首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The study examines future scenarios of precipitation extremes over Central Europe in an ensemble of 12 regional climate model (RCM) simulations with the 25-km resolution, carried out within the European project ENSEMBLES. We apply the region-of-influence method as a pooling scheme when estimating distributions of extremes, which consists in incorporating data from a ‘region’ (set of gridboxes) when fitting an extreme value distribution in any single gridbox. The method reduces random variations in the estimates of parameters of the extreme value distribution that result from large spatial variability of heavy precipitation. Although spatial patterns differ among the models, most RCMs simulate increases in high quantiles of precipitation amounts when averaged over the area for the late-twenty-first century (2070–2099) climate in both winter and summer. The sign as well as the magnitude of the projected change vary only little for individual parts of the distribution of daily precipitation in winter. In summer, on the other hand, the projected changes increase with the quantile of the distribution in all RCMs, and they are negative (positive) for parts of the distribution below (above) the 98% quantile if averaged over the RCMs. The increases in precipitation extremes in summer are projected in spite of a pronounced drying in most RCMs. Although a rather general qualitative agreement of the models concerning the projected changes of precipitation extremes is found in both winter and summer, the uncertainties in climate change scenarios remain large and would likely further increase considerably if a more complete ensemble of RCM simulations driven by a larger suite of global models and with a range of possible scenarios of the radiative forcing is available.  相似文献   

2.
The daily discharge time series in the lower Danube basin (Orsova) have been considered for the 1900–2005 period. The extreme value theory (EVT) is applied for the study of daily discharges incorporating some covariates. Two methods are applied for fitting the data to an extreme value distribution: block maxima and peaks over thresholds (POT). Using the block maxima approach associated with the use of the generalised extreme value (GEV) distribution, monthly and seasonal maxima of daily discharge for 1900–2005 have been analysed. Separately the monthly maxima of daily discharge for the 1958–2001 was analysed in order to be compatible with atmospheric circulation available from ERA-40. For performing parameter estimation, the maximum likelihood estimation (MLE) method was used. From the three possible types of GEV distribution, a Weibull distribution fits both the monthly and seasonal maxima of the daily discharges very well. The North Atlantic Oscillation (NAO) and the first ten principal components (PC) of the decomposition in multi-variate empirical orthogonal functions (MEOF) of three atmospheric fields (sea level pressure, 500 hPa and 500–1000 hPa thickness) over the Atlantic-European region (ERA-40), have been introduced as covariates. An improvement over the model without the covariate is found by incorporating NAO as the covariate in location parameter, especially for the spring maxima having the NAO as predictor during the winter. Related to atmospheric circulation influence, the most significant results are obtained by incorporating the first 10 PCs of the MEOF in the location parameter of GEV distribution within a month before the month of the discharge level. Regarding the POT approach associated with generalised Pareto distribution (GPD), different thresholds have been tested for daily discharges in the period 1900–2005, where the maxima were fitted by a bounded (or beta) distribution.  相似文献   

3.
广义帕雷托分布在重庆暴雨强降水研究中的应用   总被引:9,自引:2,他引:7  
引进广义帕雷托分布(GPD),借助于现代L-矩估计方法,模拟重庆地区极端降水事件,推算一定重现期的极端降水量分位数。模拟试验表明,基于超门限峰值法(POT)的GPD不但计算简便,而且基本不受原始序列样本量的影响,具有全部取值域的高精度稳定拟合(包括高端厚尾部),与GEV模拟结果相比,GPD具有更高精度和稳定性,更为实用。  相似文献   

4.
Drought is one of the most detrimental natural hazards in Yellow River Basin (YRB). In this research, spatio-temporal variation and statistical characteristic of drought in YRB is studied by using dry spell. Two extreme series, including annual maximum series (AMS) and partial duration series (PDS), are used and simulated with generalized extreme value (GEV), generalized Pareto (GP), and Pearson type III (PE3) distributions. The results show that the northern part is drier than the southern part of YRB. Besides, the maximum dry spell usually starts in October, November, and December. According to the trend analysis, mean maximum length of dry spell (MxDS) shows a negative trend in most stations. From the L-moments and Kolmogorov–Smirnov test method, it can be found that GEV model can better fit AMS while GP and PE3 can better fit PDS. Moreover, the quantiles from optimal model of AMS and PDS depict a similar distribution with values increases from south to north. The spatial distribution of scale and location parameters of GEV model for AMS shows a south-to-north gradient, while the distribution of shape parameter is a little irregularity. Furthermore, based on the linear correlation analysis, there is an evident linear relation between location and scale parameters with mean and standard variation of MxDS, respectively.  相似文献   

5.
Extremes of Daily Rainfall in West Central Florida   总被引:1,自引:0,他引:1  
Annual maxima of daily rainfall data dating from 1901 to 2003 are modeled for fourteen locations in West Central Florida. The generalized extreme value (GEV) distribution is fitted to data from each location. The location parameter of the GEV is formulated as a function of time to adequately describe the extremes of rainfall and to predict their future behavior. We find evidence of non-stationarity in the form of trends for eight of the fourteen locations considered. We quantify the change in extreme rainfall for each location and provide return levels for the years 2010, 2020, 2050 and 2100. We also derive estimates of return levels for daily rainfall and provide a classification of the fourteen locations based on the degree of severity of these estimates. This paper provides the first application of extreme value distributions to rainfall data specifically from Florida.  相似文献   

6.
This study investigates the potential influences of anthropogenic forcings and natural variability on the risk of summer extreme temperatures over China.We use three multi-thousand-member ensemble simulations with different forcings(with or without anthropogenic greenhouse gases and aerosol emissions) to evaluate the human impact,and with sea surface temperature patterns from three different years around the El Ni ?no–Southern Oscillation(ENSO) 2015/16 event(years 2014,2015 and 2016) to evaluate the impact of natural variability.A generalized extreme value(GEV) distribution is used to fit the ensemble results.Based on these model results,we find that,during the peak of ENSO(2015),daytime extreme temperatures are smaller over the central China region compared to a normal year(2014).During 2016,the risk of nighttime extreme temperatures is largely increased over the eastern coastal region.Both anomalies are of the same magnitude as the anthropogenic influence.Thus,ENSO can amplify or counterbalance(at a regional and annual scale) anthropogenic effects on extreme summer temperatures over China.Changes are mainly due to changes in the GEV location parameter.Thus,anomalies are due to a shift in the distributions and not to a change in temperature variability.  相似文献   

7.
Regional frequency analysis and spatial–temporal patterns of precipitation extremes are investigated based on daily precipitation data covering 1960–2009 using the index-flood L-moments method together with some advanced statistical tests and spatial analysis techniques. The results indicate that: (1) the entire Yangtze River basin can be divided into six homogeneous regions in terms of extreme daily precipitation index. Goodness-of-fit test indicates that Pearson type III (PE3, three parameters), general extreme-value (GEV, three parameters), and general normal (GNO, three parameters) perform well in fitting regional precipitation extremes; (2) the regional growth curves for each homogeneous region with 99 % error bands show that the quantile estimates are reliable enough and can be used when return periods are less than 100 years, and the results indicate that extreme precipitation events are highly probable to occur in regions V and VI, and hence higher risk of floods and droughts; and (3) spatial patterns of annual extreme daily precipitation with return period of 20 years indicate that precipitation amount increases gradually from the upper to the lower Yangtze River basin, showing higher risks of floods and droughts in the middle and lower Yangtze River basin, and this result is in good agreement with those derived from regional growth curves.  相似文献   

8.
This study examines the changes in regional extreme temperature in South Korea using quantile regression, which is applied to analyze trends, not only in the mean but in all parts of the data distribution. The results show considerable diversity across space and quantile level in South Korea. In winter, the slopes in lower quantiles generally have a more distinct increase trend compared to the upper quantiles. The time series for daily minimum temperature during the winter season only shows a significant increasing trend in the lower quantile. In case of summer, most sites show an increase trend in both lower and upper quantiles for daily minimum temperature, while there are a number of sites with a decrease trend for daily maximum temperature. It was also found that the increase trend of extreme low temperature in large urban areas (0.80°C decade?1) is much larger than in rural areas (0.54°C decade?1) due to the effects of urbanization.  相似文献   

9.
We report on simulations of present-day climate (1961–1990) and future climate conditions (2071–2100, Special Report on Emissions Scenario A2) over the Caspian sea basin with a regional climate model (RCM) nested in time-slice general circulation model (GCM) simulations. We also calculate changes (A2 scenario minus present-day) in Caspian sea level (CSL) in response to changes in the simulated hydrologic budget of the basin. For the present-day run, both the GCM and RCM show a good performance in reproducing the water budget of the basin and the magnitude of multi-decadal changes in CSL. Compared to present-day climate, in the A2 scenario experiment we find an increase in cold season precipitation and an increase in temperature and evaporation, both over land and over the Caspian sea. We also find a large decrease of CSL in the A2 scenario run compared to the present-day run. This is due to increased evaporation loss from the basin (particularly over the sea) exceeding increased cold season precipitation over the basin. Our results suggest that the CSL might undergo large changes under future climate change, leading to potentially devastating consequences for the economy and environment of the region.  相似文献   

10.
In this article, we examine climate model estimations for the future climate over central Belgium. Our analysis is focused mainly on two variables: potential evapotranspiration (PET) and precipitation. PET is calculated using the Penman equation with parameters appropriately calibrated for Belgium, based on RCM data from the European project PRUDENCE database. Next, we proceed into estimating the model capacity to reproduce the reference climate for PET and precipitation. The same analysis for precipitation is also performed based on GCM data from the IPCC AR4 database. Then, the climate change signal is evaluated over central Belgium using RCM and GCM simulations based on several SRES scenarios. The RCM simulations show a clear shift in the precipitation pattern with an increase during winter and a decrease during summer. However, the inclusion of another set of SRES scenarios from the GCM simulations leads to a less clear climate change signal.  相似文献   

11.
Extreme flood on the Danube River in 2006   总被引:2,自引:0,他引:2  
Causes and features of an extreme flood on the Danube River in spring and summer 2006 are considered. The water levels at some gauge stations on the Middle Danube and at most gauge stations on the Lower Danube exceeded maxima observed during previous 100–130 years. The flood on the Lower Danube lasted from March to July and led to widespread inundations and damage. The flood was caused by melt of large amounts of snow accumulated in the river basin during winter, very warm spring, and abundant rains. In recent decades, the occurrence frequency of extreme hydrological events on the Danube River (large spring-summer floods and catastrophic rainfall freshets) has increased.  相似文献   

12.
Future climate projections of extreme events can help forewarn society of high-impact events and allow the development of better adaptation strategies. In this study a non-stationary model for Generalized Extreme Value (GEV) distributions is used to analyze the trend in extreme temperatures in the context of a changing climate and compare it with the trend in average temperatures.

The analysis is performed using the climate projections of the Canadian Regional Climate Model (CRCM), under an IPCC SRES A2 greenhouse gas emissions scenario, over North America. Annual extremes in daily minimum and maximum temperatures are analyzed. Significant positive trends for the location parameter of the GEV distribution are found, indicating an expected increase in extreme temperature values. The scale parameter of the GEV distribution, on the other hand, reveals a decrease in the variability of temperature extremes in some continental regions. Trends in the annual minimum and maximum temperatures are compared with trends in average winter and summer temperatures, respectively. In some regions, extreme temperatures exhibit a significantly larger increase than the seasonal average temperatures.

The CRCM projections are compared with those of its driving model and framed in the context of the Coupled Model Intercomparison Project, phase 3 (CMIP3) Global Climate Model projections. This enables us to establish the CRCM position within the CMIP3 climate projection uncertainty range. The CRCM is validated against the HadEX2 dataset in order to assess the CRCM representation of temperature extremes in the present climate. The validation is also framed in the context of CMIP3 validation results. The CRCM cold extremes validate better and are closer to the driving model and CMIP3 projections than the hot extremes.  相似文献   


13.
A high resolution regional climate model (RCM) is used to simulate climate of the recent past and to project future climate change across the northeastern US. Different types of uncertainties in climate simulations are examined by driving the RCM with different boundary data, applying different emissions scenarios, and running an ensemble of simulations with different initial conditions. Empirical orthogonal functions analysis and K-means clustering analysis are applied to divide the northeastern US region into four climatologically different zones based on the surface air temperature (SAT) and precipitation variability. The RCM simulations tend to overestimate SAT, especially over the northern part of the domain in winter and over the western part in summer. Statistically significant increases in seasonal SAT under both higher and lower emissions scenarios over the whole RCM domain suggest the robustness of future warming. Most parts of the northeastern US region will experience increasing winter precipitation and decreasing summer precipitation, though the changes are not statistically significant. The greater magnitude of the projected temperature increase by the end of the twenty-first century under the higher emissions scenario emphasizes the essential role of emissions choices in determining the potential future climate change.  相似文献   

14.
In this study, the phase-locking of El Nino Southern Oscillation (ENSO) in a coupled model with different physical parameter values is investigated. It is found that there is a dramatic change in ENSO phase-locking in response to a slight change in the Tokioka parameter, which is a minimum entrainment rate threshold in the cumulus parameterization. With a smaller Tokioka parameter, the model simulates ENSO peak in the boreal summer season rather than in the winter season as observed. It is revealed that the differences in climatological zonal sea surface temperature (SST) gradient and its associated mean state changes are crucial to determine the phase-locking of ENSO. In the simulations with smaller Tokioka parameter values, climatological zonal SST gradient during the boreal summer is excessively large, because the zonally-asymmetric SST change (i.e., SST increase is relatively smaller over the eastern Pacific) is maximum during the boreal summer when the eastern Pacific SST is the coolest of the year. The enhanced climatological zonal SST gradient in boreal summer reduces the convection over the eastern Pacific, which leads to a weakening of air–sea coupling strength. The minimum coupling strength during summer prevents SST anomalies from further development in the following season, which favors SST maximum during summer. In addition, enhanced zonal SST gradient and resultant thermocline shoaling over the eastern Pacific lead to excessive zonal advective feedback and thermocline feedback. Atmospheric damping is also weakened during boreal summer season. These changes due to feedback processes allow an excessive development of SST anomalies during the summer time, and lead to a summer peak of ENSO. The importance of basic state change for the ENSO phase-locking is also validated in a multi-model framework using the Coupled Model Intercomparison Project phase-3 archive. It is found that several of the climate models have the same problem in producing a summer peak of ENSO. Consistent with the simulations with different physical parameter values, these models have minimum air–sea coupling strength during the boreal summer season. Also, they have stronger climatological zonal SST gradient and shallower climatological thermocline depth over the eastern Pacific during the boreal summer season.  相似文献   

15.
极值统计理论的进展及其在气候变化研究中的应用   总被引:1,自引:0,他引:1       下载免费PDF全文
着重论述极值统计分布在极端天气气候事件和重大工程设计中的重要意义,综述该领域国内外研究进展。例如,基于超门限峰值法(POT)的广义帕累托分布(GPD)和基于单元极大值法(BM)的广义极值分布(GEV)及其参数间的理论关系;采用极值分布模型与多状态一阶Markov链相结合构建降尺度模型模拟局地极端降水事件,推算一定重现期的极端降水量的分位数;探讨极值分布模型分位数估计误差问题,多维极值分布理论及其应用等问题。  相似文献   

16.
Summary The present study is an analysis of the observed extreme temperature and precipitation trends over Yangtze from 1960 to 2002 on the basis of the daily data from 108 meteorological stations. The intention is to identify whether or not the frequency or intensity of extreme events has increased with climate warming over Yangtze River basin in the last 40 years. Both the Mann-Kendall (MK) trend test and simple linear regression were utilized to detect monotonic trends in annual and seasonal extremes. Trend tests reveal that the annual and seasonal mean maximum and minimum temperature trend is characterized by a positive trend and that the strongest trend is found in the winter mean minimum in the Yangtze. However, the observed significant trend on the upper Yangtze reaches is less than that found on the middle and lower Yangtze reaches and for the mean maximum is much less than that of the mean minimum. From the basin-wide point of view, significant increasing trends are observed in 1-day extreme temperature in summer and winter minimum, but there is no significant trend for 1-day maximum temperature. Moreover, the number of cold days ≤0 °C and ≤10 °C shows significant decrease, while the number of hot days (daily value ≥35 °C) shows only a minor decrease. The upward trends found in the winter minimum temperature in both the mean and the extreme value provide evidence of the warming-up of winter and of the weakening of temperature extremes in the Yangtze in last few decades. The monsoon climate implies that precipitation amount peaks in summer as does the occurrence of heavy rainfall events. While the trend test has revealed a significant trend in summer rainfall, no statistically significant change was observed in heavy rain intensity. The 1-day, 3-day and 7-day extremes show only a minor increase from a basin-wide point of view. However, a significant positive trend was found for the number of rainstorm days (daily rainfall ≥50 mm). The increase of rainstorm frequency, rather than intensity, on the middle and lower reaches contributes most to the positive trend in summer precipitation in the Yangtze.  相似文献   

17.
Summary For practical applications both the parent distribution of rainfall intensities and the distribution of their annual maxima are of interest. The relationship between these two distributions cannot be obtained from classical extreme value theory because of seasonal variation and serial correlation in the data. Mathematical results for the distribution of maxima in m-dependent sequences are presented to illustrate the effect of local dependence on the extreme value distribution. The average number of exceedances in a cluster is an important parameter in the relationship between the parent and the extreme value distribution. For 5-min rainfall data from Belgrade, quantiles of the annual maxima are overestimated by about 10 mm h–1 if the effect of serial correlation is ignored. This bias can easily be removed by taking the local clustering of large rainfall intensities in a rainy spell into account.With 4 Figures  相似文献   

18.
Mediterranean basins can be impacted by severe floods caused by extreme rainfall, and there is a growing awareness about the possible increase in these heavy rainfall events due to climate change. In this study, the climate change impacts on extreme daily precipitation in 102 catchments covering the whole Mediterranean basin are investigated using nonstationary extreme value model applied to annual maximum precipitation in an ensemble of high-resolution regional climate model (RCM) simulations from the Euro-CORDEX experiment. Results indicate contrasted trends, with significant increasing trends in Northern catchments and conversely decreasing trends in Southern catchments. For most cases, the time of signal emergence for these trends is before the year 2000. The same spatial pattern is obtained under the two climate scenarios considered (RCP4.5 and RCP8.5) and in most RCM simulations, suggesting a robust climate change signal. The strongest multi-model agreement concerns the positive trends, which can exceed +?20% by the end of the twenty-first century in some simulations, impacting South France, North Italy, and the Balkans. For these areas, society-relevant strong impacts of such Mediterranean extreme precipitation changes could be expected in particular concerning flood-related damages.  相似文献   

19.
This study analyses the length and onset of the four seasons based on the annual climatic cycle of maximum and minimum temperatures. Previous studies focused over climatically homogeneous mid-high latitude areas, employing fixed temperature thresholds (related to climatic features such as freezing point) that can be inadequate when different climate conditions are present. We propose a method related to the daily minimum and maximum temperature 25th and 75th point-dependent climatic percentiles. It is applied to an ensemble of regional climate models (RCMs) of 25-km horizontal resolution over the peninsular Spain and Balearic Islands, where a large variety of climatic regimes, from alpine to semi-desertic conditions, are present. First, baseline climate (1961–2000) ERA40-forced RCM simulations are successfully compared with the Spain02 daily observational database, following astronomical season length (around 90 days). This result confirms the validity of the proposed method and capability of the RCMs to describe the seasonal features. Future climate global climate model-forced RCMs (2071–2100) compared with present climate (1961–1990) simulations indicate the disappearance of winter season, a summer enlargement (onset and end) and a slight spring and autumn increase.  相似文献   

20.
Using an ensemble of four high resolution (~25 km) regional climate models, this study analyses the future (2021–2050) spatial distribution of seasonal temperature and precipitation extremes in the Ganges river basin based on the SRES A1B emissions scenario. The model validation results (1989–2008) show that the models simulate seasonality and spatial distribution of extreme temperature events better than precipitation. The models are able to capture fine topographical detail in the spatial distribution of indices based on their ability to resolve processes at a higher regional resolution. Future simulations of extreme temperature indices generally agree with expected warming in the Ganges basin, with considerable seasonal and spatial variation. Significantly warmer summers in the central part of the basin along with basin-wide increase in night temperature are expected during the summer and monsoon months. An increase in heavy precipitation indices during monsoon, coupled with extended periods without precipitation during the winter months; indicates an increase in the incidence of extreme events.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号