首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 206 毫秒
1.
1986年以来,长江流域的极端强降水出现了显著增加的趋势,突出表现在中下游地区。长江中下游地区极端降水量的增加,既是极端降水强度增强,也是极端降水事件显著增加的结果。长江流域极端降水变化主要发生在东南部和西南部。趋势分析表明,自20世纪80年代中期以来,长江流域上游极端降水事件峰值提前到6月份出现,与长江中下游极端降水峰值出现的时间几乎同步,这必将加大遭遇性洪水发生的机率。20世纪90年代以来长江洪水的频繁发生,与长江流域极端降水时空分布的变化密切相关。  相似文献   

2.
四十年来长江流域气温、降水与径流变化趋势   总被引:48,自引:6,他引:48       下载免费PDF全文
 40 a来,长江流域大部分地区年平均温度呈现上升趋势,20世纪90年代增温幅度最大; 在季节变化上,除了夏季,其他季节都呈升高趋势;全流域夏季降水量显著增加,尤其表现在20世纪90年代,这主要由于长江流域大部分地区夏季暴雨日数显著增加的结果;夏季径流量和年最大洪峰流量在长江中下游地区均呈现显著增加趋势。长江流域夏季降水量的增加,尤其是暴雨日数的增多必然会增加长江流域中下游地区的洪水风险。20世纪90年代以来,长江洪水的频繁发生是对气候变暖的响应。  相似文献   

3.
利用1961—2017年长江流域700个气象站夏季(6—8月)逐日降水量资料,采用泰森多边形法计算各子流域面雨量,通过Box-Cox变换和百分位法确定长江各子流域极端降水事件阈值,分析各子流域夏季极端降水事件的时空分布特征以及流域间降水空间配置关系。结论如下:(1)长江流域夏季极端降水事件的年代际特征明显,20世纪60年代至70年代极端少雨事件频发,20世纪80年代至90年代中下游以极端多雨事件为主,上游以极端少雨事件为主,21世纪以来以大范围极端少雨事件为主,且多发生在上游,而金沙江石鼓以上易发生极端多雨事件。(2)长江流域夏季极端降水前2个空间分布模态表现为:流域大部一致型,即岷沱江东部、嘉陵江北部及两湖南部夏季极端降水与流域其他地区呈反位相;南北反位相型,即长江以南与以北地区夏季极端降水呈相反的空间分布。(3)当夏季极端多雨时,长江流域夏季降水空间差异较大,空间分布格局大致有4类,但以沿江干流偏多为主;夏季极端少雨时,长江流域夏季降水空间一致性较高,以全流域大部偏少为主,仅岷沱江和嘉陵江或者两湖南部偏多。  相似文献   

4.
2050年前长江流域极端降水预估   总被引:3,自引:0,他引:3  
 20世纪90年代长江流域日最大降水增加主要出现在长江以南地区和金沙江流域,ECHAM5/MPI-OM模型也大致模拟出了这种趋势。在IPCC给出的3种不同的排放情景下,2000-2050年长江上游日最大降水均有上升趋势,2020年前A2情景下日最大降水最大,A1B最小;长江中下游日最大降水在2025年之前均有明显上升趋势,之后略有下降,波动较大。长江流域未来日最大降水增多的区域可能主要出现在长江以南地区,而极端降水减少的区域可能出现在长江以北地区。  相似文献   

5.
2000年以来夏季长江流域降水异常研究   总被引:10,自引:7,他引:3  
根据1880年以来中国夏季的雨型、1890年以来长江中下游梅雨以及1951年以来北半球大气环流等资料,利用物理统计分析的方法,研究了2000年以来夏季长江流域降水异常特征及东亚大气环流背景。结果表明,20世纪50年代至70年代后期我国夏季主要多雨带位置偏北,黄河流域、华北一带降水偏多,长江流域降水偏少,长江中下游梅雨偏弱;70年代后期到90年代末我国夏季主要多雨带南移,长江流域进入多雨期,长江中下游梅雨偏强,黄河流域、华北地区则转入少雨期;但是2000年以来的夏季,在黄河流域、华北地区仍维持少雨的背景下,主要多雨带却徘徊在黄河与长江之间及华南、江南长江流域降水显著偏少,梅雨异常偏弱,空梅频繁出现,长江流域、黄河流域及华北地区同处在持续少雨位相和干旱频发阶段,这种同步振荡的异常现象历史上极为少见。夏季东亚环流型的特殊配置是2000年以来夏季长江流域持续少雨的主要原因之一,这与2000年以前长江流域夏季少雨的环流背景不一样。  相似文献   

6.
本文研究了长江中下游夏季大范围极端高温事件的年代际变化及其与大气环流的联系。结果表明,从1960-2013年长江中下游极端高温事件呈现出多-少-多的年代际变化特征,两次显著的年代际突变分别发生在20世纪70年代初和21世纪初。欧亚大陆高层的遥相关模态与极端高温事件在年代际尺度上存在密切联系。该遥相关模态可以通过影响东亚地区上空高层西风急流的强弱,进一步影响长江中下游地区局地的辐合辐散、垂直运动和云量的变化,从而对长江中下游地区极端高温事件产生影响。利用近百年的气温和大气环流资料也表明在更长时间尺度上该欧亚大陆高层的遥相关模态与极端高温事件的关系也是显著的。  相似文献   

7.
中国年极端降水事件的时空分布特征   总被引:39,自引:6,他引:33  
基于中国1955~2004年314个台站逐日降水资料,根据百分位值方法定义了不同台站的极端降水阈值,进而对中国年极端降水事件的时空特征进行了探讨分析.结果表明:江淮北部、湖南、四川西南部及西藏和新疆西部地区与中国其他区域呈反向变化特征,是中国年极端降水事件的主要空间异常模态;中国年极端降水事件的时间变化存在明显的区域性差异,东北、西北东部、华北表现为减少趋势,其中东北和华北发生了突变,而西北西部、长江中下游、华南及青藏高原表现为增加趋势,其中西北西部、长江中下游发生了突变;中国各分区年极端降水事件的周期振荡不完全一致;中国年极端降水事件与年降水量之间存在较好的相关性,从季节来看,夏季极端降水事件与年降水量的相关性最好.  相似文献   

8.
中国近54年来夏季极端降水事件特征研究   总被引:8,自引:2,他引:6  
利用1960~2013年中国6~8月无缺测的571站逐日降水资料,定义7个极端降水指数,研究中国夏季极端降水事件特征。结果表明:(1)极端降水事件空间分布存在明显的区域性差异,长江中下游地区、华南地区、西北地区表现为增加趋势,东北地区、华北地区、西南部分地区表现为减少趋势;时间分布表现出具有显著的年际和年代际变化特征,极端降水事件有增加趋势,在20世纪90年代初期有明显转折。(2)M-K检验表现出极端降水事件在20世纪90年代初发生突变,突变前(后)偏弱(强)。(3)极端降水指数周期振荡不完全一致,准15年周期振荡为主,其次是准7年周期,最强振动出现在1998年。(4)除持续干期指数外,其他极端降水指数间存在较好的相关性。  相似文献   

9.
基于1960—2017年观测数据分析了中国东部降水极端特性的地区差异、季节和气候学特征及变化格局,探讨了与全球变化和区域气候变率的关联性。结果表明,极端性降水的演化与降水均值或总量的气候型态、降水集中性和持续性密切关联,尤其雨带迁移和雨型演替是影响极端性降水地区差异与时空演变的根本因素。气候变化背景下,中国东部极端性降水强度和频次变化存在较好的协同一致性,近60年来在长江以南,强度加大的地区极端性降水亦趋于频发。同时,两者季节特征和地区差异明显。春季东北地区及华北北部极端性降水强度和频次均有明显增加。近60年来夏季极端性降水强度和频次的趋势变化在长江以南均以增加为主,以北以下降为主。秋季极端性降水强度和频次在华北地区亦呈增加趋势。冬季华南和江南地区极端性降水强度和频次趋势变化均以增加为主。华北地区及以北和内蒙古的西部冬季极端性降水强度增加显著,但频次变化不明显。而东北地区北部冬季极端性降水在强度减小的情形下,其频次仍趋显著增加。特别是中国降水主要集中在夏季,自1980年代以来中国东部夏季多雨带南移,雨型以北方型和中间型占优,转换为以长江型和华南型为主,多雨带的极端性降水群发性强,影响指数显著增加。此外,太平洋年代际振荡(PDO)暖位相及ENSO暖事件期间,长江以北夏季极端性降水的影响指数会显著降低。而东亚夏季风的减弱则有利于长江中下游等地区夏季极端性降水的频发和群发,极端性降水强度加大,其影响的危险性趋于增强。   相似文献   

10.
20世纪长江流域3次全流域灾害性洪水事件的气象成因分析   总被引:10,自引:1,他引:9  
20世纪长江流域曾出现上游洪水7次,中游洪水16次,下游洪水7次,其中有3次是全流域性洪水,分别发生在1998、1954和1931年。1998、1954和1931年梅雨期开始前(3~5月),长江流域降水比常年偏多。进入梅雨季以后,先后出现两场持续性暴雨:第1场出现在6月中旬至7月上旬,这场暴雨造成中下游河流的水位达到或超过警戒水位,出现局地洪涝;7月下旬长江中下游又出现1场持续性范围广的暴雨,雨水只能作为地面径流汇集到长江干流,造成很高水位的洪流。第2场持续性暴雨使长江上下游强降水时段在7月下旬重合,导致长江中下游干流洪水与来自上游的洪水在8月初至中旬遭遇,造成长江中下游灾难性的大洪水。1998、1954和1931年长江全流域性大洪水与东亚中高纬地区大气环流和东亚夏季风活动异常有联系。大气环流和东亚季风活动异常导致7月下旬西太平洋副热带高压的位置偏南,梅雨期持续到7月底,有利于长江中下游持续性暴雨发生的环流条件在7月下旬仍然存在。  相似文献   

11.
长江流域1960-2004年极端强降水时空变化趋势   总被引:15,自引:0,他引:15  
Recent trends of the rainfall, intensity and frequency of extreme precipitation (EP) over the Yangtze River Basin are analyzed in this paper. Since the mid-1980s the rainfall of EP in the basin has significantly increased, and the most significant increment occurred in the southeast mid-lower reaches, and southwest parts of the basin. Summer witnessed the most remarkable increase in EP amount. Both the intensity and frequency of EP events have contributed to the rising of EP amount, but increase in frequency contributed more to the increasing trend of EP than that in intensity. The average intervals between adjacent two EP events have been shortened. It is also interesting to note that the monthly distribution of EP events in the upper basin has changed, and the maximum frequency is more likely to occur in June rather than in July. The synchronization of the maximum frequency month between the upper and mid-lower reaches might have also increased the risk of heavy floods in the mid-lower reaches of the Yangtze River.  相似文献   

12.
基于1980—2016年长江流域站点观测降水,评估了CWRF区域气候模式对长江流域面雨量和极端降水气候事件的模拟能力.结果表明:CWRF模式能较好地再现1980—2016年长江流域及不同分区降水空间分布及月/季面雨量年际变率,且在冬、春季表现较好,夏、秋季次之.CWRF模式对长江流域面雨量存在系统性高估,对面雨量的模拟...  相似文献   

13.
从小时尺度考察中国中东部极端降水的持续性和季节特征   总被引:7,自引:1,他引:6  
李建  宇如聪  孙蟩 《气象学报》2013,71(4):652-659
相对于日降水量,小时尺度降水资料可以更准确地反映降水强度并描述降水过程,因而更适用于极端降水阈值确定及其特性研究.利用广义极值分布估计中国321个站最大小时降水量的分布函数,确定了5a重现期的小时降水强度阈值.阈值的空间分布呈现出明显的地域差异,西北地区阈值偏低,华北地区、长江中下游地区、华南沿海地区和四川盆地西部地区为高阈值中心.取各站5a一遇极端降水事件对其持续性特征和季节特征进行分析,发现在沿海地区、长江流域和青藏高原东坡极端降水事件的平均持续时间较长(超过12h);中国北部地区持续时间较短.在具有较大海拔落差的复杂地形区,极端降水事件较平原地区更快地发展到峰值.华南地区4月就可有极端降水事件出现,而中国北方地区要到6月底才出现极端降水;全中国大部分地区的年最晚极端降水在8-9月,但沿海地区、大陆南端和西南地区南部的少数站点在10月以后仍有极端降水发生.  相似文献   

14.
A new technique for identifying regional climate events, the Objective Identification Technique for Regional Extreme Events(OITREE), was applied to investigate the characteristics of regional heavy rainfall events in China during the period1961–2012. In total, 373 regional heavy rainfall events(RHREs) were identified during the past 52 years. The East Asian summer monsoon(EASM) had an important influence on the annual variations of China's RHRE activities, with a significant relationship between the intensity of the RHREs and the intensity of the Mei-yu. Although the increase in the frequency of those RHREs was not significant, China experienced more severe and extreme regional rainfall events in the 1990 s. The middle and lower reaches of the Yangtze River and the northern part of South China were the regions in the country most susceptible to extreme precipitation events. Some stations showed significant increasing trends in the southern part of the middle and lower reaches of the Yangtze River and the northern part of South China, while parts of North China, regions between Guangxi and Guangdong, and northern Sichuan showed decreasing trends in the accumulated intensity of RHREs.The spatial distribution of the linear trends of events' accumulated intensity displayed a similar so-called "southern flooding and northern drought" pattern over eastern China in recent decades.  相似文献   

15.
Compared with daily rainfall amount, hourly rainfall rate represents rainfall intensity and the rainfall process more accurately, and thus is more suitable for studies of extreme rainfall events. The distribution functions of annual maximum hourly rainfall amount at 321 stations in China are quantified by the Generalized Extreme Value(GEV) distribution, and the threshold values of hourly rainfall intensity for 5-yr return period are estimated. The spatial distributions of the threshold exhibit significant regional diferences, with low values in northwestern China and high values in northern China, the mid and lower reaches of the Yangtze River valley, the coastal areas of southern China, and the Sichuan basin. The duration and seasonality of the extreme precipitation with 5-yr return periods are further analyzed. The average duration of extreme precipitation events exceeds 12 h in the coastal regions, Yangtze River valley, and eastern slope of the Tibetan Plateau. The duration in northern China is relatively short. The extreme precipitation events develop more rapidly in mountain regions with large elevation diferences than those in the plain areas. There are records of extreme precipitation in as early as April in southern China while extreme rainfall in northern China will not occur until late June. At most stations in China, the latest extreme precipitation happens in August–September. The extreme rainfall later than October can be found only at a small portion of stations in the coastal regions, the southern end of the Asian continent, and the southern part of southwestern China.  相似文献   

16.
Daily precipitation amounts and frequencies from the CMORPH (Climate Prediction Center Morphing Technique) and TRMM (Tropical Rainfall Measuring Mission) 3B42 precipitation products are validated against warm season in-situ precipitation observations from 2003 to 2008 over the Tibetan Plateau and the regions to its east. The results indicate that these two satellite datasets can better detect daily precipitation frequency than daily precipitation amount. The ability of CMORPH and TRMM 3B42 to accurately detect daily precipitation amount is dependent on the underlying terrain. Both datasets are more reliable over the relatively flat terrain of the northeastern Tibetan Plateau, the Sichuan basin, and the mid-lower reaches of the Yangtze River than over the complex terrain of the Tibetan Plateau. Both satellite products are able to detect the occurrence of daily rainfall events; however, their performance is worse in regions of complex topography, such as the Tibetan Plateau. Regional distributions of precipitation amount by precipitation intensity based on TRMM 3B42 are close to those based on rain gauge data. By contrast, similar distributions based on CMORPH differ substantially. CMORPH overestimates the amount of rain associated with the most intense precipitation events over the mid-lower reaches of the Yangtze River while underestimating the amount of rain associated with lighter precipitation events. CMORPH underestimates the amount of intense precipitation and overestimates the amount of lighter precipitation over the other analyzed regions. TRMM 3B42 underestimates the frequency of light precipitation over the Sichuan basin and the mid-lower reaches of the Yangtze River. CMORPH overestimates the frequencies of weak and intense precipitation over the mid-lower reaches of the Yangtze River, and underestimates the frequencies of moderate and heavy precipitation. CMORPH also overestimates the frequency of light precipitation and underestimates the frequency of intense precipitation over the other three regions. The TRMM 3B42 product provides better characterizations of the regional gamma distributions of daily precipitation amount than the CMORPH product, for which the cumulative distribution functions are biased toward lighter precipitation events.  相似文献   

17.
Based on hourly precipitation data in eastern China in the warm season during 1961-2000,spatial distributions of frequency for 20 mm h 1 and 50 mm h 1 precipitation were analyzed,and the criteria of short-duration rainfall events and severe rainfall events are discussed.Furthermore,the percentile method was used to define local hourly extreme precipitation;based on this,diurnal variations and trends in extreme precipitation were further studied.The results of this study show that,over Yunnan,South China,North China,and Northeast China,the most frequent extreme precipitation events occur most frequently in late afternoon and/or early evening.In the Guizhou Plateau and the Sichuan Basin,the maximum frequency of extreme precipitation events occurs in the late night and/or early morning.And in the western Sichuan Plateau,the maximum frequency occurs in the middle of the night.The frequency of extreme precipitation (based on hourly rainfall measurements) has increased in most parts of eastern China,especially in Northeast China and the middle and lower reaches of the Yangtze River,but precipitation has decreased significantly in North China in the past 50 years.In addition,stations in the Guizhou Plateau and the middle and lower reaches of the Yangtze River exhibit significant increasing trends in hourly precipitation extremes during the nighttime more than during the daytime.  相似文献   

18.
Summary The present study is an analysis of the observed extreme temperature and precipitation trends over Yangtze from 1960 to 2002 on the basis of the daily data from 108 meteorological stations. The intention is to identify whether or not the frequency or intensity of extreme events has increased with climate warming over Yangtze River basin in the last 40 years. Both the Mann-Kendall (MK) trend test and simple linear regression were utilized to detect monotonic trends in annual and seasonal extremes. Trend tests reveal that the annual and seasonal mean maximum and minimum temperature trend is characterized by a positive trend and that the strongest trend is found in the winter mean minimum in the Yangtze. However, the observed significant trend on the upper Yangtze reaches is less than that found on the middle and lower Yangtze reaches and for the mean maximum is much less than that of the mean minimum. From the basin-wide point of view, significant increasing trends are observed in 1-day extreme temperature in summer and winter minimum, but there is no significant trend for 1-day maximum temperature. Moreover, the number of cold days ≤0 °C and ≤10 °C shows significant decrease, while the number of hot days (daily value ≥35 °C) shows only a minor decrease. The upward trends found in the winter minimum temperature in both the mean and the extreme value provide evidence of the warming-up of winter and of the weakening of temperature extremes in the Yangtze in last few decades. The monsoon climate implies that precipitation amount peaks in summer as does the occurrence of heavy rainfall events. While the trend test has revealed a significant trend in summer rainfall, no statistically significant change was observed in heavy rain intensity. The 1-day, 3-day and 7-day extremes show only a minor increase from a basin-wide point of view. However, a significant positive trend was found for the number of rainstorm days (daily rainfall ≥50 mm). The increase of rainstorm frequency, rather than intensity, on the middle and lower reaches contributes most to the positive trend in summer precipitation in the Yangtze.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号