首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
对于大气中的水还有一点是我们必须了解的,这就是以水汽形态存在的水的数量,它取决于空气的温度。由于水汽是一种气体,我们可采用测气压的方法来测量它;还可以用另一种方法来确定在一定温度下可能含有的最大水汽量,即用每立方米空气中所含有的水汽质量(通常用克/米~3)来表示。在一定温度下,空气的最大水汽含量称为饱和水汽量。实际的含量通常是小于饱和值,但偶尔也出现大于饱和值的情况(可是,这时水汽可以通过凝结转变成液态水。饱和值仅说明可能的最大水汽含量。而云既含有水,又含有水汽)。气温越高,空气能够含有的水汽越多,其饱和值也就越大。下表给出饱和值变化的大致情况。表中克/米~3是一种表示水汽  相似文献   

2.
从1996年6月20日起,中央气象台在中央电视台晚间新闻节目中发布北京、上海、广州等十城市湿度预报。可见,湿度愈来愈受到人们的普遍关注。天气预报中的相对湿度,是指空气中实有水汽含量与同样温度条件下饱和水汽含量的比值,用百分比来表示。相对湿度能说明空气中的干湿程度。相对湿度若在100%时,表示空气已达饱和。百分数愈小,表示空气愈干燥。 空气中水汽在末饱和时肉眼是观察不到的,要通过仪器测定和计算才能得到。我国气象台(站)发布的相对湿度,是从百叶箱中干、湿球温度的差值计算(查表)得到的。目前电视天气预报中播出的是第二天02时和14时的相对湿度,近似表示一天中湿度的最大和最小值。  相似文献   

3.
一、前言在进行地面气象观测和高空探测时,气温和水汽压的关系非常密切,而且两者都是基本的气象要素. 设与水面处于热力学平衡时的水汽压用E_w(hPa)表示,且将这时的绝对温度用T(°K)表示,则两者的关系式可由世界气象组织技术规范(WMO Technical Regulation 1979)附录A所示的改进了的Goff Gratch(1945)经验公式表示:  相似文献   

4.
三种大气可降水量推算方法结果的比较分析   总被引:3,自引:2,他引:1  
向玉春  陈正洪  徐桂荣  陈波  程亚平 《气象》2009,35(11):48-54
以湖北省为例,分别用气象探空资料累加计算、地面气象资料推算(又有两种)、地基GPS探测资料反演等三种方法计算出该省空中水汽资源含量,并以探空法计算的水汽资源含量为基准来评估其他两种方法计算结果的偏差情况.结果表明:(1)与探空法计算结果相比,地面法计算结果偏小,恩施、宜昌、武汉等3站年平均空中水汽资源含量分别只偏小4.7%、2.9%、5.4%,且两种推算方法计算的月空中水汽资源含量变化趋势一致;(2)宜昌站GPS法比探空法计算结果偏大5.6%,同期地面法比探空法偏小3.5%;(3)对于有降水日的有效空中水汽资源,地面法、GPS法推算的整层水汽含量与探空法计算结果分别相差-1.4%和8.4%.可见地面法和GPS法推算空中水汽资源精度均比较高,可满足空中水汽资源推算要求,且站点多,从而可有效弥补探空站少的不足.总体上GPS法推算空中水汽资源精度略低于地面法,还可在今后应用中进一步订正优化.  相似文献   

5.
利用2016年12月1日~2017年11月30日,地基微波辐射计、L波段探空资料和地面常规气象资料,对四川盆地的水汽和云液态水进行了初步分析。结果表明:(1)探空与微波辐射计反演的水汽含量差值为0.558cm,相关系数为0.787,且通过了α=0.01显著性检验,微波辐射计反演的水汽含量是可信的。(2)基于地基微波辐射计分析四川盆地水汽和云液态水含量的变化特征,可以得出,夏季水汽含量最多,秋季云液态水含量最多;最大值出现在夜晚,最小值出现在白天,夜晚值大于白天。水汽含量和云液态水含量最大值和最小值时间间隔秋季最长(均为16小时),冬季最短(分别为9小时、10小时);水汽含量日较差在秋季最大(1.096cm),冬季最小(0.489cm),云液态水含量日较差在夏季最大(0.908mm),冬季最小(0.311mm)。水汽含量与降水、温度的月变化特征为显著性正相关,相关系数分别为0.842和0.915;与温度日变化特征在春、秋季的11:00~次日01:00为显著性正相关,白天相关性大于夜晚,在夏季01:00~13:00为显著性负相关,日出前相关性最高。(3)水汽和云液态水含量在降水过程开始前1~2h有明显的波动上升,降水结束后,水汽和云液态水含量迅速减少,水汽和云液态水的变化特征对降水天气的预报具有指示意义。   相似文献   

6.
探空、地面及卫星资料反演水汽含量的比较   总被引:1,自引:0,他引:1  
利用探空、地面等常规探测资料及卫星遥感资料计算了我国中西部地区2007年6月—2008年5月间水汽含量的空间分布和时间演变,结果显示:由探空资料计算的整层大气水汽含量的空间变化,总体形势是,纬度低的地区水汽含量多,纬度高的地区水汽含量少;各探空站上空水汽分布的季节演变规律比较一致,夏季水汽含量最大,冬季最小,春秋季节基本相当。根据探空资料建立地面水汽压与大气总水汽量的经验关系,利用地面站资料确定水汽分布,与同时次探空站资料估算的水汽场相比,两者分布趋势基本一致。利用FY-2C卫星的可见光和红外分裂窗通道资料,建立反演大气水汽含量的回归关系式,与探空资料计算的结果相比,总体上变化趋势较一致。  相似文献   

7.
七、湿度计算和编报如果露点温度、相对湿度和水汽压为缺测,用120为指示在750行分别存入R、U、E单元,若干球缺测,让温度露点组电码存储单元L$置空.转126行用毛发读数计算相对湿度子程序.126行如条件成立(O<3)表示用干湿球观测,则返回后转向780行,露点温度、水汽压和相对湿度因不能计算,所  相似文献   

8.
水汽是一种重要的大气成分,是各种大气现象的总根源,在各种时空尺度的大气过程中扮演着重要角色。水汽在地球水循环中发挥着关键的作用,尤其与雷暴等局地天气的发生和发展有密切的关系。水汽观测对于天气、气候研究和天气预报业务都至关重要。目前在气象学中探测大气水汽含量的方法主要有两种:(1)无线电探空技术。即通过施放探空气球,收集有关温度、气压、湿度等气象因子来计算水汽含量。常规水汽监测是通过相距上百千米的气象站每天放两次探空气球进行探测。这一资料的主要局限性是取决于风场;测站密度过稀、相邻两次探测之间间隔时间过长,…  相似文献   

9.
能量天气分析预报方法在台站应用已取得一定的成效,在只应用于单站的局地天气预报时还可以进一步简化。一、总温度的简化计算单位质量空气的总能量如以总温度表示,对单站地面的简化公式为T_t=T 2.5q,如用本站水汽压(e)表示,可写成:  相似文献   

10.
河北地区大气水汽含量分布特征及其变化趋势的初步分析   总被引:1,自引:0,他引:1  
利用河北邢台、张家口两个常规探空站1974—2000年高空气象要素资料,计算了大气中的水汽含量,分析了河北区域大气水汽含量的27年变化趋势,讨论了河北区域大气水汽含量的时空分布特征。计算结果表明,河北地区大气水汽含量的年变化总体上呈现了微弱的增加趋势,但变率不大;河北地区大气水汽含量四季变化明显,其中,夏季水汽含量最大,秋季次之,春季再次,冬季最小;90%以上的水汽集中在对流层中下部,即500hPa以下;与同期相比,河北南部大气水汽含量大于北部地区,年平均大气水汽含量自南向北递减率为1.94mm/纬距。  相似文献   

11.
一、引言干湿球温度表是用来取得大气中水汽含量的最通用的仪器之一。它是一个比较简单的仪器,只要对湿球维护得当,便可以得出很好的结果。它的缺点之一是对水汽压、露点和相对湿度的计算比较复杂,且难于用小型电子计算器或微信息处理机进行。本文提出了可用于这些计算的各种方程,并且说明了它们相对于戈夫-格拉奇(Goff-Gratch)公式的计算精度。应当注意下文涉及到在这些方程中所使用的符号:exp_(10)x≡10~x;“Ig”指以10为底的对数;“In”指以e  相似文献   

12.
檀成龙  檀佳 《干旱气象》2022,(4):710-719
中国陆地的多年平均降水量和空中水汽含量都是从东南沿海向西北内陆递减,二者存在很好的空间相似性,研究二者之间的拟合关系,就有可能发现比较好的统计规律,找到空中水汽对多年平均降水量影响研究的突破口。基于这种空间相似性,对中国121个探空站1971—2000年平均降水量(P)与空中水汽含量(W)的研究发现,两者高度正相关,拟合公式为P=44.385(W-2.66),R^(2)=0.8293。对累年各月平均降水量与空中水汽含量的研究发现,两者也是高度正相关,以上成果通过了复核验证。空中水汽含量乘以研究区域面积是空中水汽的存量,即空中水汽折算的液态容量。多年平均降水量的影响因素很多,拟合公式忽略了次要因素,找到了主要影响因素,即空中水汽存量,它的量化参数是空中水汽含量。当空中水汽含量大于等于14 mm时,所有站点的多年平均降水量均大于等于400 mm,多年平均空中水汽含量大于等于14 mm是多年平均降水量大于等于400 mm的充分不必要条件。  相似文献   

13.
利用覆盖北京地区的地基GPS水汽监测网数据反演的地基GPS大气柱水汽含量 (precipitable water vapor, PWV),分析了2009年7月3次暴雨天气过程中大气柱水汽含量的水平分布特征;利用高空、地面常规气象资料以及加密气象自动站观测资料计算地面和高空比湿,结合温度、风等物理量分析3次暴雨天气过程中的大尺度水汽输送和中尺度局地辐合作用;对最大降水强度以及降水量的时间变化的分析表明:3次降水落区分布特征与降水前期大气柱水汽含量高值的水平分布较为一致;大气柱水汽含量曲线变化特征与各尺度天气系统造成的水汽输送和水汽辐合密切相关,大气柱水汽含量的大小与水汽来源密切相关;降水前4小时内大气柱水汽含量出现陡增,线性增速大于1.1 mm/h,最大降水强度出现在大气柱水汽含量峰值出现后的1~2 h。  相似文献   

14.
我国上空的水汽含量及其气候学估算   总被引:2,自引:0,他引:2       下载免费PDF全文
该文根据中国高空气候标准值 (1971—2000年) 逐月数据集124个探空站资料,计算出各站的整层大气水汽含量,并绘制出年水汽含量分布,除青藏高原地区外,其余地区基本上呈纬向分布。继而配合我国地面气候标准值逐月数据集的水汽压和地面气压数据,在对水汽压进行相应的订正后,将其与整层水汽含量进行相关分析,拟合出全国普遍适用的、统一的或分月的线性经验表达式。拟合结果与实测值之间的均方根误差为0.25 cm。文中还详细讨论了多项式不同次数对拟合结果的影响,结果表明:与数据点走向拟合较好的多项式,次数高其结果并非误差最小。利用经地面气压订正的地面水汽压 (x) 与整层水汽含量 (y) 的拟合公式为y=0.185x+0.093,其最大优点是站点无论高低、不分地域普遍适用。  相似文献   

15.
利用兰州大学半干旱气候与环境观测站2007~2010年夏季地基12通道微波辐射计观测数据,对半干旱区降水前和非降水过程的水汽含量和云液态水含量的变化特征进行分析。结果表明:(1)水汽含量达到2.20 cm可以作为半干旱区降水预报的阈值。水汽含量随时间变化比较平缓,变率约为0.06 cm/h,且降水前24 h内水汽含量均2.20 cm;或者水汽含量开始较小,但降水前水汽含量随时间出现拐点,之后变率开始增加,可达0.19 cm/h以上,进而使水汽含量2.20 cm。这2种情况均可预报可能有降水产生;(2)云液态水含量达到0.20 mm可以作为降水预报的阈值,且降水前云液态水含量随时间变化出现拐点,之后变率开始增加,可以预报1 h后可能有降水。  相似文献   

16.
利用2000-2009年南昌、赣州两个探空站资料,通过计算大气水汽含量和水汽通量,对江西省空中水汽含量变化、分布、水汽输送等特征进行了分析。结果表明,近10年来,江西省平均大气水汽含量为35.04 kg/m2,水汽含量呈下降趋势。水汽含量夏季丰富,冬季匮乏,2-6月是江西大气中水汽含量主要增长期,最大值出现在8月,最小出现在1月或12月;空间上呈现南多北少分布。水汽输送在春、冬季以纬向输送为主,夏、秋季经向和纬向输送量基本相当。  相似文献   

17.
南海热带气旋迅速加强环境场因子的影响分析   总被引:1,自引:0,他引:1  
使用中国气象局上海台风研究所整理的热带气旋最佳路径资料,对1979-2012年间南海海域热带气旋迅速加强的时空分布特征进行分析。结果表明,南海热带气旋迅速加强主要出现在夏秋两季,其中9月频数最高,空间分布主要集中在海南岛东南侧以及南海中部远离大陆的海域。基于ERA-Interim再分析资料,确定了一种环境因子的新阈值计算方法,计算出风垂直切变、高(低)层散度、低层垂直涡度、低层水汽通量散度、对流层中层相对湿度、海表面温度和海洋热含量8种环境场因子有利于迅速加强的阈值条件,结果表明风垂直切变、低层辐合、低层水汽辐合是影响迅速加强的主要因子。强台风以下级别的南海热带气旋级别越高迅速加强概率越大,迅速加强时满足阈值的因子个数也越多。除海洋热含量以外的7个因子中,满足阈值的因子个数为6个(热带风暴级别)或5个(强热带风暴级别、台风和强台风级别)时迅速加强概率最大。这些对提高南海热带气旋强度突变的预报有一定指导意义。  相似文献   

18.
一、思路 我们知道,气压、水汽压是大气中的物理量,在大、暴雨天气过程之前,这两者反映是:气压低、水汽压大,用直角坐标图表示,二者方向相反,如14时的压、温、湿曲线图,能否变方向相反为方向相同,把二者结合为一个要素来分析,距平值给我们解决了这一问题,在气压方面取(P-P)距平,而水汽压则取(e-e)两者距平相加(p-p) (e-e),为简易起见,用“F”表示。  相似文献   

19.
利用青海省4个探空站和NCEP格点站的大气水汽含量及对应地面站温度和降水资料,对比分析青海高原不同气候区的大气水汽含量及其与气温、降水之间的相互关系。结果表明:青藏高原地区NCEP水汽含量与L波段探空估算的水汽含量变化趋势基本一致。4站大气水汽含量的季节和旬变化特征有明显差异,测站海拔越低大气水汽含量越高且与所处地理位置和地形有关,测站海拔越高时大气水汽含量与大气环流和天气系统密切相关。大于10 mm降水与水汽含量呈正比关系,水汽转化为降水的转化率较高;小降水和无降水与水汽含量关系不明确,水汽转化为降水的转化率较低。虽然降水与温度和水汽含量有一定的正比关系,但青海高原地区降水的产生过程复杂,因而不能用温度和大气水汽含量完全确定能否产生降水。  相似文献   

20.
本文是描述气象条件与稻叶气孔阻力关系的大田试验结果。在水稻的三个主要生育期,我们用气孔计测定叶片气孔阻力的大小。在晴天测得气孔阻力(r_s)与太阳辐射强度(S_t)的日变化有关,以及与叶片-空气的水汽浓度差(HD)(简称叶-气水汽浓度差,下同)有关。我们认为水稻叶片背面和正面的气孔阻力相等。这表明稻叶两面的水汽通量也是等同的。无量纲气孔阻力[r_s/r_m·k(HD)~2]和太阳辐射强度(S_t)之间的关系很接近双曲函数。HD和[r_s/r_m(1+S_(t,m)/S_t)]之间的关系可以HD的二次函数表示。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号