端降水指数上升最明显,R95p和RX5d分别较基准期增加12.5%和8.2%,PEP增加3.2个百分点,SDII微弱上升。在不同排放情景下,PEP均有一定的增幅,以流域西北和东南部增幅较大;R95p在流域绝大部分区域表现出一定的增加,且流域东南部和北部是增幅高值区;RX5d在RCP2.6和RCP4.5情景下整体表现为增加的特征,但在RCP8.5情景下整体表现为减少的特征。对极端降水预估的不确定性中,SDII的不确定性最小,RX5d的不确定性最大;不确定性大值区主要位于流域东部、东南部和西北部部分区域。  相似文献   

10.
采用第五次耦合模式比较计划(Coupled Model Intercomparison Project Phase 5,CMIP5)高分辨率全球统计降尺度预估数据集,针对近期(2020—2039年)、中期(2040—2059年)和长期(2080—2099年),以及全球1.5℃和2℃温升阈值,预估了青藏高原地区平均气温和降水、极端气温和极端降水的变化,定量估算了预估结果的不确定性来源。结果表明:(1)在RCP4.5和RCP8.5情景下,21世纪青藏高原地区平均气温和降水、极端气温和极端降水强度均显著增加,最长连续干旱天气减少。高原气候变化幅度超全球平均,至21世纪末,模式集合预估的气候变化幅度介于全球平均的1.5~3倍。(2)青藏高原地区受0.5℃额外增温的显著影响,年均气温、极端高温和极端低温均显著升高,平均及极端强降水均显著增加。(3)排放情景的选择对近期气候预估影响小,但对长期影响大。在相同排放情景下,内部变率主导了近期高原平均气温预估的不确定性,但至长期其贡献降至10%以下。模式和内部变率的不确定性对降水预估均有贡献,且都随时间减小,最大不确定性中心位于西部和北部边缘,噪声与信号比大于6。  相似文献   

11.
青藏高原是海-陆-气相互作用的敏感区域,其降水对当地乃至亚洲水循环起着重要作用,但目前对该区域在21世纪的降水时空演变规律仍认识不足。本文以第六次国际耦合模式比较计划(CMIP6)的25个气候模式模拟数据为基准,结合观测数据评估了各模式对青藏高原历史时期(1961-2014年)降水变化的模拟能力,发现多模式集合平均模拟效果优于多数单模式。由多模式集合平均分析了SSP1-2.6、SSP2-4.5、 SSP3-7.0和SSP5-8.5四种情景下青藏高原2015-2099年降水时空特征,发现未来青藏高原年降水量在时间上呈现增加趋势,在空间上呈现西北向东南递增的特征。相对于参考时段(1995-2014年),降水增幅在近期(2020-2039年)呈现北正南负的特征,高值区分布在藏北高原中西部和昆仑山区,而在21世纪中期(2040-2059年)和末期(2080-2099年)降水增幅南北相反的特征消失,其高值区分布在南部地区,且排放情景越高,增幅越大,空间差异也越大。到21世纪末,青藏高原年降水量在SSP1-2.6、 SSP2-4.5、 SSP3-7.0和SSP5-8.5情景下较参考时段分别增加约6...  相似文献   

12.
利用观测资料、GPCC再分析资料和第六次耦合模式比较计划(CMIP6)模拟结果,研究了我国西北地区近几十年及未来降水变化趋势。结果表明,1979—2019年我国西北干旱半干旱区降水在全年各季节均有显著增加,其中秋季增加最多。CMIP6模拟结果显示,随着全球变暖,我国西北地区降水在2015—2100年将继续增加。至21世纪末,在SSP2-4.5和SSP5-8.5情景下,我国西北地区年平均降水量将分别增加约13.7%(37 mm)和25.8%(78 mm),其中降水量增加最多的季节分别为夏季和春季。考虑到西北地区蒸发量也将随全球变暖而增加,模式平均的结果显示西北地区年平均净降水量在两种情景下的增幅分别约1.4%和4.9%,表明我国西北地区未来气候呈现显著的变湿趋势。进一步分析表明,西北地区未来降水增加可能与局地大气低层位势高度降低和上升运动加强有关。  相似文献   

13.
李瑶瑶  施春华  郭栋 《气象科学》2023,43(6):723-735
利用CMIP6中的CESM2-WACCM模式逐日资料,预估未来2020—2099年SSP2-4.5、SSP3-7.0和SSP5-8.5三种不同排放情景下北半球对流层顶附近反气旋型Rossby波破碎(Anticyclonic Rossby Wave Breaking, AWB)的空间分布、发生频率、水平尺度、对称结构及其长期趋势。总体而言,未来四个季节AWB都在北太平洋和北大西洋有高频区。夏季北太平洋高频区发生频数显著多于北大西洋高频区,其他三季相反。两高频区在三种不同情景下,AWB物质经向输送通常以对称输送为主,但北太平洋区内冬、春、秋三季在SSP2-4.5情景下AWB物质向极净输送,北大西洋区内夏季在SSP2-4.5和SSP5-8.5情景下AWB物质向赤道净输送。未来的长期趋势显示,两高频区内各季节的AWB发生频数、水平尺度和物质向极输送主要呈减小(减少)趋势,且温室气体排放量越大,减小趋势越显著。在SSP5-8.5情景下,北太平洋夏季AWB总面积变化趋势为-365.5个1°×1°标准经纬度网格/10 a,该变化由区域内AWB平均尺度减小(-2.7个标准化网格/10 a)和发生频率减少(-1.9个/10 a)共同导致;该区域的向极输送率变化率为-0.016 5/10 a。北大西洋秋季AWB发生频数变化率为-2.3个/10 a,导致其总面积则以-440.4个标准化网格/10 a的速度减小。  相似文献   

14.
基于CMIP5中的5个全球气候模式统计降尺度的降水、最高和最低气温等数据,利用标准降水蒸发指数(SPEI)和强度-面积-持续时间(IAD)方法识别全球升温1.5℃与2.0℃情景下中亚地区干旱事件,结合30 m分辨率土地利用数据,探讨中亚干旱事件的演变及耕地暴露度变化。结果表明:相比基准期(1986—2005年),中亚地区的降水和潜在蒸发量均有所增加;全球升温1.5℃与2.0℃情景下,中亚地区的干旱事件频次、强度和面积均将增加,其中重旱和极旱事件的频次和影响面积大幅上升,而中旱事件的频次和影响面积持续下降;1986—2005年中亚地区年均干旱耕地暴露度约11.5万km2,全球升温1.5℃和2.0℃情景下,干旱耕地暴露度将分别上升到17.9万km2和28.6万km2,且暴露在极旱下的耕地面积增加最明显。全球升温1.5℃与2.0℃情景下,增加的干旱事件将会严重威胁当地农业生产和粮食安全,中亚地区需对干旱事件采取长期的减缓与适应措施。  相似文献   

15.
《高原气象》2021,40(3):547-558
基于地面气象站观测资料,采用偏差订正后的国际耦合模式比较计划第六阶段(CMIP6)中情景齐全的5个气候模式,评估气候模式对1995-2014年黄河上游降水的模拟能力,并预估了7个SSP-RCP情景下黄河上游2021-2040年(近期)、2041-2060年(中期)、2081-2100年(末期)的降水变化趋势。结果表明:(1)多模式集合平均能够较好地模拟黄河上游降水年内分布特征,并且能够模拟出黄河上游降水南多北少的空间格局,模式数据与观测值的空间相关系数达0.9以上,CMIP6多模式集合对黄河上游降水时空变化特征具有较强的模拟能力;(2)21世纪黄河上游年降水呈显著增加趋势,伴有明显的年代际波动。相比基准期(1995-2014年),SSP1-1.9和SSP1-2.6情景下21世纪黄河上游年降水呈现先增加后减缓的特征,近期到中期降水增幅加大,中期到末期降水增幅减缓;SSP2-4.5、SSP3-7.0和SSP5-8.5下,年降水增幅从近期到末期持续增加;而SSP4-3.4与SSP4-6.0下,21世纪近期降水有所下降,中期出现拐点,随后持续增加。空间上,降水增加幅度较大的区域主要集中在降水较少的黄河沿以上区域和兰州至头道拐之间的区域;(3)21世纪黄河上游各季降水总体表现为波动上升趋势,增速因情景和季节而异。除SSP4-6.0情景,总体上表现出高辐射强迫情景降水变化趋势大于低辐射强迫情景;冬季增幅最大,夏季增幅最小,趋势均通过0.1显著性水平;空间上,春秋两季降水增幅高值中心在黄河沿以上区域和兰州至头道拐之间区域,增幅低值中心在黄河沿至兰州之间;冬季降水增幅高值中心位于兰州至头道拐之间的区域,降水增幅相对较低的区域在黄河沿至兰州之间的区域;夏季降水除SSP4-3.4和SSP4-6.0情景在21世纪近期黄河上游大部较基准期有所下降外,其余情景下增幅高值区在黄河沿以上区域。  相似文献   

16.
利用CMIP 5全球气候模式、RegCM 4区域气候模式数据集和中国东北三省162个气象站降水观测资料,评估了CMIP 5和RegCM 4模式对中国东北三省降水的模拟能力,并对RCP 4.5和RCP 8.5温室气体排放情景下东北三省未来降水的变化进行了预估。结果表明:CMIP 5和RegCM 4模式均能较好地模拟东北三省年及四季降水量的变化,可再现东北三省降水量由东南向西向北递减的空间分布形势,但模拟的降水中心偏北,模拟的降水强度偏强;两个模式对夏季降水的模拟优于冬季,对冬季降水的模拟存在较大偏差。总体而言,全球气候模式CMIP 5对东北三省降水的模拟结果较好。对东北三省降水量的预估表明,在RCP 4.5和RCP 8.5情景下,全球气候模式CMIP 5预估东北三省年和四季降水量均呈不同程度的增加,其中对冬季降水量预估的偏差百分率增幅最大。在RCP 8.5情景下,东北三省降水量增幅显著,预估未来东北三省降水增加量基本呈由南向北逐步递减的分布,降水偏差百分率基本呈由西南向东北递减的分布。在RCP 4.5情景下,东北三省降水量增幅较小,预估未来东北三省降水量总体呈由东南向西北递减的分布,降水偏差百分率基本呈由西向东递减的分布。  相似文献   

17.
使用1961—2020年的观测数据和2021—2080年的模式预估数据,首先分析了云南初夏干燥度指数(aridity index,AI)的演变特征和影响因子相对贡献,然后采用国际耦合模式比较计划第六阶段(CMIP6)中的20个全球模式,对SSP1-2.6、SSP2-4.5以及SSP5-8.5情景下云南初夏未来干湿变化进行了预估研究。结果表明:(1) 1961—2020年云南初夏气候整体湿润,但为变干燥的趋势,有明显的年代际变化特征,1960s、1970s以及2000s气候相对湿润,其余年代相对干燥,2000s(2010s)为1961年以来最湿润(干燥)的10年。(2) 2021—2080年在3种排放情景下,云南初夏气候较1995—2014年均为变干燥的趋势,SSP1-2.6、SSP2-4.5以及SSP5-8.5情景下,AI分别减少13.9%、17.9%以及24.9%,西南部将可能是湿润度降幅最大值中心。(3) 1961—2020年,降水对云南初夏气候干湿变化的贡献大于潜在蒸散量;而2021—2080年,潜在蒸散量对气候变干燥的贡献大于降水量,且随排放情景的增高和时间推移,其贡献将逐渐增大。  相似文献   

18.
根据共享社会经济情景(SSPs)分为“双碳”路径(SSP1-1.9、SSP1-2.6、SSP2-4.5、SSP4-3.4、SSP4-6.0)和“高碳”路径(SSP3-7.0、SSP5-8.5)。在碳达峰(2028—2032年)和碳中和(2058—2062年)两个时期,采用5个气候模式,7个情景驱动SWAT水文模型,分析赣江流域径流演变特征,主要结论如下:1961—2017年赣江流域观测到的年均气温以0.17℃/(10 a)的速率呈显著上升趋势(p<0.01),降水以17 mm/(10 a)的速率呈不显著上升。“双碳”和“高碳”路径下,2021—2100年赣江流域均呈现暖湿态,气温持续变暖,降水有所增加;碳达峰、碳中和时期,“双碳”路径下年径流呈现增加趋势;“双碳”路径下,月径流在汛期呈现增加趋势,枯水期在SSP1-1.9、SSP1-2.6、SSP2-4.5、SSP4-3.4下呈现增加趋势,在SSP4-6.0下呈现减少趋势。“双碳”路径下极端水文事件强度将可能小于“高碳”路径。  相似文献   

19.
“一带一路”区域未来气候变化预估   总被引:1,自引:0,他引:1       下载免费PDF全文
利用耦合模式比较计划第5阶段(CMIP5)提供的18个全球气候模式的模拟结果,预估了3种典型浓度路径(RCP2.6、RCP4.5、RCP8.5)下“一带一路”地区平均气候和极端气候的未来变化趋势。结果表明:在温室气体持续排放情景下,“一带一路”地区年平均气温在未来将会持续上升,升温幅度随温室气体浓度的增加而加大。在高温室气体排放情景(RCP8.5)下,到21世纪末期,平均气温将普遍升高5℃以上,其中北亚地区升幅最大,南亚和东南亚地区升幅最小。对于降水的变化,预估该区域大部分地区的年降水量将增加,其中西亚和北亚增加最为明显,而且在21世纪中期,RCP2.6情景下的增幅要比RCP4.5和RCP8.5情景下的偏大,而在21世纪后期,RCP8.5情景下降水的增幅比RCP2.6和RCP4.5情景下的偏大。未来极端温度也将呈升高的趋势,增温幅度高纬度地区大于低纬度地区、高排放情景大于低排放情景。而且在高纬度区域,极端低温的增暖幅度要大于极端高温的增幅。连续干旱日数在北亚和东亚总体呈现减少趋势,而在其他地区则呈增加趋势。极端强降水在“一带一路”区域总体上将增强,增强最明显的地区位于南亚、东南亚和东亚。  相似文献   

20.
使用基于动力降尺度和统计降尺度方法得到的RCP4.5情景下的6.25 km高分辨率联合降尺度预估数据集,对长江经济带未来极端气候事件及其造成的风险展开评估和预估。结果表明:降尺度预估数据能较好的再现各极端温度指数和大部分极端降水指数的空间分布,但一些极端降水指数的偏差略大。未来长江经济带极端热事件将增加,冷事件减少;长江中游东部和下游的极端降水事件将增加,上游地区东南部发生干旱事件的可能性大。长江经济带以及上游、中游和下游3个分区的高温事件和强降水事件的国内生产总值(GDP)暴露度都将增加;人口暴露度呈先增后降的变化趋势。高温事件的GDP暴露度的分布因子和非线性因子的贡献同样重要,人口暴露度中分布因子的影响更大;强降水事件的暴露度主要取决于GDP或人口分布因子。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号