首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We use the Earth system model of intermediate complexity LOVECLIM to show the effect of coupling interactive ice sheets on the climate sensitivity of the model on a millennial time scale. We compare the response to a 2×CO2 warming scenario between fully coupled model versions including interactive Greenland and Antarctic ice sheet models and model versions with fixed ice sheets. For this purpose an ensemble of different parameter sets have been defined for LOVECLIM, covering a wide range of the model??s sensitivity to greenhouse warming, while still simulating the present-day climate and the climate evolution over the last millennium within observational uncertainties. Additional freshwater fluxes from the melting ice sheets have a mitigating effect on the model??s temperature response, leading to generally lower climate sensitivities of the fully coupled model versions. The mitigation is effectuated by changes in heat exchange within the ocean and at the sea?Cair interface, driven by freshening of the surface ocean and amplified by sea?Cice-related feedbacks. The strength of the effect depends on the response of the ice sheets to the warming and on the model??s climate sensitivity itself. The effect is relatively strong in model versions with higher climate sensitivity due to the relatively large polar amplification of LOVECLIM. With the ensemble approach in this study we cover a wide range of possible model responses.  相似文献   

2.
3.
Several multi-century and multi-millennia simulations have been performed with a complex Earth System Model (ESM) for different anthropogenic climate change scenarios in order to study the long-term evolution of sea level and the impact of ice sheet changes on the climate system. The core of the ESM is a coupled coarse-resolution Atmosphere–Ocean General Circulation Model (AOGCM). Ocean biogeochemistry, land vegetation and ice sheets are included as components of the ESM. The Greenland Ice Sheet (GrIS) decays in all simulations, while the Antarctic ice sheet contributes negatively to sea level rise, due to enhanced storage of water caused by larger snowfall rates. Freshwater flux increases from Greenland are one order of magnitude smaller than total freshwater flux increases into the North Atlantic basin (the sum of the contribution from changes in precipitation, evaporation, run-off and Greenland meltwater) and do not play an important role in changes in the strength of the North Atlantic Meridional Overturning Circulation (NAMOC). The regional climate change associated with weakening/collapse of the NAMOC drastically reduces the decay rate of the GrIS. The dynamical changes due to GrIS topography modification driven by mass balance changes act first as a negative feedback for the decay of the ice sheet, but accelerate the decay at a later stage. The increase of surface temperature due to reduced topographic heights causes a strong acceleration of the decay of the ice sheet in the long term. Other feedbacks between ice sheet and atmosphere are not important for the mass balance of the GrIS until it is reduced to 3/4 of the original size. From then, the reduction in the albedo of Greenland strongly accelerates the decay of the ice sheet.  相似文献   

4.
 The great continental ice sheets of the Pleistocene represented a significant topographic obstacle to the westerly winds in northern midlatitudes. This work explores how consequent changes in the atmospheric stationary wave pattern might have affected the shape and growth of the ice sheets themselves. A one dimensional (1-D) model is developed which permits an examination of the types and magnitudes of the feedbacks that might be expected. When plausible temperature perturbations are introduced at the ice-sheet margin which are proportional to the stationary wave amplitude, the equilibrium shape of the ice sheet is significantly altered, and depends on the sign of the perturbation. The proposed feedback also affects the response of the ice sheet to time-varying climate forcing. The results suggest that the evolution of a continental-scale ice sheet with a land-based margin may be significantly determined by the changes it induces in the atmospheric circulation. Received: 1 October 1999 / Accepted: 17 July 2000  相似文献   

5.
This paper investigates the possible implications for the earth-system of a melting of the Greenland ice-sheet. Such a melting is a possible result of increased high latitude temperatures due to increasing anthropogenic greenhouse gas emissions. Using an atmosphere-ocean general circulation model (AOGCM), we investigate the effects of the removal of the ice sheet on atmospheric temperatures, circulation, and precipitation. We find that locally over Greenland, there is a warming associated directly with the altitude change in winter, and the altitude and albedo change in summer. Outside of Greenland, the largest signal is a cooling over the Barents sea in winter. We attribute this cooling to a decrease in poleward heat transport in the region due to changes to the time mean circulation and eddies, and interaction with sea-ice. The simulated climate is used to force a vegetation model and an ice-sheet model. We find that the Greenland climate in the absence of an ice sheet supports the growth of trees in southern Greenland, and grass in central Greenland. We find that the ice sheet is likely to regrow following a melting of the Greenland ice sheet, the subsequent rebound of its bedrock, and a return to present day atmospheric CO2 concentrations. This regrowth is due to the high altitude bedrock in eastern Greenland which allows the growth of glaciers which develop into an ice sheet.  相似文献   

6.
The performance of a snow cover model in capturing the ablation on the Greenland ice sheet is evaluated. This model allows an explicit calculation of the formation of melt water, of the fraction of melt water which re-freezes, and of runoff in the ablation region. The input climate variables to the snowpack model come from two climate models. While the higher resolution general circulation model (ECHAM 4), is closest to observations in its estimate of accumulation, it fails to give accurate results in its predictions of runoff, primarily in the southern half of the ice sheet. The two-dimensional low-resolution climate model (MIT 2D LO) produces estimates of runoff from the Greenland ice sheet within the range of uncertainty of the Inter governmental Panel on Climate Change (IPCC1) 1995 estimates. Both models reproduce some of the characteristics of the extent of the wet snow zone observed with satellite remote sensing; the MIT model is closer to observations in terms of areal extent and intensity of the melting in the southern half of the ice-sheet in July and August while the ECHAM model reproduces melting in the northern half of the ice sheet well. Changes in runoff from Greenland and Antarctica are often cited as one of the major concerns linked to anthropogenic changes in climate. Because it is based on physical principles and relies on the surface energy balance as input, the snow cover model can respond to the current climatic forcing as well as to future changes in climate on the century time scale without the limitations inherent in empirical parametrizations. For a reference climate scenario similar to the IPCC's IS92a, the model projects that the Greenland ice sheet does not contribute significantly to changes in the level of the ocean over the twenty-first century. Increases in accumulation over the central portion of the ice sheet offset most of the increase in melting and runoff, which takes place along the margins of the ice sheet. The range of uncertainty in the predictions of sea-level rise is estimated by repeating the calculation with the MIT model for seven climate change scenarios. The range is –0.5 to 1.7 cm.  相似文献   

7.
A set of simple scaling formulas related to ice sheet evolution is derived from the dynamic and thermodynamic equations for ice and is used to consider two common situations: (a) when we wish to estimate potential ice sheet characteristics given the prescribed net snow accumulation over an area; and (b) when we wish to reconstruct net snow accumulation and vertical temperature difference within the ice sheet given empirical data only concerning ice sheet area and volume. The scaling formulas are applied to the present day Antarctic and Greenland ice sheets, as well as to some ancient ice sheets, and are used to estimate the potential global sea level change due to greenhouse warming.  相似文献   

8.
Thresholds for irreversible decline of the Greenland ice sheet   总被引:1,自引:0,他引:1  
The Greenland ice sheet will decline in volume in a warmer climate. If a sufficiently warm climate is maintained for a few thousand years, the ice sheet will be completely melted. This raises the question of whether the decline would be reversible: would the ice sheet regrow if the climate cooled down? To address this question, we conduct a number of experiments using a climate model and a high-resolution ice-sheet model. The experiments are initialised with ice sheet states obtained from various points during its decline as simulated in a high-CO2 scenario, and they are then forced with a climate simulated for pre-industrial greenhouse gas concentrations, to determine the possible trajectories of subsequent ice sheet evolution. These trajectories are not the reverse of the trajectory during decline. They converge on three different steady states. The original ice-sheet volume can be regained only if the volume has not fallen below a threshold of irreversibility, which lies between 80 and 90% of the original value. Depending on the degree of warming and the sensitivity of the climate and the ice-sheet, this point of no return could be reached within a few hundred years, sooner than CO2 and global climate could revert to a pre-industrial state, and in that case global sea level rise of at least 1.3 m would be irreversible. An even larger irreversible change to sea level rise of 5 m may occur if ice sheet volume drops below half of its current size. The set of steady states depends on the CO2 concentration. Since we expect the results to be quantitatively affected by resolution and other aspects of model formulation, we would encourage similar investigations with other models.  相似文献   

9.
Sensitivity experiments are conducted to test the influence of poorly known model parameters on the simulation of the Greenland ice sheet by means of a three dimensional numerical model including the mechanical and thermal processes within the ice. Two types of experiments are performed: steady-state climatic conditions and simulations over the last climatic cycle with a climatic forcing derived from the GRIP record. The experiments show that the maximum altitude of the ice sheet depends on the ice flow parameters (deformation and sliding law coefficients, geothermal flux) and that it is low when the ice flow is fast. On the other hand, the maximum altitude is not sensitive to the ablation strength and consequently during the climatic cycle it is driven by changes in accumulation rate. The ice sheet extension shows the opposite sensitivity: it is barely affected by ice flow velocity and the ice covered area is smaller for large ablation coefficients. For colder climates, when there is no ablation, the ice sheet extension depends on the sea level. An interesting result is that the variations with time of the altitude at the ice divide (Summit) do not depend on the parameters we tested. The present modelled ice sheets resulting from the climatic cycle experiments are compared with the present measured ice sheet in order to find the set of parameters that gives the best fit between modelled and measured geometry. It seems that, compared to the parameter set most commonly used, higher ablation rate coefficents must be used. Received: 19 September 1995 / Accepted: 30 May 1996  相似文献   

10.
Using a coupled ocean–atmosphere general circulation model, we investigated the impact of Greenland ice sheet melting on North Atlantic climate variability. The positive-degree day (PDD) method was incorporated into the model to control continental ice melting (PDD run). Models with and without the PDD method produce a realistic pattern of North Atlantic sea surface temperature (SST) variability that fluctuates from decadal to multidecadal periods. However, the interdecadal variability in PDD run is significantly dominated in the longer time scale compared to that in the run without PDD method. The main oscillatory feature in these experiments likely resembles the density-driven oscillatory mode. A reduction in the ocean density over the subpolar Atlantic results in suppression of the Atlantic Meridional Overturning Circulation (AMOC), leading to a cold SST due to a weakening of northward heat transport. The decreased surface evaporation associated with the cold SST further reduces the ocean density and thus, simultaneously acts as a positive feedback mechanism. The southward meridional current associated with the suppressed AMOC causes a positive tendency in the ocean density through density advection, which accounts for the phase transition of this oscillatory mode. The Greenland ice melting process reduces the mean meridional current and meridional density gradient because of additional fresh water flux, which suppress the delayed negative feedback due to meridional density advection. As a result, the oscillation period becomes longer and the transition is more delayed.  相似文献   

11.
 A simple climate model has been developed to investigate the existence of the small ice cap instability in the Southern Hemisphere. The model consists of four coupled components: an atmospheric energy balance model, a thermodynamic snow-sea ice model, an oceanic mixed layer model and a terrestrial ice model. Results from a series of experiments involving different degrees of coupling in the model show that the instability appears only in those cases when an explicit representation of the Antarctic ice sheet is not included in the model. In order to determine which physical processes in the ice sheet model lead to a stabilization of the system we have conducted several sensitivity experiments in each of which a given ice sheet process has been removed from the control formulation of the model. Results from these experiments suggest that the feedback between the elevation of the ice sheet and the snow accumulation-ice ablation balance is responsible for the disappearance of the small ice cap instability in our simulation. In the model, the mass balance of the ice sheet depends on the air temperature at sea level corrected for altitude and it is, therefore, a function of surface elevation. This altitude-mass balance feedback effectively decouples the location of the ice edge from any specific sea level isotherm, thus decreasing the model sensitivity to the albedo-temperature feedback, which is responsible for the appearance of the instability. It is also shown that the elevation-radiative cooling feedback tends to stabilize the ice sheet, although its effect does not seem to be strong enough to remove the instability. Another interesting result is that for those simulations which include the terrestrial ice model with elevation-dependent surface mass balance, hysteresis is exhibited, where for a given level of external forcing, two stable solutions with different, non-zero ice-sheet volume and area and different air and ocean temperature fields occur. However, no unstable transition between the two solutions is ever observed. Our results suggest that the small ice cap instability mechanism could be unsuitable for explaining the inception of glaciation in Antarctica. Received: 14 April 1997 / Accepted: 22 October 1997  相似文献   

12.
Measurements from ETH-Camp and JAR1 AWS (West Greenland) as well as coupled atmosphere-snow regional climate simulations have highlighted flaws in the cross-polarized gradient ratio (XPGR) technique used to identify melt from passive microwave satellite data. It was found that dense clouds (causing notably rainfall) on the ice sheet severely perturb the XPGR melt signal. Therefore, the original XPGR melt detection algorithm has been adapted to better incorporate atmospheric variability over the ice sheet and an updated melt trend for the 1988–2003 period has been calculated. Compared to the original algorithm, the melt zone area increase is eight times higher (from 0.2 to 1.7% year−1). The increase is higher with the improved XPGR technique because rainfall also increased during this period. It is correlated to higher atmospheric temperatures. Finally, the model shows that the total ice sheet runoff is directly proportional to the melt extent surface detected by satellites. These results are important for the understanding of the effect of Greenland melting on the stability of the thermohaline circulation.  相似文献   

13.
Simulations performed with the climate model LOVECLIM, aided with a simple data assimilation technique that forces a close matching of simulated and observed surface temperature variations, are able to reasonably reproduce the observed changes in the lower atmosphere, sea ice and ocean during the second half of the twentieth century. Although the simulated ice area slightly increases over the period 1980–2000, in agreement with observations, it decreases by 0.5 × 106 km2 between early 1960s and early 1980s. No direct and reliable sea ice observations are available to firmly confirm this simulated decrease, but it is consistent with the data used to constrain model evolution as well as with additional independent data in both the atmosphere and the ocean. The simulated reduction of the ice area between the early 1960s and early 1980s is similar to the one simulated over that period as a response to the increase in greenhouse gas concentrations in the atmosphere while the increase in ice area over the last decades of the twentieth century is likely due to changes in atmospheric circulation. However, the exact contribution of external forcing and internal variability in the recent changes cannot be precisely estimated from our results. Our simulations also reproduce the observed oceanic subsurface warming north of the continental shelf of the Ross Sea and the salinity decrease on the Ross Sea continental shelf. Parts of those changes are likely related to the response of the system to the external forcing. Modifications in the wind pattern, influencing the ice production/melting rates, also play a role in the simulated surface salinity decrease.  相似文献   

14.
A global two-dimensional one-level seasonal energy-balance model is asynchronously coupled to vertically integrated ice-flow models (which depend both on latitude and longitude) to study the response of the atmosphere-ocean-cryosphere-lithosphere system to solar forcing for the last ice age cycle of the late Pleistocene. The model simulates the position of the North American and European ice sheet complexes at the last glacial maximum satisfactorily. Both the geographic distributions of the ice volumes delivered by the model and their masses are a reasonable approximation to those inferred on the basis of relative sea level data (Tushingham and Peltier 1990). The sensitivity of the coupled model over the last glacial-interglacial cycle to solar forcing is nevertheless low, which suggests that further physical mechanisms will have to be added to the model (such as explicit basal sliding and ice shelves which would respond to sea-level variations and therefore permit marine incursions), if it is to adequately simulate the terminations that control the 105 year ice age cycle. One should also incorporate long-term variations of the greenhouse gases (Manabe et al. 1985b).This paper was presented at the International Conference on Modelling of Global Climate Change and Variability, held in Hamburg 11–15 September 1989 under the auspices of the Meteorological Institute of the University of Hamburg and the Max Planck Institute for Meteorology. Guest Editor for these papers is Dr. L. Dümenil  相似文献   

15.
Much work has gone into deciphering the causes of the large scale glacial/interglacial variations in the climate system over the last 900 000 years. While variations on the 41 thousand year (ky) and 23 ky time scales seem to be linearly linked to the variations in the distribution of solar radiation at the top of the atmosphere, Milankovitch solar radiation variations, the causes of the dominant 100 ky cycle in the geologic record are still unknown. One of the aspects of this cycle that is not well understood is how large scale ice sheet growth is initiated. Here we describe the mechanisms by which large scale ice sheet growth may have been initiated by the changes in the seasonal and latitudinal distribution of solar radiation over the past 160 ky. This is done through the use of a coupled energy balance climate-thermodynamic sea ice model that includes a hydrologic cycle which computes precipitation, and a land surface energy balance which determines the net accumulation of snow and ice. Results indicate that the initiation of ice sheet growth is possible during times of extremely low summer solstice solar radiation as a result of a large decrease in ablation during the critical melt season.  相似文献   

16.
The effect of a warmer climate on the Greenland ice sheet as well as its ability to regrow from a reduced geometry is important knowledge when studying future climate. Here we use output from a general circulation model to construct adaptive temperature and precipitation patterns to force an ice flow model off-line taking into consideration that the patterns change in a non-uniform way (both spatially and temporally) as the geometry of the ice sheet evolves and as climate changes. In a series of experiments we investigate the retreat from the present day configuration, build-up from ice free conditions of the ice sheet during a warmer-than-present climate and how the ice sheet moves between states. The adaptive temperature and accumulation patterns as well as two different constant-pattern formulations are applied and all experiments are run to steady state. All results fall into four different groups of geometry regardless of the applied accumulation pattern and initial state. We find that the ice sheet is able to survive and build up at higher temperatures using the more realistic adaptive patterns compared to the classic constant patterns. In contrast, decay occurs at considerably higher temperatures than build-up when the other formulations are used. When studying the motion between states it is clear that the initial state is crucial for the result. The ice sheet is thus multistable at least for certain temperature forcings, and this implies that the ice sheet not does not necessarily return to its initial configuration after a temperature excursion.  相似文献   

17.
S. J. Kim 《Climate Dynamics》2004,22(6-7):639-651
The role of reduced atmospheric CO2 concentration and ice sheet topography plus its associated land albedo on the LGM climate is investigated using a coupled atmosphere-ocean-sea ice climate system model. The surface cooling induced by the reduced CO2 concentration is larger than that by the ice sheet topography plus other factors by about 30% for the surface air temperature and by about 100% for the sea surface temperature. A large inter-hemispheric asymmetry in surface cooling with a larger cooling in the Northern Hemisphere is found for both cases. This asymmetric inter-hemispheric temperature response is consistent in the ice sheet topography case with earlier studies using an atmospheric model coupled with a mixed-layer ocean representation, but contrasts with these results in the reduced CO2 case. The incorporation of ocean dynamics presumably leads to a larger snow and sea ice feedback as a result of the reduction in northward ocean heat transport, mainly as a consequence of the decrease in the North Atlantic overturning circulation by the substantial freshening of the North Atlantic convection regions. A reversed case is found in the Southern Ocean. Overall, the reduction in atmospheric CO2 concentration accounts for about 60% of the total LGM climate change.  相似文献   

18.
Climate drift is a common and serious problem in most state-of-the-art coupled atmosphere-ocean-sea ice models. We consider the nature of climate drift in such a model, and in particular address the question of whether or not climate drift is inherent to the model, or whether the drift can be averted by a suitable choice of initial conditions or coupling procedure. The synchronous approach to coupling was adopted in which the ocean, atmosphere and sea ice models were spun-up independently to equilibrium using climatological forcing fields. The models were then coupled and integrated forward in time. Several experiments were performed which were designed to assess the impact of different coupling methodologies and changes in the initial conditions of the component models on the climate drift of the system. The results of our experiments indicate that climate drift is a problem inherent to the coupled model in that systematic errors in the components lead to incompatibilities in the surface fluxes required by the component models to maintain realistic climatologies. We conclude that climate drift can be averted only if the parameterizations of certain important physical processes are improved which should have the effect of reducing or eliminating these incompatibilities.  相似文献   

19.
Modulation of a monsoon under glacial forcing is examined using an atmosphere?Cocean coupled general circulation model (AOGCM) following the specifications established by Paleoclimate Modelling Intercomparison Project phase 2 (PMIP2) to understand the air?Csea?Cland interaction under different climate forcing. Several sensitivity experiments are performed in response to individual changes in the continental ice sheet, orbital parameters, and sea surface temperature (SST) in the Last Glacial Maximum (LGM: 21?ka) to evaluate the driving mechanisms for the anomalous seasonal evolution of the monsoon. Comparison of the model results in the LGM with the pre-industrial (PI) simulation shows that the Arabian Sea and Bay of Bengal are characterized by enhancement of pre-monsoon convection despite a drop in the SST encompassing the globe, while the rainfall is considerably suppressed in the subsequent monsoon period. In the LGM winter relative to the PI, anomalies in the meridional temperature gradient (MTG) between the Asian continents minus the tropical oceans become positive and are consistent with the intensified pre-monsoon circulation. The enhanced MTG anomalies can be explained by a decrease in the condensation heating relevant to the suppressed tropical convection as well as positive insolation anomalies in the higher latitude, showing an opposing view to a warmer future climate. It is also evident that a latitudinal gradient in the SST across the equator plays an important role in the enhancement of pre-monsoon rainfall. As for the summer, the sensitivity experiments imply that two ice sheets over the northern hemisphere cools the air temperature over the Asian continent, which is consistent with the reduction of MTG involved in the attenuated monsoon. The surplus pre-monsoon convection causes a decrease in the SST through increased heat loss from the ocean surface; in other words, negative ocean feedback is also responsible for the subsequent weakening of summer convection.  相似文献   

20.
针对冰盖的定向地球工程研究旨在增强冰盖稳定性和减缓冰盖物质流失,从源头上减少冰盖对海平面上升的贡献,有望为应对气候变化和保护海岸线争取几百年的时间。冰盖地球工程主要作用在冰底和冰架-海洋界面上,主要途径如下:(1)排干或冻结冰盖底部水来干燥冰床,增强冰盖底部摩擦力;(2)在海洋中建造人造岛来支撑漂浮的冰架;(3)在冰架前端建造水下隔离墙,阻止温暖的海水到达冰川底部以减缓其融化。冰盖地球工程包括数值模拟、方案设计、工程试验和政治法律等诸多方面的研究。国际上的研究团队正在开展数值模拟和方案设计方面的研究,工程试验和政治法律等方面的研究尚未起步。预计工程试验的难度阶梯很可能是从实验室试验开始,到小尺度的野外试验,接着到格陵兰冰盖的入海冰川,最后到南极冰盖的入海冰川。针对冰盖的定向地球工程研究很有可能成为21世纪全球变化领域新兴的研究方向。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号