首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Inverse methods are widely used in various fields of atmospheric science. However, such methods are not commonly used within the boundary-layer community, where robust observations of surface fluxes are a particular concern. We present a new technique for deriving surface sensible heat fluxes from boundary-layer turbulence observations using an inverse method. Doppler lidar observations of vertical velocity variance are combined with two well-known mixed-layer scaling forward models for a convective boundary layer (CBL). The inverse method is validated using large-eddy simulations of a CBL with increasing wind speed. The majority of the estimated heat fluxes agree within error with the proscribed heat flux, across all wind speeds tested. The method is then applied to Doppler lidar data from the Chilbolton Observatory, UK. Heat fluxes are compared with those from a mast-mounted sonic anemometer. Errors in estimated heat fluxes are on average 18 %, an improvement on previous techniques. However, a significant negative bias is observed (on average $-63\,\%$ ) that is more pronounced in the morning. Results are improved for the fully-developed CBL later in the day, which suggests that the bias is largely related to the choice of forward model, which is kept deliberately simple for this study. Overall, the inverse method provided reasonable flux estimates for the simple case of a CBL. Results shown here demonstrate that this method has promise in utilizing ground-based remote sensing to derive surface fluxes. Extension of the method is relatively straight-forward, and could include more complex forward models, or other measurements.  相似文献   

2.
Spectral analysis was performed on aircraft observations of a convective boundary layer (CBL) that developed over a thermally inhomogeneous, well-marked mesoscale land surface. The observations, part of the GAME-Siberia experiment, were recorded between April and June 2000 over the Lena River near Yakutsk City. A special integral parameter termed the ‘reduced depth of the CBL’ was used to scale the height of the mixed layer with variable depth. Analysis of wavelet cospectra and spectra facilitated the separation of fluxes and other variables into small-scale turbulent fluctuations (with scales less than the reduced depth of the CBL, approximately 2 km) and mesoscale fluctuations (up to 20 km). This separation approach allows for independent exploration of the scales. Analyses showed that vertical distributions obeyed different laws for small-scale fluxes and mesoscale fluxes (of sensible heat, water vapour, momentum and carbon dioxide) and for other variables (wind speed and air temperature fluctuations, coherence and degree of anisotropy). Vertical profiles of small-scale turbulent fluxes showed a strong decay that differed from generally accepted similarity models for the CBL. Vertical profiles of mesoscale fluxes and other variables clearly showed sharp inflections at the same relative (with respect to the reduced depth of the CBL) height of approximately 0.55 in the CBL. Conventional similarity models for sensible heat fluxes describe both small-scale turbulent and mesoscale flows. The present results suggest that mesoscale motions that reach up to the relative level of 0.55 could be initiated by thermal surface heterogeneity. Entrainment between the upper part of the CBL and the free atmosphere may cause mesoscale motions in that region of the CBL.  相似文献   

3.
The Summer Surface Energy Balance of the High Antarctic Plateau   总被引:1,自引:0,他引:1  
The summertime surface energy balance (SEB) at Kohnen station, situated on the high Antarctic plateau (75°00′ S, 0°04′ E, 2892m above sea level) is presented for the period of 8 January to 9 February 2002. Shortwave and longwave radiation fluxes were measured directly; the former was corrected for problems associated with the cosine response of the instrument. Sensible and latent heat fluxes were calculated using the bulk method, and eddy-correlation measurements and the modified Bowen ratio method were used to verify these calculated fluxes. The calculated sub-surface heat flux was checked by comparing calculated to measured snow temperatures. Uncertainties in the measurements and energy-balance calculations are discussed. The general meteorological conditions were not extraordinary during the period of the experiment, with a mean 2-m air temperature of −27.5°C, specific humidity of 0.52×10−3kg kg−1 and wind speed of 4.1ms−1. The experiment covered the transition period from Antarctic summer (positive net radiation) to winter (negative net radiation), and as a result the period mean net radiation, sensible heat, latent heat and sub-surface heat fluxes were small with values of −1.1, 0.0, −1.0 and 0.7 Wm−2, respectively. Daily mean net radiation peaked on cloudy days (16 Wm−2) and was negative on clear-sky days (minimum of −19 W m−2). Daily mean sensible heat flux ranged from −8 to +10 Wm−2, latent heat flux from −4 to 0 Wm−2 and sub-surface heat flux from −8 to +7 Wm−2.  相似文献   

4.
This paper evaluates convective boundary layer (CBL) budget methods as a tool for estimating regionally averaged sensible and latent heat fluxes for the study region used in OASIS (Observations at Several Interacting Scales). This is an agricultural region of mixed cropping and grazing extending about 100 km west of the town of Wagga Wagga, NSW, Australia.The analysis proceeds in three stages: first, a simpleone-dimensional model of the well-mixed layer (the CBL slab model), forced with measurements of the surface heat and evaporation fluxes, is evaluated by comparing measured and modelled CBL temperature, humidity and depths. A comparison of several entrainment schemes shows that a simple model, where the entrainment kinetic energy is parameterised as a fraction (3) of the surface sensible heat flux, works well if is set to 0.5. Second, the slab model is coupled to a Penman–Monteith model of surface evaporation to predict regional scale evaporation and thence heat fluxes. Finally, the integral CBL budget approach, which is an inverse method using theone-dimensional slab model, is used to infer regional heat and evaporation fluxes from measured time series of CBL temperature and humidity.We find that the simple CBL slab model works reasonably well for predicting CBL depth and very well for CBL temperature, especially if approximate estimates of subsidence velocity and warming due to advection are included. Regional sensible heat fluxes estimated from the integral CBL method match those measured, although the method is very sensitive to measurement errors. Measurement-model differences were larger for short integration times, because the well-mixed assumptions are violated at particular times of the day. The corollary is that `whole-day' (0530–1530 h) estimates are in reasonable agreement with measured values. Integral methods could not be used to infer the regional evaporation flux directly because CBL humidity profiles were complex and often not well mixed until mid-afternoon. We recommend that regional evaporation fluxes be predicted either from a coupled Penman–Monteith – CBL slab model, or inferred as a residual term from estimates of the regionally averaged available energy and sensible heat flux. Furthermore, we show that inferring fluxes via integral methods will always be difficult when the scalar concentrations have either a large surface source and free atmosphere sink (in the case of water vapour and methane), or a large surface sink and upper level source (in the case of CO2).  相似文献   

5.
Profile and eddy-correlation (heights of 4 and 10 m) measurements performed on the Pasterze glacier (Austria) are used to study the characteristics of the stable boundary layer under conditions of katabatic and large-scale forcing. We consider cases where large-scale forcing results in a downslope (or following) ambient wind. The analysis of averaged spectra and cospectra reveals low frequency perturbations that have a large influence on the variances of temperature and horizontal wind components and also alter the cospectra of momentum and sensible heat flux. Only the spectrum of the vertical wind speed is comparable to universal spectra. The low frequency perturbations occur as brief intermittent events and result in downward entrainment of ambient air thereby producing enhanced downward sensible heat fluxes and downward as well as upward momentum fluxes with various magnitudes and timescales. After the variances were high pass filtered, the normalised standard deviations of wind speed and temperature compare favourably to findings in the literature within the range 0>z/L>0.5. For larger z/L they deviate as a result of an increased influence from low frequency perturbations and thus non-stationarity. In line with this, the turbulent kinetic energy budget (at 4 m height) indicates that production (shear) is in balance with destruction (buoyancy and dissipation) within the range 0>z/L>0.3. Non-dimensional gradients of wind speed within the range 0>z/L>0.3 have a slope of about 3.5. The scatter for the dimensionless temperature gradient is quite large, and the slope is comparable to that for wind speed gradients. For z/L>0.3 the imbalance in the turbulent kinetic energy budget grows and non-dimensional gradients for wind speed and temperature deviate considerably from accepted values as a result of increased non-stationarity. Average roughness lengths for momentum and sensible heat flux derived from wind speed and temperature profiles are respectively 1 × 10-3 m and 6 × 10-5 m, consistent with the literature. The ratio (z0h/z0m) compares to those predicted by surface renewal models. A variation of this ratio with the roughness Reynolds number is not indicated by our data.  相似文献   

6.
Sonic anemometers are capable of measuring the wind speed in all three dimensions at high frequencies (10–50 Hz), and are relied upon to estimate eddy-covariance-based fluxes of mass and energy over a wide variety of surfaces and ecosystems. In this study, wind-velocity measurement errors from a three-dimensional sonic anemometer with a non-orthogonal transducer orientation were estimated for over 100 combinations of angle-of-attack and wind direction using a novel technique to measure the true angle-of-attack and wind speed within the turbulent atmospheric surface layer. Corrections to the vertical wind speed varied from −5 to 37% for all angles-of-attack and wind directions examined. When applied to eddy-covariance data from three NOAA flux sites, the wind-velocity corrections increased the magnitude of CO2 fluxes, sensible heat fluxes, and latent heat fluxes by ≈11%, with the actual magnitude of flux corrections dependent upon sonic anemometer, surface type, and scalar. A sonic anemometer that uses vertically aligned transducers to measure the vertical wind speed was also tested at four angles-of-attack, and corrections to the vertical wind speed measured using this anemometer were within ±1% of zero. Sensible heat fluxes over a forest canopy measured using this anemometer were 15% greater than sensible heat fluxes measured using a sonic anemometer with a non-orthogonal transducer orientation. These results indicate that sensors with a non-orthogonal transducer orientation, which includes the majority of the research-grade three-dimensional sonic anemometers currently in use, should be redesigned to minimize sine errors by measuring the vertical wind speed using one pair of vertically aligned transducers.  相似文献   

7.
We investigate the impact of observed surface heterogeneities during the LITFASS-2003 experiment on the convective boundary layer (CBL). Large-eddy simulations (LES), driven by observed near-surface sensible and latent heat fluxes, were performed for the diurnal cycle and compare well with observations. As in former studies of idealized one- and two-dimensional heterogeneities, secondary circulations developed that are superimposed on the turbulent field and that partly take over the vertical transport of heat and moisture. The secondary circulation patterns vary between local and roll-like structures, depending on the background wind conditions. For higher background wind speeds, the flow feels an effective surface heat-flux pattern that derives from the original pattern by streamwise averaging. This effective pattern generates a roll-like secondary circulation with roll axes along the mean boundary-layer wind direction. Mainly the upstream surface conditions control the secondary circulation pattern, where the fetch increases with increasing background wind speed. Unlike the entrainment flux that appears to be slightly decreased compared to the homogeneously-heated CBL, the vertical flux of sensible heat appears not to be modified in the mixed layer, while the vertical flux of latent heat shows different responses to secondary circulations. The study illustrates that sufficient time averaging and ensemble averaging is required to separate the heterogeneity-induced signals from the raw LES turbulence data. This might be an important reason why experiments over heterogeneous terrain in the past did not give any clear evidence of heterogeneity-induced effects.  相似文献   

8.
This study investigates the convective boundary layer (CBL) that develops over anon-homogeneous surface under different thermal and dynamic conditions. Analysesare based on data obtained from a Russian research aircraft equipped with turbulentsensors during the GAME-Siberia experiment over Yakutsk in Siberia, from April to June 2000.Mesoscale thermal internal boundary layers (MTIBLs) that radically modified CBLdevelopment were observed under unstable atmospheric conditions. It was found thatMTIBLs strongly influenced the vertical and horizontal structures of virtual potentialtemperature, specific humidity and, most notably, the vertical sensible and latent heatfluxes. MTIBLs in the vicinity of the Lena River lowlands were confirmed by clouddistributions in satellite pictures.MTIBLs spread through the entire CBL and radically modify its structure if the CBL isunstable, and strong thermal features on the underlying surface have horizontal scalesexceeding 10 km. MTIBL detection is facilitated through the use of special parameterslinking shear stress and convective motion.The turbulent structure of the CBL with and without MTIBLs was scaled usingthe mosaic or flux aggregate approach. A non-dimensional parameterLRau/Lhetero (where LRau is Raupach's length and Lhetero is the horizontal scale of the surface heterogeneity)estimates the application limit of similarity and local similarity scaling models forthe mosaic parts over the surface. Normalized vertical profiles of wind speed, airtemperature, turbulent sensible and latent heat fluxes for the mosaic parts withLRauLhetero < 1 could be estimated by typical scalingcurves for the homogeneous CBL. Traditional similarity scaling models for the CBLcould not be applied for the mosaic parts with LRau/Lhetero > 1.For some horizontally non-homogeneous CBLs, horizontal sensible heat fluxes werecomparable with the vertical fluxes. The largest horizontal sensible heat fluxes occurred at the top of the surface layer and below the top of the CBL.Formerly affiliated to the Frontier Observational Research System for Global ChangeFormerly affiliated to the Frontier Observational Research System for Global Change  相似文献   

9.
祁连山老虎沟12号冰川近地层微气象特征分析   总被引:1,自引:0,他引:1  
利用2009年9月1日-2010年8月31日祁连山老虎沟12号冰川海拔4 550m气象观测资料,分析并讨论了气温、降水、比湿、气压、风速、风向、总辐射、感热和潜热通量的变化特征。结果表明,在冰川下垫面影响下,气温的逐时变化呈现出升温比降温要快,但季节变化则相反,气温变化的位相比风速要超前;降水主要集中在5~9月,占全年降水的68.1%;冬季平均风速最大,夏季最小,春季高于秋季,春、秋季冰川风的强度要大于谷风,夏季则相反,冬季冰川风占绝对主导地位,且冰川风对地气间的能量交换有重要影响;全年感热通量日平均值大部分都为正值,而潜热通量基本都为负值,在气温较高、风速较大的情况下二者均有明显的增加;夏季感热和潜热通量的绝对值都比冬季要大。  相似文献   

10.
The frequency response of different types of sonic anemometers due to spatialaveraging of turbulent fluctuations along the sonic path is investigated byapplying modeling procedures and by sonic measurements. The data wereobtained simultaneously at up to 4 heights over extreme smooth andhomogeneous terrain during stationary situations, varying fromslightly stable to unstable. It is shown thatcorrections for the variance of the vertical wind component areneeded for measurements close to the ground. A correction procedure, based ona response function for the vertical wind and on parameters derived frompower spectra, is applied to the measurements. At a height of about onemetre, the variance of the vertical wind component is typicallyunderestimated by about 10%. The error decreases with increasing height. It isalso shown that in the height range down to one metre other turbulencequantities, as for example the variances of the horizontal wind components andthe turbulent fluxes of momentum and sensible heat, are not markedly affectedby the sonic spatial response. Experimental data support these findings.  相似文献   

11.
We present aircraft measurements of boundary-layer structure and surface turbulent fluxes from a flight over the Larsen Ice Shelf, Antarctica. Warm advection, associated with föhn flow, led to the formation of a stable boundary layer over the ice shelf, with a well-defined low-level jet at the top of the surface inversion. The strong shear associated with the jet kept the gradient Richardson number small and maintained a turbulent boundary layer over a depth of at least 600 m. The net surface energy balance amounted to 52 Wm?2, equivalent to a melt rate of 13 mm water per day, with net radiation (48 Wm?2) making the largest contribution to melt. The contribution from the sensible heat flux (13 Wm?2) was largely balanced by an upwards latent heat flux (?9 Wm?2). These measurements provide insight into the processes that control surface melt rates in an area that has experienced recent rapid warming and deglaciation.  相似文献   

12.
We examine the efficacy of two methods commonly used to estimate the vertical turbulent fluxes of momentum and sensible heat from routinely observed mean quantities in the surface layer under stable stratification. The single-level method uses mean wind speed and temperature measurements at a single height, whereas the two-level method uses mean wind speed measurements at a single height and mean temperature measurements at two heights. These methods are used in popular meteorological processors such as the U.S. Environmental Protection Agency approved AERMET and CALMET to generate inputs for dispersion simulations. We use data from a flux station of the U.K. Met Office at Cardington for comparison. It is found that the single-level method does not describe the flux variation in the weakly stable regime at all, because of its assumption that the temperature scale, i.e. the ratio of the kinematic sensible heat flux to the friction velocity, is constant, which is plausible only under strongly stable conditions. On the other hand, the two-level method provides a physically realistic variation of the fluxes with stability, but the required temperature measurements at two levels are usually not available on a routine basis. If measurements of the standard deviation of temperature are also available, in addition to the mean temperature at a single level, then they can be usefully employed in a third (single-level) method, with the consequence that the computed fluxes are very similar to those obtained from the two-level method. An improvement to the original single-level method is considered, and flux calculations under low wind conditions are also discussed.  相似文献   

13.
边界层对流对示踪物抬升和传输影响的大涡模拟研究   总被引:3,自引:1,他引:2  
利用"西北干旱区陆气相互作用野外观测实验"加密观测期间敦煌站的实测资料以及大涡模式, 通过一系列改变地表热通量和风切变的敏感性数值试验, 分析了地表热通量和风切变对边界层对流的强度、形式, 以及对对流边界层结构和发展的影响。模拟结果显示风切变一定, 增大地表热通量时, 由于近地层湍流运动增强, 向上输送的热量也较多, 使对流边界层变暖增厚, 而且边界层对流的强度明显增强, 对流泡发展的高度也较高。当地表热通量一定, 增大风切变时, 由于风切变使夹卷作用增强, 将逆温层中的暖空气向下卷入混合层中, 使对流边界层增暖增厚, 但是对流泡容易破碎, 对流的强度也较弱。另外通过在模式近地层释放绝对浓度为100的被动示踪物方法, 用最小二乘法定量地分析了地表热通量和风切变分别与示踪物抬升效率和传输高度的关系。分析结果表明, 风切变小于10.5×10-3 s-1时, 增大地表热通量加强了上层动量的下传, 使示踪物的抬升效率也线性增大;地表热通量小于462.5 W m-2时, 增大风切变减弱了边界层对流的强度, 从而使示踪物的抬升效率减弱。当风切变一定时, 示踪物的平均传输高度随地表热通量增加而增大, 而地表热通量一定, 只有风切变大于临界值时, 示踪物平均传输高度才随风切变的增加而增大, 而临界风速的大小由地表热通量决定。  相似文献   

14.
利用2008年4~5月大理国家气候观象台近地面层观测系统的梯度、涡动相关通量观测资料,结合背景场环流分析,分析了西南季风爆发前后大理近地面层的风速、风向变化特征、风速廓线和垂直切变变化特征以及动量、感热和潜热通量变化特征。结果显示:西南季风爆发前,大理近地层风向以东南风为主,平均风速较大;风速日变化的双峰型特征较显著,风速的垂直切变大,动量通量数值较大且日变化特征较明显。西南季风爆发后,大理近地层西北风频率显著增加,平均风速减小;风速日变化以单锋型为主,风速垂直切变较前期显著减小,动量通量数值减小而日变化特征较不显著。西南季风开始前后大理地气热量交换都以潜热为主,西南季风开始前一旬期间,潜热通量的逐日变化特点是随时间逐渐减少,感热通量逐渐增大,二者差值逐渐减小;西南季风开始后潜热通量的逐日变化为逐渐增大而感热通量逐渐减少,二者差值逐渐增大。就月平均值的日变化而言,潜热通量峰值变化不大,雨季略低于干季的4月;感热通量4~6月的月平均逐月降低。其原因既与雨季天气的变化有关,也与下垫面状况的改变相联系。  相似文献   

15.
王慧  李栋梁 《高原气象》2012,31(2):312-321
选取1981年7月-2006年12月美国国家海洋和大气局(NOAA)系列卫星观测的归一化植被指数(NDVI)资料和Ch-INDV参数化关系式,计算了我国西北干旱区84个测站历年各月的地表热力输送系数Ch值和地面感热通量序列,得到如下主要结论:(1)西北干旱区地面感热通量实际计算值与ERA-40再分析感热资料相比,两者在数值大小、分布形势和年际变化趋势上均较一致,感热实际计算值的空间分布更明显地突出了各气象站所在区域的局地特征。(2)西北干旱区地面感热输送呈单峰型年变化特征,春、夏季非常强,秋、冬季较弱;大部分区域全年均为正值,地表为感热源。(3)以97.5°E为界,西北干旱区东、西部具有不同的年际变化趋势,东部的地面感热四季均有逐年增加的趋势,而西部秋、冬季逐年略有增加,春、夏季逐年减弱明显,气候倾向率分别为-1.15 W.m-2.(10a)-1和-2.08W.m-2.(10a)-1。(4)西北干旱区地面感热输送具有明显的年代际变化特征,1980年代总体偏强,1990年代总体偏弱,2000年以来,西北地区中部的感热输送偏弱,东、西部除个别测站外均偏强。(5)西北干旱区的感热变化并不只由地气温差的变化来决定,它与地面风速和地表状况的变化也有较强的依赖关系。在冬季,主要响应地气温差的变化,春季地面风速和地气温差的影响作用同等重要,夏季以地面风速的影响为主,地气温差的影响次之,秋季与夏季相反。另外,夏季地表状况对感热的影响作用也不容忽视。  相似文献   

16.
利用中国气象局成都高原气象研究所建立的5个边界层站(湄潭、巴中、什邡、曲麻莱、狮泉河)2019年的观测资料,对比分析青藏高原及周边地区近地层大气要素变化和陆—气能量交换特征及异同点,探讨其原因。结果表明:(1)青藏高原及周边地区近地层大气温度、相对湿度、风速、感热通量、潜热通量、动量通量均符合一峰一谷的常规日变化特征,气压具有双峰双谷的日变化特征。(2)高海拔台站近地层温度日变幅(12℃)高于周边低海拔地区(4~6℃),季变幅与海拔高度的关系不显著。(3)相对湿度与温度关系密切,相对湿度的垂直结构和日变化都具有明显的区域差异,其垂直梯度夜间显著高于白天,峰值出现时间随夏、秋、春、冬季呈现季节性滞后,而谷值超前。(4)风速春季较大,夏、秋季次之,冬季小,季变幅略小于日变幅;低海拔区域的风速及其日变幅均显著低于高海拔区域。(5)低海拔区域气压季变幅(>13 hPa)远高于日变幅(2.5 hPa左右),而高海拔区域气压季变幅(>3 hPa)略低于日变幅(2 hPa左右)。(6)感热通量春季大、冬季小;感热通量和动量通量在高海拔区域均较高,二者具有较一致的日、季变化特征,表明大气动...  相似文献   

17.
A parallelized large-eddy simulation model has been used to investigate the effects of two-dimensional, discontinuous, small-scale surface heterogeneities on the turbulence structure of the convective boundary layer.Heterogeneities had a typical size of about the boundary-layer heightzi. They were produced by a surface sensible heat flux pattern ofchessboard-type and of strong amplitude as typical, e.g., for the marginalice zone. The major objectives of this study were to determinethe effects of such strong amplitude heat flux variations and to specify theinfluence of different speeds and directions of the background wind.Special emphasis has been given to investigate the secondary circulations induced by the heterogeneities by means of three-dimensional phase averages.Compared with earlier studies of continuous inhomogeneities, the same sizeddiscontinuous inhomogeneities in this study show similar but stronger effects.Significant changes compared with uniform surface heating are only observedwhen the scale of the inhomogeneities is increased to zi. Especially the vertical energy transport is much more vigorous and even the mean emperature profile shows a positive lapse rate within the whole mixed layer. However, the effects are not directly caused by the different shape of the inhomogeneities but can mainly be attributed to the large amplitude of the imposed heat flux,as it is typical for the partially ice covered sea during cold air outbreaks.The structure of the secondary flow is found to be very sensitive to the wavelength and shape of the inhomogeneities as well as to the heatflux amplitude, wind speed and wind direction. The main controlling parameter is the near-surface temperature distribution and the related horizontal pressure gradient perpendicular to the main flow direction. The secondary flow varies from a direct circulation with updraughts mainly above the centre of the heated regions to a more indirect circulation with updraughts beneath the centre and downdraughts above it. For background winds larger than 2.5 m s–1 a roll-like circulation pattern is observed.From previous findings it has often been stated that moderate backgroundwinds of 5 m s–1 eliminate all impacts of surface inhomogeneitiesthat could potentially be produced in realistic landscapes. However, this studyshows that the effects caused by increasing the wind speed stronglydepend on the wind direction relative to the orientation of theinhomogeneities. Secondary circulations remain strong, even for abackground wind of 7.5 m s–1, when the wind direction is orientatedalong one of the two diagonals of the chessboard pattern. On the otherhand, the effects of inhomogeneities are considerably reduced, even undera modest background wind of 2.5 m s–1, if the wind direction isturned by 45°. Mechanisms for the different flow regimesare discussed.  相似文献   

18.
近地层湍流通量计算对于中尺度数值模式有重要意义,湍流通量的参数化是当前大气边界层研究的重要课题之一.选择青藏高原东缘大理观象台边界层通量观测系统,离线测试了WRF区域模式中的两种常用的近地层参数化方案(MM5相似理论非迭代方案A和ETA相似理论迭代方案B),并将参数化方案计算结果与边界层铁塔涡动相关法的观测值进行对比分析.在大理观象台观测场不同植被随季节交替的状况下,根据边界层铁塔4层高度风速拟合,发现近地层空气动力学粗糙度随季节变化特征明显.将拟合的空气动力学粗糙度输入模式参数化方案进行通量计算.结果表明:稳定度是影响近地层参数化方案精度的重要因素,在不稳定条件下方案B低估了动量通量,方案A优于方案B,而在稳定条件下方案A低估了动量通量,方案B优于方案A,两种方案总体来看误差不大.对于大理边界层通量观测场农田植被交替的环境条件,不同季节下垫面植被类型的差异,以及植被的稀疏对近地层参数化方案湍流通量计算结果的精度有显着影响.方案B考虑了空气动力学粗糙度z0和热量粗糙度z0h的差异,不稳定条件下感热通量计算结果在裸土或稀少植被条件下明显优于方案A.针对方案B不稳定条件下感热通量计算结果在裸土下垫面仍出现高估的现象,使用了Zeng等1998年提出的用辐射地表温度订正裸土下垫面感热能量方法后,计算结果也有明显改善.  相似文献   

19.
青藏高原西部地表通量的年、日变化特征   总被引:14,自引:6,他引:8  
利用青藏高原西部地区改则和狮泉河两个自动观测气象站1998年全年每天24个时次的风速、温度和湿度等梯度观测资料,采用湍流相似理论.计算了改则和狮泉河的动量通量、感热通量以及潜热通量。结果表明:改则和狮泉河两地的地表湍流通量都具有明显的季节变化和日变化,且其季节变化的相同点表现在感热通量均在5月份最大,1月份最小:而潜热通量均在8月份最大。不同点表现在改则的潜热通量在12月份最小,狮泉河1~5月平均潜热通量为负,以凝结为主,改则的月平均蒸发及全年的蒸发总量比狮泉河的要大。而其感热通量比后者的都小。日变化幅度随季节变化明显,表现在夏季地表通量的日变化幅度大,冬季要小得多。  相似文献   

20.
利用长白山森林生态系统定位研究站观测资料,及2003年8月和9月涡旋相关资料,分析和比较了该地区近地层包括风速、风向、大气稳定度在内的平均场特征,以及湍流强度、无量纲化风脉动方差相似性和地表通量变化特征。结果表明:(1)8月和9月稳定度都基本集中在0附近;(2)风速2 m·s-1的环境中,湍流发展最为旺盛,随着风速的增大湍流强度先迅速减小,当风速增大到3 m·s-1后,湍流强度偏离0值变大了一些,再继续增大到一定风速大小以后,湍流强度基本不随风速变化;(3)无量纲化三维风脉动方差符合Monin-Obukhov相似理论的"1/3"定律,其最佳通用相似函数在稳定和不稳定条件下都可以拟合得到;(4)地表通量均表现出明显的日变化特征,8月以潜热为主,感热较小;9月仍以潜热为主,但是相比8月明显偏小,感热变化不大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号