首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Approximately 1700 Pg of soil carbon (C) are stored in the northern circumpolar permafrost zone, more than twice as much C than in the atmosphere. The overall amount, rate, and form of C released to the atmosphere in a warmer world will influence the strength of the permafrost C feedback to climate change. We used a survey to quantify variability in the perception of the vulnerability of permafrost C to climate change. Experts were asked to provide quantitative estimates of permafrost change in response to four scenarios of warming. For the highest warming scenario (RCP 8.5), experts hypothesized that C release from permafrost zone soils could be 19–45 Pg C by 2040, 162–288 Pg C by 2100, and 381–616 Pg C by 2300 in CO2 equivalent using 100-year CH4 global warming potential (GWP). These values become 50 % larger using 20-year CH4 GWP, with a third to a half of expected climate forcing coming from CH4 even though CH4 was only 2.3 % of the expected C release. Experts projected that two-thirds of this release could be avoided under the lowest warming scenario (RCP 2.6). These results highlight the potential risk from permafrost thaw and serve to frame a hypothesis about the magnitude of this feedback to climate change. However, the level of emissions proposed here are unlikely to overshadow the impact of fossil fuel burning, which will continue to be the main source of C emissions and climate forcing.  相似文献   

2.
 Changes in land surface driving variables, predicted by GCM transient climate change experiments, are confirmed to exhibit linearity in the global mean land temperature anomaly, ΔT l . The associated constants of proportionality retain spatial and seasonal characteristics of the GCM output, whilst ΔT l is related to radiative forcing anomalies. The resultant analogue model is shown to be robust between GCM runs and as such provides a computationally efficient technique of extending existing GCM experiments to a large range of climate change scenarios. As an example impacts study, the analogue model is used to drive a terrestrial ecosystem model, and predicted changes in terrestrial carbon are found to be similar to those when using GCM anomalies directly. Received: 4 January 1999 / Accepted: 11 December 1999  相似文献   

3.
Estimates of possible climate changes and cryolithozone dynamics in the 21st century over the Northern Hemisphere land are obtained using the IAP RAS global climate model under the RCP scenarios. Annual mean warming over the northern extratropical land during the 21st century amounts to 1.2–5.3°C depending on the scenario. The area of the snow cover in February amounting currently to 46 million km2 decreases to 33–42 million km2 in the late 21st century. According to model estimates, the near-surface permafrost in the late 21st century persists in northern regions of West Siberia, in Transbaikalia, and Tibet even under the most aggressive RCP 8.5 scenario; under more moderate scenarios (RCP 6.0, RCP 4.5, and RCP 2.6), it remains in East Siberia and in some high-latitude regions of North America. The total near-surface permafrost area in the Northern Hemisphere in the current century decreases by 5.3–12.8 million km2 depending on the scenario. The soil subsidence due to permafrost thawing in Central Siberia, Cisbaikalia, and North America can reach 0.5–0.8 m by the late 21st century.  相似文献   

4.
The response of the ocean’s meridional overturning circulation (MOC) to increased greenhouse gas forcing is examined using a coupled model of intermediate complexity, including a dynamic 3-D ocean subcomponent. Parameters are the increase in CO2 forcing (with stabilization after a specified time interval) and the model’s climate sensitivity. In this model, the cessation of deep sinking in the north “Atlantic” (hereinafter, a “collapse”), as indicated by changes in the MOC, behaves like a simple bifurcation. The final surface air temperature (SAT) change, which is closely predicted by the product of the radiative forcing and the climate sensitivity, determines whether a collapse occurs. The initial transient response in SAT is largely a function of the forcing increase, with higher sensitivity runs exhibiting delayed behavior; accordingly, high CO2-low sensitivity scenarios can be assessed as a recovering or collapsing circulation shortly after stabilization, whereas low CO2-high sensitivity scenarios require several hundred additional years to make such a determination. We also systemically examine how the rate of forcing, for a given CO2 stabilization, affects the ocean response. In contrast with previous studies based on results using simpler ocean models, we find that except for a narrow range of marginally stable to marginally unstable scenarios, the forcing rate has little impact on whether the run collapses or recovers. In this narrow range, however, forcing increases on a time scale of slow ocean advective processes results in weaker declines in overturning strength and can permit a run to recover that would otherwise collapse.  相似文献   

5.
Thermal emission is modeled from a canopy/soil surface, where the soil and the leaves are at different temperatures,T g andT c respectively. The temperatureT m corresponding to a radiometer reading is given by $$B_\lambda (T_m ) = \chi B_\lambda (T_g ) + (1 - \chi )B_\lambda (T_c ) ,$$ whereB λ denotes the Planck blackbody function at wavelength λ, χ specifies the fraction of the field of view occupied by the soil at a given view direction, and an emissivity of 1.0 is assumed for the plants and the soil. The dependence of the soil-fraction χ on the view direction and the structure is expressed by the viewing-geometry parameter, which allows for concise and simple formulation. We observe from our model that at large view zenith angles, only the plants are effectively seen (that is, χ tends to zero), and thereforeT c can be determined from observations at large zenith angles, to the extent that such observations are practical. Viewing from the zenith, χ = exp(-L hc), whereL hc is the projection of the canopy leaf-area (per unit surface area) on a horizontal plane. For off-zenith observations, the soil-fraction χ depends on the distribution in the azimuth of the projected areas of various leaf categories, in addition to the dependence on the sum total of these projections,L hc.L hc, rather than the leaf-area index, emerges as the parameter characterizing the optical thickness of the canopy. Inferring bothT c andT g from observations from the zenith and from large zenith angles is possible ifL hc is known from other measurements. Drooping of leaves under water-stress conditions affects the observed temperatureT m in a complicated way because a leaf-inclination change produces a change inL hc (for the same leaf area) and also a change in the dependence of χ on the view direction. Water stress can produce an increase of the soil-fraction χ and thus tends to produce an exaggerated increase in the observed temperature compared to the actual increase in canopy temperature. These effects are analyzed for a simulated soybean canopy.  相似文献   

6.
A land–sea surface warming ratio (or φ) that exceeds unity is a robust feature of both observed and modelled climate change. Interestingly, though climate models have differing values for φ, it remains almost time-invariant for a wide range of twenty-first century climate transient warming scenarios, while varying in simulations of the twentieth century. Here, we present an explanation for time-invariant land–sea warming ratio that applies if three conditions on radiative forcing are met: first, spatial variations in the climate forcing must be sufficiently small that the lower free troposphere warms evenly over land and ocean; second, the temperature response must not be large enough to change the global circulation to zeroth order; third, the temperature response must not be large enough to modify the boundary layer amplification mechanisms that contribute to making φ exceed unity. Projected temperature changes over this century are too small to breach the latter two conditions. Hence, the mechanism appears to show why both twenty-first century and time-invariant CO2 forcing lead to similar values of φ in climate models despite the presence of transient ocean heat uptake, whereas twentieth century forcing—which has a significant spatially confined anthropogenic tropospheric aerosol component that breaches the first condition—leads to modelled values of φ that vary widely amongst models and in time. Our results suggest an explanation for the behaviour of φ when climate is forced by other regionally confined forcing scenarios such as geo-engineered changes to oceanic clouds. Our results show how land–sea contrasts in surface and boundary layer characteristics act in tandem to produce the land–sea surface warming contrast.  相似文献   

7.
The global three-dimensional Lagrangian chemistry-transport model STOCHEM has been used to follow changes in the tropospheric distributions of methane CH4 and ozone O3 following the emission of pulses of the oxides of nitrogen NO x . Month-long emission pulses of NO x produce deficits in CH4 mixing ratios that bring about negative radiative forcing (climate cooling) and decay away with e-folding times of 10–15 years. They also produce short-term excesses in O3 mixing ratios that bring about positive radiative forcing (climate warming) that decay over several months to produce deficits, with their attendant negative radiative forcing (climate cooling) that decays away in step with the CH4 deficits. Total time-integrated net radiative forcing is markedly influenced by cancellation between the negative CH4 and long-term O3 contributions and the positive short-term O3 contribution to leave a small negative residual. Consequently, total net radiative forcing from NO x emission pulses and the global warming potentials derived from them, show a strong dependence on the magnitudes, locations and seasons of the emissions. These dependences are illustrated using the Asian continent as an example and demonstrate that there is no simple robust relationship between continental-scale NO x emissions and globally-integrated radiative forcing. We find that the magnitude of the time-integrated radiative forcing from NO x -driven CH4 depletion tends to approach and outweigh that from ozone enhancement, leaving net time-integrated radiative forcings and global warming potentials negative (climate cooling) in contrast to the situation for aircraft NO x (climate warming). Control of man-made surface NO x emissions alone may lead to positive radiative forcing (climate warming).  相似文献   

8.
An approach to mitigate global warming via sulphur loading in the stratosphere (geoengineering) is studied, employing a large ensemble of numerical experiments with the climate model of intermediate complexity IAP RAS CM. The model is forced by the historical+SRES A1B anthropogenic greenhouse gases+tropospheric sulphates scenario for 1860–2100 with additional sulphur emissions in the stratosphere in the twenty-first century. Different ensemble members are constructed by varying values of the parameters governing mass, horizontal distribution and radiative forcing of the stratospheric sulphates. It is obtained that, given a global loading of the sulphates in the stratosphere, among those studied in this paper latitudinal distributions of geoengineering aerosols, the most efficient one at the global basis is that peaked between 50°N and 70°N and with a somewhat smaller burden in the tropics. Uniform latitudinal distribution of stratospheric sulphates is a little less efficient. Sulphur emissions in the stratosphere required to stop the global temperature at the level corresponding to the mean value for 2000–2010 amount to more than 10 TgS/year in the year 2100. These emissions may be reduced if some warming is allowed to occur in the twenty-first century. For instance, if the global temperature trend S g in every decade of this century is limited not to exceed 0.10 K/decade (0.15 K/decade), geoengineering emissions of 4–14 TgS/year (2–7 TgS/year) would be sufficient. Even if the global warming is stopped, temperature changes in different regions still occur with a magnitude up to 1 K. Their horizontal pattern depends on implied latitudinal distribution of stratospheric sulphates. In addition, for the stabilised global mean surface air temperature, global precipitation decreases by about 10%. If geoengineering emissions are stopped after several decades of implementation, their climatic effect is removed within a few decades. In this period, surface air temperature may grow with a rate of several Kelvins per decade. The results obtained with the IAP RAS CM are further interpreted employing a globally averaged energy–balance climate model. With the latter model, an analytical estimate for sulphate aerosol emissions in the stratosphere required climate mitigation is obtained. It is shown that effective vertical localisation of the imposed radiative forcing is important for geoengineering efficiency.  相似文献   

9.
The stability of the Atlantic meridional overturning circulation (MOC) is investigated for various climate scenario runs, using data from the CMIP3 archive of coupled atmosphere-ocean models. Apart from atmospheric feedbacks, the sign of the salt flux into the Atlantic basin that is carried by the MOC determines whether the MOC is in the single or multiple equilibria regime. This salt advection feedback is analyzed by diagnosing the freshwater and salt budgets for the combined Atlantic and Arctic basins. Consistent with the finding that almost all coupled climate models recover from hosing experiments, it is found that most models feature a negative salt advection feedback in their pre-industrial climate: freshwater perturbations are damped by this feedback, excluding the existence of a stable off-state for the MOC. All models feature enhanced evaporation over the Atlantic basin in future climates, but for a moderate increase in radiative forcing (B1 and 2 CO2 scenarios), there is a decrease of the fresh water flux carried by the MOC into the Atlantic (the deficit is made up by increased fresh water transport by the gyre circulation). In this forcing regime the salt advection feedback becomes less negative: for three models from an ensemble of eight it is positive in a 2 CO2 climate, while two models feature a positive feedback in the pre-industrial climate. For even warmer climates (A1B-equilibrium and 4 CO2) the salt feedback becomes more negative (damping) again. It is shown that the decrease in northward fresh water transport at 34°S by the MOC (in B1-equilibrium and 2 CO2) is due to a reduction of the inflow of intermediate waters relative to thermocline waters, associated with a robust shoaling of the MOC in future, warmer climates. In A1B and 4 CO2 climates northward freshwater transport increases again. The MOC keeps shoaling, but both intermediate and thermocline water masses freshen.  相似文献   

10.
General circulation models (GCMs) are unanimous in projecting warmer temperatures in an enhanced CO2 atmosphere, with amplification of this warming in higher latitudes. The Hudson Bay region, which is located in the Arctic and subarctic regions of Canada, should therefore be strongly influenced by global warming. In this study, we compare the response of Hudson Bay to a transient warming scenario provided by six-coupled atmosphere-ocean models. Our analysis focuses on surface temperature, precipitation, sea-ice coverage, and permafrost distribution. The results show that warming is expected to peak in winter over the ocean, because of a northward retreat of the sea-ice cover. Also, a secondary warming peak is observed in summer over land in the Canadian and Australian-coupled GCMs, which is associated with both a reduction in soil moisture conditions and changes in permafrost distribution. In addition, a relationship is identified between the retreat of the sea-ice cover and an enhancement of precipitation over both land and oceanic surfaces. The response of the sea-ice cover and permafrost layer to global warming varies considerably among models and thus large differences are observed in the projected regional increase in temperature and precipitation. In view of the important feedbacks that a retreat of the sea-ice cover and the distribution of permafrost are likely to play in the doubled and tripled CO2 climates of Hudson Bay, a good representation of these two parameters is necessary to provide realistic climate change scenarios. The use of higher resolution regional climate model is recommended to develop scenarios of climate change for the Hudson Bay region.  相似文献   

11.
Global Circulation Models (GCMs) provide projections for future climate warming using a wide variety of highly sophisticated anthropogenic CO2 emissions scenarios as input, each based on the evolution of four emissions ??drivers??: population p, standard of living g, energy productivity (or efficiency) f and energy carbonization c (IPCC WG III 2007). The range of scenarios considered is extremely broad, however, and this is a primary source of forecast uncertainty (Stott and Kettleborough, Nature 416:723?C725, 2002). Here, it is shown both theoretically and observationally how the evolution of the human system can be considered from a surprisingly simple thermodynamic perspective in which it is unnecessary to explicitly model two of the emissions drivers: population and standard of living. Specifically, the human system grows through a self-perpetuating feedback loop in which the consumption rate of primary energy resources stays tied to the historical accumulation of global economic production??or p×g??through a time-independent factor of 9.7±0.3 mW per inflation-adjusted 1990 US dollar. This important constraint, and the fact that f and c have historically varied rather slowly, points towards substantially narrowed visions of future emissions scenarios for implementation in GCMs.  相似文献   

12.
We identify and remove the main natural perturbations (e.g. volcanic activity, ENSOs) from the global mean lower tropospheric temperatures (T LT ) over January 1979 - June 2017 to estimate the underlying, potentially human-forced trend. The unaltered value is +0.155 K dec?1 while the adjusted trend is +0.096 K dec?1, related primarily to the removal of volcanic cooling in the early part of the record. This is essentially the same value we determined in 1994 (+0.09 K dec?1, Christy and McNider, 1994) using only 15 years of data. If the warming rate of +0.096 K dec?1 represents the net T LT response to increasing greenhouse radiative forcings, this implies that the T LT tropospheric transient climate response (ΔT LT at the time CO2 doubles) is +1.10 ± 0.26 K which is about half of the average of the IPCC AR5 climate models of 2.31 ± 0.20 K. Assuming that the net remaining unknown internal and external natural forcing over this period is near zero, the mismatch since 1979 between observations and CMIP-5 model values suggests that excessive sensitivity to enhanced radiative forcing in the models can be appreciable. The tropical region is mainly responsible for this discrepancy suggesting processes that are the likely sources of the extra sensitivity are (a) the parameterized hydrology of the deep atmosphere, (b) the parameterized heat-partitioning at the oceanatmosphere interface and/or (c) unknown natural variations.  相似文献   

13.
There is mounting evidence that permafrost degradation has occurred over the past century. However, the amount of permafrost lost is uncertain because permafrost is not readily observable over long time periods and large scales. This paper uses JULES, the land surface component of the Hadley Centre global climate model, driven by different realisations of twentieth century meteorology to estimate the pan-arctic changes in near-surface permafrost. Model simulations of permafrost are strongly dependent on the amount of snow both in the driving meteorology and the way it is treated once it reaches the ground. The multi-layer snow scheme recently adopted by JULES significantly improves its estimates of soil temperatures and permafrost extent. Therefore JULES, despite still having a small cold bias in soil temperatures, can now simulate a near-surface permafrost extent which is comparable to that observed. Changes in snow cover have been shown to contribute to changes in permafrost and JULES simulates a significant decrease in late twentieth century pan-Arctic spring snow cover extent. In addition, large-scale modelled changes in the active layer are comparable with those observed over northern Russia. Simulations over the period 1967–2000 show a significant loss of near-surface permafrost—between 0.55 and 0.81 million km2 per decade with this spread caused by differences in the driving meteorology. These runs also show that, for the grid cells where the active layer has increased significantly, the mean increase is ~10 cm per decade. The permafrost degradation discussed here is mainly caused by an increase in the active layer thickness driven by changes in the large scale atmospheric forcing. However, other processes such as thermokarst development and river and coastal erosion may also occur enhancing permafrost loss.  相似文献   

14.
Climate is simulated for reference and mitigation emissions scenarios from Integrated Assessment Models using the Bern2.5CC carbon cycle–climate model. Mitigation options encompass all major radiative forcing agents. Temperature change is attributed to forcings using an impulse–response substitute of Bern2.5CC. The contribution of CO2 to global warming increases over the century in all scenarios. Non-CO2 mitigation measures add to the abatement of global warming. The share of mitigation carried by CO2, however, increases when radiative forcing targets are lowered, and increases after 2000 in all mitigation scenarios. Thus, non-CO2 mitigation is limited and net CO2 emissions must eventually subside. Mitigation rapidly reduces the sulfate aerosol loading and associated cooling, partly masking Greenhouse Gas mitigation over the coming decades. A profound effect of mitigation on CO2 concentration, radiative forcing, temperatures and the rate of climate change emerges in the second half of the century.  相似文献   

15.
Liu  Tingxiang  Zhang  Shuwen  Yu  Lingxue  Bu  Kun  Yang  Jiuchun  Chang  Liping 《Theoretical and Applied Climatology》2017,130(3-4):971-978
Currently, US forests constitute a large carbon sink, comprising about 9 % of the global terrestrial carbon sink. Wildfire is the most significant disturbance influencing carbon dynamics in US forests. Our objective is to estimate impacts of climate change, CO2 concentration, and nitrogen deposition on the future net biome productivity (NBP) of US forests until the end of twenty-first century under a range of disturbance conditions. We designate three forest disturbance scenarios under one future climate scenario to evaluate factor impacts for the future period (2011–2100): (1) no wildfires occur but forests continue to age (Saging), (2) no wildfires occur and forest ages are fixed in 2010 (Sfixed_nodis), and (3) wildfires occur according to a historical pattern, consequently changing forest age (Sdis_age_change). Results indicate that US forests remain a large carbon sink in the late twenty-first century under the Sfixed_nodis scenario; however, they become a carbon source under the Saging and Sdis_age_change scenarios. During the period of 2011 to 2100, climate is projected to have a small direct effect on NBP, while atmospheric CO2 concentration and nitrogen deposition have large positive effects on NBP regardless of the future climate and disturbance scenarios. Meanwhile, responses to past disturbances under the Sfixed_nodis scenario increase NBP regardless of the future climate scenarios. Although disturbance effects on NBP under the Saging and Sdis_age_change scenarios decrease with time, both scenarios experience an increase in NBP prior to the 2050s and then a decrease in NBP until the end of the twenty-first century. This study indicates that there is potential to increase or at least maintain the carbon sink of conterminous US forests at the current level if future wildfires are reduced and age structures are maintained at a productive mix. The effects of CO2 on the future carbon sink may overwhelm effects of other factors at the end of the twenty-first century. Although our model in conjunction with multiple disturbance scenarios may not reflect the true conditions of future forests, it provides a range of potential conditions as well as a useful guide to both current and future forest carbon management.  相似文献   

16.
We investigated the effect of two different spatial scales of climate change scenarios on crop yields simulated by the EPIC crop model for corn, soybean, and wheat, in the central Great Plains of the United States. The effect of climate change alone was investigated in Part I. In Part II (Easterling et al., 2001) we considered the effects ofCO2 fertilization effects and adaptation in addition to climate change. The scenarios were formed from five years of control and 2 ×CO2 runs of a high resolution regional climate model (RegCM) and the same from an Australian coarse resolution general circulation model (GCM), which provided the initial and lateral boundary conditions for the regional model runs. We also investigated the effect of two different spatial resolutions of soil input parameters to the crop models. We found that for corn and soybean in the eastern part of the study area, significantly different mean yield changes were calculated depending on the scenario used. Changes in simulated dryland wheat yields in the western areas were very similar, regardless of the scale of the scenario. The spatial scale of soils had a strong effect on the spatial variance and pattern of yields across the study area, but less effect on the mean aggregated yields. We investigated what aspects of the differences in the scenarios were most important for explaining the different simulated yield responses. For instance, precipitation changes in June were most important for corn and soybean in the eastern CSIRO grid boxes. We establish the spatial scale of climate changescenarios as an important uncertainty for climate change impacts analysis.  相似文献   

17.
This study reveals the impacts of climatic variable trends on drought severity in Xinjiang, China. Four drought indices, including the self-calibrating Palmer drought severity index (sc-PDSI), Erinç’s index (I m), Sahin’s index (I sh), and UNEP aridity index (AI), were used to compare drought severity. The ensemble empirical mode decomposition and the modified Mann-Kendall trend test were applied to analyze the nonlinear components and trends of the climatic variable and drought indices. Four and six climatic scenarios were generated in sc-PDSI, I m, I sh, and AI with different combinations of the observed and detrended climatic variables, respectively. In Xinjiang, generally increasing trends in minimal, average, and maximal air temperature (T min, T ave, T max) and precipitation (P) were found, whereas a decreasing trend in wind speed at 2 m height (U 2) was observed. There were significantly increasing trends in all of the four studied drought indices. Drought relief was more obvious in northern Xinjiang than in southern Xinjiang. The strong influences of increased P on drought relief and the weak influences of increased T min, T ave, and T max on drought aggravation were shown by comparing four drought indices under different climate scenarios. Decreased U 2 had a weak influence on drought, as shown by the AI in different climate scenarios. The weak influences of T and U 2 were considered to be masked by the strong influences of P on droughts. Droughts were expected to be more severe if P did not increase, but were likely milder without an increase in air temperature and with a decrease in U 2.  相似文献   

18.
The timing and nature of ice sheet variations on Greenland over the last ~5 million years remain largely uncertain. Here, we use a coupled climate-vegetation-ice sheet model to determine the climatic sensitivity of Greenland to combined sets of external forcings and internal feedbacks operating on glacial-interglacial timescales. In particular, we assess the role of atmospheric pCO2, orbital forcing, and vegetation dynamics in modifying thresholds for the onset of glaciation in late Pliocene and Pleistocene. The response of circum-Arctic vegetation to declining levels of pCO2 (from 400 to 200 ppmv) and decreasing summer insolation includes a shift from boreal forest to tundra biomes, with implications for the surface energy balance. The expansion of tundra amplifies summer surface cooling and heat loss from the ground, leading to an expanded summer snow cover over Greenland. Atmospheric and land surface fields respond to forcing most prominently in late spring-summer and are more sensitive at lower Pleistocene-like levels of pCO2. We find cold boreal summer orbits produce favorable conditions for ice sheet growth, however simulated ice sheet extents are highly dependent on both background pCO2 levels and land-surface characteristics. As a result, late Pliocene ice sheet configurations on Greenland differ considerably from late Pleistocene, with smaller ice caps on high elevations of southern and eastern Greenland, even when orbital forcing is favorable for ice sheet growth.  相似文献   

19.
Carried out are numerical experiments with the IAP RAS global climate model (IAP RAS CM) under new RCP scenarios of anthropogenic impact for the 18th–21st centuries taking account of the response of the methane emission from the soil to the atmosphere and effects of chemical processes in the atmosphere on the climate changes. The model generally simulates the preindustrial and present-day characteristics of the methane cycle. Methane emissions from the soil to the atmosphere (within the range of 150–160 Mt CH4/year for the present-day period) reach 170–230 Mt CH4/year by the late 21st century depending on the scenario of anthropogenic impact. The methane concentration under the most aggressive RCP 8.5 anthropogenic scenario increases up to 3900 ppb by the late 21st century. Under more moderate RCP 4.5 and 6.0 anthropogenic scenarios, it reaches 1850–1980 ppb in the second half of the 21st century and decreases afterwards. Under RCP 2.6 scenario, the methane concentration maximum of 1730 ppb in the atmosphere is reached in the second decade of the 21st century. The taking account of the interaction between the processes in the soils and the climate leads to the additional increase in the methane content in the atmosphere by 10–25% in the 21st century depending on the scenario of anthropogenic impact. The taking account of the methane oxidation in the atmosphere in the case of warming reduces the increase in its concentration by 5–40%. The associated changes in the surface air temperature turn out to be small (less than 0.1 K globally or 4% of the warming expected by the late 21st century).  相似文献   

20.
Assessing disease risk has become an important component in the development of climate change adaptation strategies. Here, the infection ability of leaf blast (Magnaporthe oryzae) was modeled based on the epidemiological parameters of minimum (T min), optimum (T opt), and maximum (T max) temperatures for sporulation and lesion development. An infection ability response curve was used to assess the impact of rising temperature on the disease. The simulated spatial pattern of the infection ability index (IAI) corresponded with observed leaf blast occurrence in Indo-Gangetic plains (IGP). The IAI for leaf blast is projected to increase during the winter season (December–March) in 2020 (2010–2039) and 2050 (2040–2069) climate scenarios due to temperature rise, particularly in lower latitudes. However, during monsoon season (July–October), the IAI is projected to remain unchanged or even reduce across the IGP. The results show that the response curve may be successfully used to assess the impact of climate change on leaf blast in rice. The model could be further extended with a crop model to assess yield loss.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号