首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
李科 《气象》1976,2(2):17-17
我国北疆阿勒泰地区多冬雪,积雪时间也较长,三千米以上的高山积雪,终年不化,形成了宛如银蛇的景色。这里的农牧业用水,多靠高山雪水供给。因此,冬雪是这一地区宝贵的自然资源之一。 从全区气候情况来讲,冬雪时间一般是从11月开始到次年3月,降雪量山区平均270毫米,约占全年总降水量46%;丘陵平均50毫米,约占全年总降水量35%;盆地平均  相似文献   

2.
一、立项背景新疆地形主要是三山加两盆,即阿勒泰山与天山之间准噶尔盆地、天山与昆仑山之间塔里木盆地,盆地四周基本为山区环抱,新疆山区降水量很大,中高山积雪缓慢融化是当地河流水量的主要来源,对农牧业生产及民用水都是非常重要的水资源。新疆  相似文献   

3.
唐淑娟 《气象》1987,13(1):49-52
一、前言 新疆气候寒冷,降雪和积雪期漫长,尤其北疆地区,是全国积雪最为丰富的地区之一。由于积雪具有保温、保墒和补充迳流的作用,所以对于干旱少雨的新疆来说,雪资源的分析和研究是很重要的。 新疆的气象台、站密度较小,且多集中在平原绿洲地区。而气象卫星可以乌瞰新疆全貌,这为我们分析全疆尤其山区和两大盆地内部积雪资源,提供了新的有力工具。 本文利用1972—1984年气象卫星可见光云图照片,对全疆尤其是无气象观测站的山区、戈壁、沙漠的降雪和积雪的情况进行分析,作为对以往积雪分析研究工作的补充。  相似文献   

4.
中国冬季多种积雪参数的时空特征及差异性   总被引:6,自引:2,他引:4  
利用1979~2006年冬季中国站点最大雪深和站点雪日、卫星遥感雪深、积雪覆盖率和雪水当量5种积雪资料,从多角度深入细致地分析了我国冬季积雪的时空变化特征。结果表明:5种积雪资料的经验正交分解第一模态都表现为中国南、北方反位相的特征,即当新疆和东北三省-内蒙古地区积雪偏多(少)时,青藏高原和南方地区积雪偏少(多)。新疆和东北三省-内蒙古地区的雪深、积雪覆盖率和雪日随时间有逐渐增多的趋势,而其中边缘山区的雪水当量表现出减少的趋势,青藏高原地区的积雪表现出与其完全相反的特征。南方地区站点最大雪深和雪日表现出随时间减少的趋势,卫星遥感难以监测到该区积雪。相比较而言,卫星遥感资料比较适合高原和山区缺少气象站的地区及北半球更大区域积雪的研究,而站点资料更适用于中国中东部和平原地区积雪的区域研究。雪深、雪日、积雪覆盖率和雪水当量这些多样性积雪参数存在一定的差异性,因此5种积雪资料结合使用才能得到更准确的结论。  相似文献   

5.
<正>一、1—3月青南地区雪灾严重1—3月,青南地区平均降水量为18.9mm,较历年偏多80%以上,平均降水日数为28.7天,较历年偏多9.9天,降水量及降水日数均创历史同期最多;最大积雪深度不大,但积雪持续时间长,积雪深度在2cm以上的平均积雪日数为28.2天,较历年偏多15.6天,与2008年并列为历史第二多,略少于1993年。由于降水偏多,大范围长时间的积雪,致使青南地区发生轻到重度雪灾,其中甘德、称多发生重度雪  相似文献   

6.
山东省汛期小时降水过程时空分布特征   总被引:1,自引:1,他引:0  
董旭光  顾伟宗  邱粲  曹洁 《气象》2018,44(8):1063-1072
利用山东省74个气象站1961-2012年逐时降水观测数据,分析了山东省汛期(5-9月)短历时和持续性降水过程的时空分布特征。结果表明:(1)过程降水量和过程历时显著增大使得山东省汛期总降水量略有增加,持续性降水过程次数、过程降水量、过程历时的增加对总降水量增加的贡献最大。(2)短历时总降水量以鲁中山区、鲁东南地区最多,鲁东南沿海、半岛东部持续性总降水量最多;短历时过程降水量、平均雨强以鲁东南向西北方向经鲁中山区至德州一带最大,持续性过程降水量、平均雨强在半岛东部和鲁东南部分地区最大。(3)短历时峰值雨强以鲁中山区周边地区较大,持续性峰值雨强以鲁南、鲁东南、半岛东部较大。(4)鲁中山区、鲁南及半岛个别地区短历时降水一般开始于午后(13-18时),鲁中山区周边及半岛沿海一带多以夜雨为主,持续性降水过程开始时间多出现在夜间。  相似文献   

7.
青海地区常规观测积雪资料对比及积雪变化趋势研究   总被引:1,自引:1,他引:0  
雷俊  方之芳 《高原气象》2008,27(1):58-67
应用青海44个台站1962—2005年逐月积雪深度和积雪日数资料,对比了这两份常规积雪资料在表征青海地区积雪变化特征上的一致性,并对近十几年来的积雪变化新趋势做了分析。结果表明:积雪深度和积雪日数均能比较一致地反映整个青海地区积雪变化趋势:夏、秋季积雪从20世纪60年代至21世纪初为一致的减少趋势;冬、春季积雪在20世纪60年代至90年代初增加,而从20世纪90年代中期至21世纪初积雪呈显著减少趋势。后期的减少趋势远比前期的增加趋势明显。青海地区不同季节积雪深度和积雪日数趋势变化明显的区域基本一致,但中心位置存在一定的差异。冬季在32.5°~35°N,95°~102°E范围内的唐古拉山、巴颜喀拉山和阿尼玛卿山区,春季在青海东南部阿尼玛卿山区附近,均明显地表现出20世纪90年代中期以后积雪的减少和前期积雪的增加。不同季节积雪深度和积雪日数的相关系数分布存在一定差异:冬季两份资料相关相对较小的区域位于青海中南部巴颜喀拉山西区至阿尼玛卿山西区一线;春季相关系数小于冬季,青海东北边缘以及东南边缘地区,相关系数未能通过95%信度检验;夏、秋季积雪较少,相关较小的区域集中在青海东南部地区。而上述区域大多为各个季节积雪较多的地区,应慎重使用该区域的常规积雪资料。综合分析两份积雪资料,确定青海地区冬季多雪年为1964,1975,1993,1995和1998年,少雪年为1963,1965,1969,1997和2003年;春季多雪年是1977,1982,1987,1989和1990年,少雪年是1969,1979,1985,1999和2001年。  相似文献   

8.
李小龙  谷松岩  刘健 《气象》2009,35(5):3-9
2008年1月中旬至2月初,我国南方出现了罕见的大范围低温雨雪冰冻天气灾害.南方地区地面积雪的覆盖范围等灾害信息对于气象公共服务、决策服务都有着十分重要的意义.目前国内外开展的被动微波积雪研究,多关注高纬度、极地地区或高原地区的干雪状况,薄雪、湿雪的判识问题较少有人触及.而我国冰冻灾害期间,南方地区由于处于较低纬度带,昼夜温度在0℃上下起伏,雨、雪、雨夹雪天气的轮替,地面积雪恰恰多为湿雪、薄雪.积雪雪层由于液态水的存在将大大改变观测辐射信号,雪内少量液态水就能导致微波亮温值急剧上升.利用南方地区积雪冻融变化时微波亮温昼夜之间的差异变化,使用被动微波数据(DMSP-SSM/I)建立了对低纬度南方地区积雪监测的一种补充方法,结合其他积雪产品,可以获得更加完整的低纬度地区积雪分布信息.  相似文献   

9.
近40年河北省地表干燥度的时空变化   总被引:3,自引:2,他引:1       下载免费PDF全文
利用河北省1970-2007年48个气象台站逐日资料, 采用Penman-Monteith模型计算潜在蒸散量, 由潜在蒸散量和降水量之比构建干燥度指数, 并采用Kriging插值法进行空间插值以分析其区域特征。结果表明:1970-1985年, 由于降水量减少和潜在蒸散量减少, 蒸散量的减少速率大于降水量的减少速率, 地表干燥度指数呈下降趋势, 潜在蒸散量的显著减少是地表干燥度下降的主要原因, 而风速和日照时数的显著降低决定了潜在蒸散量的显著下降; 1986-2007年, 由于年平均气温的显著升高, 潜在蒸散量增加, 使得地表干燥度略呈上升趋势。河北省地表干燥度高值区分布在张家口地区的桑洋盆地和坝西高原, 而低值区主要在燕山南麓低山丘陵地区的承德西南部、唐山的北部和秦皇岛中北部大部分地区。干燥度减少区域主要集中在河北省东北部至河北省西部的带状区域。  相似文献   

10.
青藏高原地面站积雪的空间分布和年代际变化特征   总被引:63,自引:10,他引:63       下载免费PDF全文
作者选取了青海省和西藏自治区境内的72个气象站逐日观测的积雪深度资料,分析了青藏高原积雪的空间分布和年代际变化特征,结果表明:高原积雪的年变程并不完全一致,高原东南缘的积雪主要发生在3月份;高原东南和东北部的积雪一年有两个高值区:前冬10~12月,后冬2~4月;高原中部和西南部的积雪主要在隆冬12~1月;中部一些站点的积雪一年存在3个峰值:10月、1月和5月.青藏高原的积雪主要发生在10月至5月份,9月和6月的积雪相对来说很少,7月和8月基本无积雪.高原沿唐古拉山、念青唐古拉山、巴颜喀拉山、阿尼玛卿山以及喜马拉雅山坡的站点最早开始有积雪,8、9月份就会有积雪产生,并且这些地区最迟有积雪的月份也较晚,6、7月份还会有积雪存在;而柴达木盆地、青海湖盆地到湟水流域、沿雅鲁藏布江的河谷地带积雪出现得晚(10、11月),最迟出现积雪的月份却要早(5、6月份),雅鲁藏布江东段地带甚至最迟出现积雪的月份要提前到3、4月份.高原积雪存在三个高值中心:一是由喜马拉雅山脉北麓沿线各站组成的南部高值中心;二是唐古拉山和念青唐古拉山的东段山区;三是位于高原东部的阿尼玛卿山和巴颜喀拉山地区.青藏高原积雪总的来讲呈平缓的增长态势,20世纪60年代初积雪稍偏多,20世纪60年代中到20世纪70年代中是积雪偏少时期,20世纪70年代末到20世纪90年代是积雪偏多期.从20世纪60年代中到20世纪80年代末,积雪明显增加,20世纪90年代积雪又表现出减少的趋势.高原冬春多雪年为1983、1978、1982、1998、1993、1962、1968、1989、1995、1990;冬春少雪年为1965、1999、1984、1969、1985、1971、1976、1967、1960、1991.  相似文献   

11.
鲁中山区地形对一次台风暴雨影响的数值试验   总被引:1,自引:0,他引:1  
利用中尺度数值预报模式MM5和30″×30″的高分辨率地形资料,对一次暴雨天气过程进行数值模拟和无地形的对比数值试验,分析鲁中山区地形对暴雨的影响。结果表明,鲁中山区的地形强迫抬升和阻挡作用促使山区迎风坡对流层低层水平辐合和上升运动加强,有利于对流云的发展,对整个鲁中山区的降水量起增幅作用,而使鲁西地区降水量减少。同时,地形抬升和阻挡作用使迎风坡对流层低层水汽凝结加快,而整个山区对流层上层空气相对湿度和饱和度增大。  相似文献   

12.
九华山区云水资源状况分析   总被引:1,自引:1,他引:0  
丁仁海 《气象科学》2013,33(6):701-708
九华山区及周边的地形是以天台至大花台为主脉,四周有低山丘陵合围。复杂地形下各地气候差异明显。应用1980—2010年近30 a观测资料及山区不同高度的自动站数据,运用大气边界层理论及多项式拟合、相关分析等数理统计方法,研究山区与丘陵云水资源的差异。结果表明:地形的动力作用影响了山区局地水汽的输送条件;山区下垫面对降水的增雨作用较为明显,强度越大的降水,其增强作用就越明显,地形对降水的平均贡献率为37.6%。山区与周边降水分布很不均匀,九华山年平均降水量比周边区域多34.1%,山区水资源远大于周边丘陵地区,前者是后者的3.4倍,且一年四季有盈余,但降水量季节分布不均,秋季是最易出现干旱缺水的季节。缓解山区的旱情要以开源蓄水为主,辅以必要的人工增雨。  相似文献   

13.
祁连山中段人工增雨(雪)的气候分析及其有利天气   总被引:4,自引:1,他引:4  
重点分析了祁连山下肃南的天气气候特点,探讨在祁连山区中段进行人工增雨(雪)的有利天气条件及其日数。结果表明,祁连山区中段的降水量远远大于河西盆地;降水量随海拔高度增加而增大;有利人工增雨(雪)的年平均日数有146.4 d;一年中3~10月每月有雨(雪)日在10 d以上;5~8月以对流性降雨为主。  相似文献   

14.
利用卫星遥感和地面实测积雪资料分析近年新疆积雪特征   总被引:8,自引:1,他引:7  
利用2003—2005年卫星SSM/I的每日雪深资料,1996—2004年冬、春的NOAA/AVHRR积雪旬覆盖面积资料,以及1996—2002年新疆北部11个地面台站的积雪观测资料,研究了近年新疆积雪的时空分布特征。结果表明:新疆积雪年际变化大,近年最大积雪日数和面积出现在2000—2001年。积雪主要集中在天山山脉以北地区,该区大部分地区每年冬、春积雪覆盖旬数超过了15旬,在西南昆仑山脉地区也有小范围的高值区,部分年份的冬、春积雪覆盖旬数超过了15旬。另外,山区积雪覆盖旬数明显高于盆地,准葛尔盆地积雪覆盖旬数明显多于塔里木盆地。积雪年际变化较显著的地区在中部天山山脉地区、西南部昆仑山脉地区和西部阿尔金山脉地区,均超过了6旬。积雪深度在每年的2月达到最高。高值出现在阿勒泰地区、塔城、天山北麓、准噶尔盆地南缘和南疆西部的托什干河流域一带,达到近40 cm。  相似文献   

15.
李琛  吴进  郭文利  金晨曦  齐晨 《干旱气象》2021,39(4):687-696
基于2019年10月至2020年3月北京市延庆小海陀山区高海拔站点二海坨站和低海拔站点长虫沟站逐时气象观测数据,分析小海陀山区雪面温度演变特征及其与气象因子的相关性。采用BP神经网络及逐步回归方法建立该地区两站的雪温预报模型并进行效果检验。结果表明:(1)小海陀山区积雪时段雪温逐小时变化幅度较气温更显著,雪温与气温及总辐射呈明显正相关,气温及总辐射是影响雪温变化的主要因子;(2)基于神经网络方法建立的雪温预报模型效果优于逐步回归方法建立的雪温预报模型,模型效果低海拔站点优于高海拔站点,夜间优于白天;(3)区分白天与夜间的分时段建模方案更适用于低海拔站点。  相似文献   

16.
根据西峡县1971-2000年的降水资料,12月一次年2月的月平均降水量不足20 mm.降水量偏少,为山区火灾埋下隐患.因此,利用地面燃烧炉实施人工增雨(雪)作业,可抑制森林火灾.西峡县冬季有降水时,桦树盘西南山坡盛行南一西南风,气流在耍荷关开始被山坡抬升,因此桦树盘海拔1424.89 m山顶处放置燃烧炉,沿山坡的上升气流可把碘化银烟粒送至云中-4℃以上高度,实现催化增雨(雪)目的.  相似文献   

17.
1992年1-2月,全疆各地偏暖,是继1986年以来的连续第7个暖冬;全疆大部地区降水偏少,积雪偏薄;北疆西部地区各旬气温变化较大;较强冷空气入侵次数少于常年. 一、月平均气温和月总降水量 1.月平均气温继去年12月份月平均气温偏高之后,今年1月份,北疆各地、东疆地区、吐鄯托盆地和焉耆盆地月平均气温继续偏高(图略).北疆  相似文献   

18.
根据三次Landsat遥感数据,应用GIS空间分析方法,分析了1975-2000年珠峰地区定日县常年积雪变化特征,并探讨其与气候变化之间的关系。结果表明,1975-2000年间定日县内常年积雪总计减少了7.49%,减少面积为105.35 km2,主要发生在珠峰及其周围高大山体常年积雪覆盖的边缘地区,其中,海拔5 000~6 000 m之间减少最多,占减少总面积的70%左右。气温和降水量变化是导致常年积雪变化的主要因素,特别是在全球变暖的大背景下,珠峰地区的气温上升趋势是其主要驱动因子。气温升高导致珠峰及周围高大山脉边缘的冰川和常年积雪不断消融,加上1980年代的降水量相对较少,使得1975-1992年常年积雪面积不断减少;但1990年代后期降水量增加显著,研究区东南部海拔相对较低的区域有较多的积雪累积,1993-2000年常年积雪面积略有增加。  相似文献   

19.
丹东地区沿海和山区降雪气候特征   总被引:2,自引:0,他引:2  
利用丹东地区4个观测站1955—2010年逐年10月至翌年4月逐日降水量、天气现象、雪深等资料,对丹东地区南部沿海和北部山区降雪气候特征进行了分析,结果表明:丹东地区沿海和山区降雪初日、终日及初终日间隔日数、年降雪日数、年降雪量、降水相态、日最大降雪量、日最大积雪深度等平均特征不同。与山区相比,沿海降雪初期较晚,终期较早,初、终日间日数较短,年降雪日数和年降雪量相对较少。在丹东地区1955—2010年降雪时段平均气温升高趋势显著背景下,丹东地区降雪初期推迟、终期提前、初终日间隔日数缩短;降雪日数减少,其中雨夹雪日数所占百分比显著增多;降雪量减少,其中主要是纯雪量减少;日最大降雪量和积雪深度呈减小趋势;沿海和山区变化幅度不同。  相似文献   

20.
采用2009年和2010年2月中旬雪深、分层积雪密度、含水率和温度野外调查数据,分析了北疆地区积雪参数属性特征,雪深-温度和密度-含水率关系。①雪深达10cm,雪土界面温度比积雪表面高3℃左右,超过10cm,偏高6~10℃;雪土界面温度与积雪深度高度线性相关,积雪越深,保温作用越显著;②2010年1月以来,北疆地区多降雪天气,2月积雪深度比2009年同期雪深明显增加;③2010年2月,北疆地区积雪密度均值总体范围0.15~0.272 g/cm3比2009年同期积雪密度0.087~0.225 g/cm3偏大;④在一定体积含水率间隔范围,积雪密度和体积含水率间线性相关。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号