首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The apparent heat sources and apparent moisture sinks, and large-scale wind, temperature as well as the surface pressure fields during the summer monsoon onset over the northern South China Sea (SCS) in 1998 were diagnosed. The results suggested that there was a kind of positive feedback mechanism between large-scale circulations and mesoscale convective systems (MCSs). Before the monsoon onset, the largescale background provided favorable synoptic and dynamic conditions for the summer monsoon onset and the formation of mesoscale convective activities, whereas after the summer monsoon onset, occurrence of the persistent and extensive mesoscale convective activities produced obvious feedback effect on large-scale circulations. Because of the release of latent heating produced by enhanced convective activities, the intense atmospheric heating appeared over the northern SCS, which resulted in: (1) the meridional temperature gradient over the SCS reversed from upper-level to low-level and then the large-scale circulations were changed seasonally;(2) correspondingly, the surface pressure over the northern SCS deepened continually and formed a broad monsoon trough and the obvious pressure-fall areas, thus making the subtropical high move out of the SCS eventually;(3) with the development of the low pressure circulations in the middle and low troposphere, the MCSs further enhanced and extended southward, which was conducive to the SCS monsoon onset and maintenance over the middle and southern SCS;and (4) the deepening of monsoon trough facilitated the monsoon flow and moisture transport on its southern side, thus the monsoon onset reaching peak period.  相似文献   

2.
1. Introduction The strong convective weather is developed under the favorable large-scale circulations, which demon- strated the large-scale weather system's controlling ef- fect on strong convections. Once the convection is formed, it will produce the feedback effect on the large-scale environmental conditions by transporting momentum, heat and moisture upward, and influence or change the environmental wind, humidity, tem- perature, atmospheric stratification fields and so on, thus forming t…  相似文献   

3.
1. Introduction China is located in the East Asian monsoon re- gion. Every year's weather and climate in this region is deeply affected by the monsoon activities. Es- pecially, during flooding season (May to September), the summer monsoon controls large-scale precipitation patterns, the movement of seasonal rain belt and oc- currence of drought/flood disasters. The Asian mon- soon can be divided into two systems (Tao and Chen, 1987). As a major component and its unique location, the South …  相似文献   

4.
Initiation Mechanism of Meso-β Scale Convective Systems   总被引:16,自引:0,他引:16  
With the aid of the Penn State-NCAR MM5 model, the initiation mechanism of meso-β scaleconvective systems (MCS) is investigated on the basis of simulation of the temporal and spatialthermodynamic structure of the MCS that occurred in Wuhan, Hubei, China and its surrounding area on 21July 1998. Using the PV inversion method, comparisons among the upper-, middle-, and low-leveltropospheric potential vorticity (PV) perturbations, as well as their effects on the initiation of MCS, indicatethat the low-level tropospheric PV perturbations play an important role in the triggering of MCS. Furtheranalysis reveals that the interaction between the southwest low-level jet and the gravity-inertia wave indeedinitiates MCS in the conditionally unstable ambient atmosphere.  相似文献   

5.
Summary  A mesoscale convective system (MCS) case that developed over the Yellow Sea (12–13 July 1993) is studied by using a 23-level, 30 km-mesh Penn State/NCAR mesoscale model MM5. This MCS was generated in northern China, south of the Changma front, in a convectively unstable environment, under the influence of a short-wave trough accompanied by a marked cold vortex aloft. The model with all model physics (refereed to as CNTL) captured the major features of this MCS. A mesoscale low-level jet (mLLJ), with a horizontal scale of a few hundred km, developed within the MCS. Available wind data support the realism of this mLLJ. This mLLJ not only transports convectively unstable air directly toward the MCS but is also responsible for a strong low-level convergence in the MCS. At 200 hPa, an anticyclonic northwesterly flow with a relatively high wind speed core on the east of MCS was simulated. This relatively high-speed flow can be regarded as a mesoscale upper level jet (mULJ), acted as an upper outflow over the MCS. Low-level convergence on the left-front of the mLLJ and upper divergence in the right-rear of the mULJ creates a strong upward motion (≅ 40 cm s−1) in the MCS. Heavy precipitation up to 45 mm between 1800–2100 UTC was observed after this MCS landed on the southern Korean Peninsula. The CNTL run captured this heavy rainfall event. A maximum rainfall of 50 mm 3 h−1 was simulated. In another experiment, with surface sensible and moisture fluxes withheld (NOSF), the 3-h simulated rainfall was decreased to 30 mm. Less latent heat released in the NOSF led to a weaker MCS and mLLJ. The concurrent surface fluxes sustained a high low-level moisture field over the Yellow Sea, which helped the development of the MCS and enhanced its precipitation in this case. Received January 8, 1999  相似文献   

6.
Summary Mesoscale Convective Systems (MCSs) data registers from June to December during 1990–94 were obtained from the Spanish National Meteorological Institute (INM). Fifteen Mesoscale Convective Complexes (MCCs) were identified through this database. Most of the MCCs developed during the last week of September. The dominant synoptic patterns related to the mesoscale systems were cold fronts at the surface with warm and moist low-level cores, and cut-off low or deep trough throughout the middle and upper levels. These synoptic patterns were found in all the fifteen cases studied.The hourly centroid location of each MCC was used to trace their tracks, which followed a general direction towards the E or NE in almost all cases. These trajectories are clearly related to the synoptic patterns found. Finally, two MCCs chosen as representative of their evolution are described and the related physical processes are discussed.With 14 Figures  相似文献   

7.
Numerical simulation of meso-β-scale convective cloud systems associated with a PRE-STORM MCC case has been carried out using a 2-D version of the CSU Regional Atmospheric Modeling System (RAMS) nonhydrostatic model with parameterized microphysics. It is found that the predicted meso-γ-scale convective phenomena are basically unsteady under the situation of strong shear at low-levels, white the meso-β-scale convective system is maintained up to 3 hours or more. The meso-β-scale cloud system exhibits characteristics of a multi-celled convective storm in which the meso-γ-scale convective cells have lifetime of about 30 min. Pressure perturbation depicts a meso-low after a half hour in the low levels. As the cloud system evolves, the meso-low inten-sifies and extends to the upshear side and covers the entire domain in the mid-lower levels with the peak values of 5-8 hPa. Temperature perturbation depicts a warm region in the middle levels through the entire simulation period. The meso-γ-scale warm cores with peak values of 4-8oC are associated with strong convective cells. The cloud top evapo-ration causes a stronger cold layer around the cloud top levels.Simulation of microphysics exhibits that graupel is primarily concentrated in the strong convective cells forming the main source of convective rainfall after one hour of simulation time. Aggregates are mainly located in the stratiform region and decaying convective cells which produce the stratiform rainfall. Riming of the ice crystals is the predominant precipitation formation mechanism in the convection region, whereas aggregation of ice crystals is the predominant one in the stratiform region, which is consistent with observations. Sensitivity experiments of ice-phase microphysical processes show that the microphysical structures of the convective cloud system can be simulated better with the diagnosed aggregation collection efficiencies.  相似文献   

8.
The real time operational severe convective weather forecast experiment carried out during May to July in 1990 over the Changjiang Delta is briefly described. The heavy rainfall and severe conveetive weather forecast worksheets for the Changjiang Delta have been proposed and used in the daily forecasting. Results show that the ability of 0-12h convective weather prediction has been improved significantly after the development of the forecast methods and the establishment of a mesoscale forecast base at Shanghai Meteorological Center during 1986 to 1990.Three cases of convective weather systems (meso-alpha, meso-beta, meso-gamma) during the experiment period are described and discussed.  相似文献   

9.
The multi-scale weather systems associated with a mei-yu front and the corresponding heavy precipitation during a particular heavy rainfall event that occurred on 4 5 July 2003 in east China were successfully simulated through rainfall assimilation using the PSU/NCAR non-hydrostatic, mesoscale, numerical model (MM5) and its four-dimensional, variational, data assimilation (4DVAR) system. For this case, the improvement of the process via the 4DVAR rainfall assimilation into the simulation of mesoscale precipitation systems is investigated. With the rainfall assimilation, the convection is triggered at the right location and time, and the evolution and spatial distribution of the mesoscale convective systems (MCSs) are also more correctly simulated. Through the interactions between MCSs and the weather systems at different scales, including the low-level jet and mei-yu front, the simulation of the entire mei-yu weather system is significantly improved, both during the data assimilation window and the subsequent 12-h period. The results suggest that the rainfall assimilation first provides positive impact at the convective scale and the influences are then propagated upscale to the meso- and sub-synoptic scales.
Through a set of sensitive experiments designed to evaluate the impact of different initial variables on the simulation of mei-yu heavy rainfall, it was found that the moisture field and meridional wind had the strongest effect during the convection initialization stage, however, after the convection was fully triggered, all of the variables at the initial condition seemed to have comparable importance.  相似文献   

10.
A case study of the convectively driven monsoon boundary layer has been carried out using the aerological observations at four stations in the region of monsoon trough during Monsoon Trough Boundary Layer Experiment (MONTBLEX) 1988. The Convective Boundary Layer (CBL) in the region of monsoon trough did not show double mixing line structure. A single mixing line representing the CBL with different stabilities with respect to the convective activities was observed.  相似文献   

11.
Sun et al., (1983) have given some favourable environmental conditions and have shown that there are four common features in convective rainstorms. In this paper, an important process of evolution of cloud systems was revealed when heavy rainfall occurred based on the diagnostic analysis of heavy rainfall cases. When the different cloud systems merge into a large one, the mesoscale heavy rainfall occurs and enhances. In other words, the process of evolution of cloud systems emphasized in this paper is the process of interaction between two cloud systems when the heavy rainfall occurs. The favourable environmental condition is also investigated.  相似文献   

12.
Radar data, which have incomparably high temporal and spatial resolution, and lightning data, which are great indicators of severe convection, have been used to improve the initial field and increase the accuracies of nowcasting and short-term forecasting. Physical initialization combined with the three-dimensional variational data assimilation method(PI3 DVar_rh) is used in this study to assimilate two kinds of observation data simultaneously, in which radar data are dominant and lightning data are introduced as constraint conditions. In this way, the advantages of dual observations are adopted. To verify the effect of assimilating radar and lightning data using the PI3 DVar_rh method, a severe convective activity that occurred on 5 June 2009 is utilized, and five assimilation experiments are designed based on the Weather Research and Forecasting(WRF) model. The assimilation of radar and lightning data results in moister conditions below cloud top, where severe convection occurs; thus, wet forecasts are generated in this study.The results show that the control experiment has poor prediction accuracy. Radar data assimilation using the PI3 DVar_rh method improves the location prediction of reflectivity and precipitation, especially in the last 3-h prediction, although the reflectivity and precipitation are notably overestimated. The introduction of lightning data effectively thins the radar data, reduces the overestimates in radar data assimilation, and results in better spatial pattern and intensity predictions. The predicted graupel mixing ratio is closer to the distribution of the observed lightning,which can provide more accurate lightning warning information.  相似文献   

13.
Unification is both necessary and challenging for studying atmospheric particle systems, which are polydisperse systems containing particles of different sizes and shapes. A general framework is proposed to realize the first order generalization. Within this generalized framework, (1) atmospheric particle shapes are unified into self-similar fractals; (2) a self-similar particle is characterized by various power-law relationships; (3) by combining these power-law relationships for a single particle with Shannon’s maximum entropy principle and some concepts in statis-tical mechanics, unified maximum likelihoood number size distributions are of the Weibull form for atmospheric particle systems. Frontier disciplines (e. g., scaling, fractal, chaos and hierarchy) are argued to provide potential “tools” for such unification. Several new topics are raised for future research.  相似文献   

14.
TheVerticalTransportofAirPollutantsbyConvectiveClouds.PartⅢ:TransportFeaturesofDifferentCloudSystemsKongFanyou(孔凡铀)andQinYu(秦...  相似文献   

15.
Three cases of microphysical characteristics and kinematic structures in the negative temperature region of summer mesoscale cloud systems over the eastern Tibetan Plateau(TP) were investigated using X-band dual-polarization radar. The time–height series of radar physical variables and mesoscale horizontal divergence ■ derived by quasi-vertical profiles(QVPs) indicated that the dendritic growth layer(DGL,-20°C to-10°C) was ubiquitous, with large-value zones of KDP(specific differentia...  相似文献   

16.
With the high-speed development of high-powered computer techniques, it is possible that a high-resolution and multi-scale unified numerical model is applied to the operational weather prediction. Some techniques about mesoscale non-hydrostatic numerical weather prediction are addressed, and the impact of the vertical coordinate system is one of them. Based on WRF (Weather Research and Forecasting) model, the influence of vertical coordinates on the non-hydrostatic mesoscale high-resolution model is compared. The results show that the error of various coordinates in lower levels is almost same when we use the geometry height (z) and the pressure (p) to set up a terrain-following coordinate; but the error of the height terrain-following coordinate in higher levels is smaller than that of the pressure terrain-following coordinate. The higher the resolution is, the bigger the error will be. The results of the high-resolution simulation exhibited that the trend of the difference in the two coordinates existed. In addition, the correlative coefficient and standard error are also analysed by the comparison between the forecast fields and the corresponding analysis fields.  相似文献   

17.
1. IntroductionHeavy rain is a kind of severe natural calamitythat influences South China. After decades of years oftests and theoretical exploration by Chinese scientists,significant progresses have been achieved in its predic-tion and basic theoretical studies (Huang, 1986; Xue,1999; Zhou et al., 2003). Currently, the mesoscale nu-merical model has already been employed as one of themajor tools in the prediction and research on heavyrain in South China, promoting considerably the ac-curac…  相似文献   

18.
19.
Based on the research of the convective boundary layer (CBL) temperature field in a convective tank, this paper studies the characteristics of the CBL velocity field in the convective tank. Aluminium powder (400 orders) is used as a tracer particle in the application of the particle image velocimetry (PIV)technique. The experiment demonstrates: the velocity distribution in the mixed layer clearly possesses the characteristics of CBL thermals; the velocity distribution in the top zone of the mixed layer shows entrainment layer characteristics; the vertical distribution of turbulent characteristic variables is reasonable,which is similar to field observations and other tank results; the error analysis demonstrates the validity of aluminium powder, which implies the reliability of the results.  相似文献   

20.
THEEFFECTOFTHEINTERACTIONAMONGMULTI-SCALESYSTEMSANDTHEASYMMETRICDYNAMICANDTHERMODYNAMICSTRUCTUREOFTROPICALCYCLONEONITSTRACKXu...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号