首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Evidence is presented that in the stable atmospheric surface layer turbulent fluxes of heat and momentum can be determined from the standard deviations of longitudinal wind velocity and temperature, σ u and σ T respectively, measured at a single level. An attractive aspect of this method is that it yields fluxes from measurements that can be obtained with two-dimensional sonic anemometers. These instruments are increasingly being used at official weather stations, where they replace the standard cup anemometer–wind vane system. With methods such as the one described in this note, a widespread, good quality, flux network can be established, which would greatly benefit the modelling community. It is shown that a ‘variance’ dimensionless height (ζ σ) defined from σ u and σ T is highly related to the ‘conventional’ dimensionless stability parameter ζ=z/L, where z is height and L is the Obukhov length. Empirical functions for ζ σ are proposed that allow direct calculation of heat and momentum fluxes from σ u and σ T. The method performs fairly well also during a night of intermittent turbulence.  相似文献   

2.
Measurements of atmospheric turbulence made during the Surface Heat Budget of the Arctic Ocean Experiment (SHEBA) are used to examine the profile stability functions of momentum, φ m , and sensible heat, φ h , in the stably stratified boundary layer over the Arctic pack ice. Turbulent fluxes and mean meteorological data that cover different surface conditions and a wide range of stability conditions were continuously measured and reported hourly at five levels on a 20-m main tower for 11 months. The comprehensive dataset collected during SHEBA allows studying φ m and φ h in detail and includes ample data for the very stable case. New parameterizations for φ m (ζ) and φ h (ζ) in stable conditions are proposed to describe the SHEBA data; these cover the entire range of the stability parameter ζ = z/L from neutral to very stable conditions, where L is the Obukhov length and z is the measurement height. In the limit of very strong stability, φ m follows a ζ 1/3 dependence, whereas φ h initially increases with increasing ζ, reaches a maximum at ζ ≈ 10, and then tends to level off with increasing ζ. The effects of self-correlation, which occur in plots of φ m and φ h versus ζ, are reduced by using an independent bin-averaging method instead of conventional averaging.  相似文献   

3.
The nocturnal atmospheric boundary layer (ABL) poses several challenges to standard turbulence and dispersion models, since the stable stratification imposed by the radiative cooling of the ground modifies the flow turbulence in ways that are not yet completely understood. In the present work we perform direct numerical simulation of a turbulent open channel flow with a constant (cooling) heat flux imposed at the ground. This configuration provides a very simplified model for the surface layer at night. As a result of the ground cooling, the Reynolds stresses and the turbulent fluctuations near the ground re-adjust on times of the order of L/u τ , where L is the Obukhov length scale and u τ is the friction velocity. For relatively weak cooling turbulence survives, but when ReL=Lut/n <~100{Re_L=Lu_\tau/\nu \lesssim 100} turbulence collapses, a situation that is also observed in the ABL. This criterion, which can be locally measured in the field, is justified in terms of the scale separation between the largest and smallest structures of the dynamic sublayer.  相似文献   

4.
We investigated the ‘local’ and ‘global’ similarity of vertical turbulent transfer of heat, water vapour, and CO2 within an urban surface layer. The results were derived from field measurements in a residential area of Tokyo, Japan during midday on fair-weather days in July 2001. In this study, correlation coefficients and quadrant analysis were used for the evaluation of ‘global’ similarity and wavelet analysis was employed for investigating ‘local’ similarity. The correlation coefficients indicated that the transfer efficiencies of water vapour and CO2 were generally smaller than that of heat. Using wavelet analysis, we found that heat is always efficiently transferred by thermal and organized motions. In contrast, water vapour and CO2, which are passive quantities, were not transferred as efficiently as heat. The quadrant analyses showed that the heat transfer by ejection exceeded that by sweep, and the ratios of ejection to sweep for water vapour and CO2 transfer were less than that for heat. This indicated that heat is more efficiently transferred by upward motions and supported the findings from wavelet analysis. The differences of turbulent transfer between heat and both CO2 and water vapour were probably caused both by the active role of temperature and the heterogeneity in the source distribution of scalars  相似文献   

5.
Taylor’s frozen turbulence hypothesis is the central assumption invoked in most experiments designed to investigate turbulence physics with time resolving sensors. It is also frequently used in theoretical discussions when linking Lagrangian to Eulerian flow formalisms. In this work we seek to quantify the effectiveness of Taylor’s hypothesis on the field scale using water vapour as a passive tracer. A horizontally orientated Raman lidar is used to capture the humidity field in space and time above an agricultural region in Switzerland. High resolution wind speed and direction measurements are conducted simultaneously allowing for a direct test of Taylor’s hypothesis at the field scale. Through a wavelet decomposition of the lidar humidity measurements we show that the scale of turbulent motions has a strong influence on the applicability of Taylor’s hypothesis. This dependency on scale is explained through the use of dimensional analysis. We identify a ‘persistency scale’ that can be used to quantify the effectiveness of Taylor’s hypothesis, and present the accuracy of the hypothesis as a function of this non-dimensional length scale. These results are further investigated and verified through the use of large-eddy simulations.  相似文献   

6.
Determination of biosphere–atmosphere exchanges requires accurate quantification of the turbulent fluxes of energy and of a wide variety of trace gases. Relaxed Eddy Accumulation (REA) is a method that has received increasing attention in recent years, because it does not require any rapid sensor for the scalar measurements as the Eddy Correlation method (EC) does. As in all micrometeorological studies, REA measurements in the atmospheric surface layer are valid under some restrictive conditions so as to be representative of a specific ecosystem. These conditions are the homogeneity of the underlying surface, stationary and horizontally homogeneous turbulence. For most experiments these conditions are not fully satisfied. Data uncertainties can also be related to not fulfilling the method principles or to the technical characteristics of the REA system itself. In order to assess REA measurement quality, a methodological approach of data analysis is developed in this study. This methodological analysis is based on the establishment of criteria for data quality control. A set of them, deduced from the mean and turbulent flow, are called ‘Dynamic criteria’ and are designated to control the stationarity and homogeneity of the w function and the validation of Taylor’s hypothesis. A second set (‘REA operational criteria’) is designed to check the sampling process and, more precisely, the homogeneity of the negative and positive selection process throughout the sampling period. A third set of criteria (‘Chemical scalar criteria’) concerns the scalar measurements. Results of the criteria application to data measured at two different experimental sites are also presented. Cut-off limits of criteria are defined based on their statistical distribution and shown to be specific for each site. Strictness of each criterion, defined by the percentage of flagged samples, is analysed in conjunction with the meteorological conditions and atmospheric stability. It is found that flagged samples mainly correspond to neutral and stable nocturnal conditions. During daytime, nearly free convection conditions can also yield poor quality data.  相似文献   

7.
We report on field observations in January 2009 (austral summer) of atmospheric dust devils in the northern part of the Atacama Desert in South America (≈20S). An extremely high level of dust-devil activity over the study site has been observed, dependent on local meteorological conditions. We found a high correlation between the dust-devil frequency of occurrence and the Obukhov length scale, L, calculated from meteorological gradient measurements, with a clear tendency for this frequency to increase with decreasing −L. The upper threshold values of −L ≈ 20–30 m, and the 2-m mean wind speed, V 2 ≈ 8m s−1, for dust-devil occurrence have been found, but the minimal V 2 threshold was not observed. Parallel routine meteorological measurements enabled us to calculate the main constituents of the surface energy balance, to obtain direct estimates of the surface albedo (α ≈ 0.21 at the solar noon) and to summarize the local conditions.  相似文献   

8.
Measurements of the surface radiation budgets for three surfaces—grass, soil and a cornfield—are used to evaluate the ‘heating coefficient’β, and its componentsβ (=dL /dR n ) andβ (=dL /dR n ). This resolution permits an analysis of the sensitivity of β to surface and atmospheric influences.β is shown, both theoretically and empirically, to be determined by surface properties. For grass and soil, the parameter functions as an index of surface desiccation.β values are large (even under clear conditions) and variable, accounting for part of the variance in β and the anomalously small and negative values reported in the literature.β values for cloudy conditions may be larger or smaller than those for clear skies. It is concluded that, unless a predictive procedure can be developed forβ , the Monteith and Szeicz model is of limited use for the routine estimation of net radiation.  相似文献   

9.
The higher-order scalar concentration fluctuation properties are examined in the context of Monin–Obukhov similarity theory for a variety of greenhouse gases that have distinct and separate source/sink locations along an otherwise ideal micrometeorological field site. Air temperature and concentrations of water vapour, carbon dioxide and methane were measured at high frequency (10 Hz) above a flat and extensive peat-land soil in the San Joaquin–Sacramento Delta (California, USA) area, subjected to year-round grazing by beef cattle. Because of the heterogeneous distribution of the sources and sinks of CO2 and especially CH4 emitted by cattle, the scaling behaviour of the higher-order statistical properties diverged from predictions based on a balance between their production and dissipation rate terms, which can obtained for temperature and H2O during stationary conditions. We identify and label these departures as ‘exogenous’ because they depend on heterogeneities and non-stationarities induced by boundary conditions on the flow. Spectral analysis revealed that the exogenous effects show their signatures in regions with frequencies lower than those associated with scalar vertical transport by turbulence, though the two regions may partially overlap in some cases. Cospectra of vertical fluxes appear less influenced by these exogenous effects because of the modulating role of the vertical velocity at low frequencies. Finally, under certain conditions, the presence of such exogenous factors in higher-order scalar fluctuation statistics may be ‘fingerprinted’ by a large storage term in the mean scalar budget.  相似文献   

10.
When density fluctuations of scalars such as CO2 are measured with open-path gas analyzers, the measured vertical turbulent flux must be adjusted to take into account fluctuations induced by ‘external effects’ such as temperature and water vapour. These adjustments are needed to separate the effects of surface fluxes responsible for ‘natural’ fluctuations in CO2 concentration from these external effects. Analogous to vertical fluxes, simplified expressions for separating the ‘external effects’ from higher-order scalar density turbulence statistics are derived. The level of complexity in terms of input to these expressions are analogous to that of the Webb–Pearman–Leuning (WPL), and are shown to be consistent with the conservation of dry air. It is demonstrated that both higher-order turbulent moments such as the scalar variances, the mixed velocity-scalar covariances, and the two-scalar covariance require significant adjustments due to ‘external effects’. The impact of these adjustments on the turbulent CO2 spectra, probability density function, and dimensionless similarity functions derived from flux-variance relationships are also discussed.  相似文献   

11.
12.
Turbulent and mean meteorological data collected at five levels on a 20-m tower over the Arctic pack ice during the Surface Heat Budget of the Arctic Ocean experiment (SHEBA) are analyzed to examine different regimes of the stable boundary layer (SBL). Eleven months of measurements during SHEBA cover a wide range of stability conditions, from the weakly unstable regime to very stable stratification. Scaling arguments and our analysis show that the SBL can be classified into four major regimes: (i) surface-layer scaling regime (weakly stable case), (ii) transition regime, (iii) turbulent Ekman layer, and (iv) intermittently turbulent Ekman layer (supercritical stable regime). These four regimes may be considered as the basic states of the traditional SBL. Sometimes these regimes, especially the last two, can be markedly perturbed by gravity waves, detached elevated turbulence (‘upside down SBL’), and inertial oscillations. Traditional Monin–Obukhov similarity theory works well in the weakly stable regime. In the transition regime, Businger–Dyer formulations work if scaling variables are re-defined in terms of local fluxes, although stability function estimates expressed in these terms include more scatter compared to the surface-layer scaling. As stability increases, the near-surface turbulence is affected by the turning effects of the Coriolis force (the turbulent Ekman layer). In this regime, the surface layer, where the turbulence is continuous, may be very shallow (< 5 m). Turbulent transfer near the critical Richardson number is characterized by small but still significant heat flux and negligible stress. The supercritical stable regime, where the Richardson number exceeds a critical value, is associated with collapsed turbulence and the strong influence of the earth’s rotation even near the surface. In the limit of very strong stability, the stress is no longer a primary scaling parameter.  相似文献   

13.
We present results of a technique for examining the scale-dependence of the gradient Richardson number, Ri, in the nighttime residual layer. The technique makes use of a series of high-resolution, in situ, vertical profiles of wind speed and potential temperature obtained during CASES-99 in south-eastern Kansas, U.S.A. in October 1999. These profiles extended from the surface, through the nighttime stable boundary layer, and well into the residual layer. Analyses of the vertical gradients of both wind speed, potential temperature and turbulence profiles over a wide range of vertical scale sizes are used to estimate profiles of the local Ri and turbulence structure as a function of scale size. The utility of the technique lies both with the extensive height range of the residual layer as well as with the fact that the sub-metre resolution of the raw profiles enables a metre-by-metre ‘sliding’ average of the scale-dependent Richardson number values over hundreds of metres vertically. The results presented here show that small-scale turbulence is a ubiquitous and omnipresent feature of the residual layer, and that the region is dynamic and highly variable, exhibiting persistent turbulent structure on vertical scales of a few tens of metres or less. Furthermore, these scales are comparable to the scales over which the Ri is less than or equal to the critical value of Ri c of 0.25, although turbulence is also shown to exist in regions with significantly larger Ri values, an observation at least consistent with the concept of hysteresis in turbulence generation and maintenance. Insofar as the important scale sizes are comparable to or smaller than the resolution of current models, it follows that, in order to resolve the observed details of small Ri values and the concomitant turbulence generation, future models need to be capable of significantly higher resolutions.  相似文献   

14.
An attempt has been made to investigate the role of vertical wind shear, corrective instability and the thermodynamic parameter (θes - θe) below the first lifting condensation level (FLCL) in the occurrence of instanta-neous premonsoon thunderstorm over Agartala (AGT) and Ranchi (RNC) at 12 GMT Radiosonde data of 1988 have been utilized here. The study has however been confined to 1000 hPa-500 hPa range at most Here the convectively unstable layers with positive vertical wind shear upto 500 hPa have been termed as ‘Fa?vourable Layers’ (FL) and the level at which an initially stable layer turns out to be convectively unstable for the first time has been termed as ‘Transition Level’ (TL). It is observed that the changes in vertical wind shear are positive at TL at the time of occurrence of thunderstorm (TS) and the corresponding change is negative on fair-weather situa?tion Moreover, the 90% confidence interval for (θes - θe) reveals that for AGT the upper layer thermodynamic characteristic is important at the time of occurrence of TS whereas for RNC, the value of (θes - θe) at the surface is much more effective  相似文献   

15.
Over the past 15 years atmospheric surface-layer experiments over heterogeneous canopies have shown that the vertical transfer of sensible heat and water vapour exhibit a strong dissimilarity. In particular, the sensible-heat-to-water-vapour transport efficiencies generally exceed unity. One of the main consequences is that evaporation (latent heat flux) computed by the flux-variance method is overestimated, as persistently demonstrated by comparisons with evaporation obtained with the eddy-correlation method. Various authors proposed to take into account the temperature–humidity dissimilarity to extend the applicability of the flux-variance method in order to compute evaporation from non-uniform surfaces. They attempted to connect the sensible-heat-to-water-vapour transport efficiency (λ) to the correlation coefficient between temperature and humidity turbulent fluctuations (R Tq ). This approach was found to be successful over ‘wet’ surfaces for which λ can be approximated by R Tq and ‘dry’ surfaces for which λ can be approximated by 1/R Tq . However, no solution has been proposed until now for intermediate hydrological conditions. We investigated this question using eddy-correlation measurements above and inside a pine forest canopy. For both levels, our data present a strong likeness with previously published results over heterogeneous surfaces. In particular, they confirm that λ is R Tq in wet conditions and 1/R Tq in dry conditions. Moreover, we defined the range of the Bowen ratio (Bo) values for which those two approximations are valid (below 0.1 and greater than 1, respectively) and established a relationship between λ, R Tq and Bo for the intermediate range of Bo. We are confident that this new parameterization will enlarge the applicability of the flux-variance method to all kinds of heterogeneous surfaces in various hydrological conditions  相似文献   

16.
Measurements of temperature and velocity microstructure near and downstream of a shallow seamount are used to compare fossil turbulence versus non-fossil turbulence models for the evolution of turbulence microstructure patches in the stratified ocean. According to non-fossil oceanic turbulence models, all overturn length scales LT of the microstructure grow and collapse in constant proportion to each other and to the turbulence energy (Oboukov) scale LO and the inertial buoyancy (Ozmidov) scale of the patches; that is, with LTrms ≈1.2LR and viscous dissipation rate 0*. According to the Gibson fossil turbulence model, all microstructure originates from completely active turbulence with 0 ≈ 3LT2N3(≈ 280*) and LT/√6 ≈ LTrms, but this rapidly decays into a more persistent active-fossil state with 0F ≈ 30vN2, where N is the buoyancy frequency and v is the kinematic viscosity and, without further energy supply, finally reaches a completely fossil turbulence hydrodynamic state of internal wave motions, with F. The last turbulence eddies, with F, vanish at a buoyant-inertial-viscous (fossil Kolmogorov) scale LKF that is much smaller than the remnant overturn scales LT for large 0/F ratios. These density, temperature, and salinity overturns with LT ≈ 0.6 LR0 0.6 LR persist as turbulence fossils (by retaining the memory of o) and collapse very slowly. In the near wake below the summit depth of Ampere seamount, a much larger proportion of completely active turbulence patches was found than is usually found in the ocean interior away from sources. Dissipation rates and turbulence activity coefficients of microstructure patches were found to decrease downstream, suggesting that the active turbulence indicated by the patches with AT 1 was caused by the presence of the seamount as a turbulence source. Therefore, the turbulence and mixing processes of ocean layers far away from turbulence sources probably have been undersampled by microstructure data sets lacking any AT 1 patches. This is because large fractions of the mixing and viscous dissipation of the patches occur in short-lived active turbulence regimes that are too brief to be detected. Consequently, large underestimates of the true space-time average turbulence fluxes and turbulence and scalar dissipation rates may result if non-fossil turbulence models are assumed in ocean microstructure data interpretation.  相似文献   

17.
Turbulent organized structures (TOS) above building arrays were investigated using a large-eddy simulation (LES) model for a city (LES-CITY). Square and staggered building arrays produced contrasting behaviour in terms of turbulence that roughly corresponded to the conventional classification of ‘D-type’ and ‘K-type’ roughness, respectively: (1) The drag coefficients (referred to the building height) for staggered arrays were sensitive to building area density, but those for square arrays were not. (2) The relative contributions of ejections to sweeps (S2/S4) at the building height for square arrays were sensitive to building area density and nearly equalled or exceeded 1.0 (ejection dominant), but those for staggered arrays were insensitive to building area density and were mostly below 1.0 (sweep dominant). (3) Streaky patterns of longitudinal low speed regions (i.e., low speed streaks) existed in all flows regardless of array type. Height variations of the buildings in the square array drastically increased the drag coefficient and modified the turbulent flow structures. The mechanism of D-type and K-type urban-like roughness flows and the difference from vegetation flows are discussed. Although urban-like roughness flows exhibited mixed properties of mixing layers and flat-wall boundary layers as far as S2/S4 was concerned, the turbulent organized structures of urban-like roughness flows resembled those of flat-wall boundary layers.  相似文献   

18.
Flow and turbulence above urban terrain is more complex than above rural terrain, due to the different momentum and heat transfer characteristics that are affected by the presence of buildings (e.g. pressure variations around buildings). The applicability of similarity theory (as developed over rural terrain) is tested using observations of flow from a sonic anemometer located at 190.3 m height in London, U.K. using about 6500 h of data. Turbulence statistics—dimensionless wind speed and temperature, standard deviations and correlation coefficients for momentum and heat transfer—were analysed in three ways. First, turbulence statistics were plotted as a function only of a local stability parameter z/Λ (where Λ is the local Obukhov length and z is the height above ground); the σ i /u * values (i = u, v, w) for neutral conditions are 2.3, 1.85 and 1.35 respectively, similar to canonical values. Second, analysis of urban mixed-layer formulations during daytime convective conditions over London was undertaken, showing that atmospheric turbulence at high altitude over large cities might not behave dissimilarly from that over rural terrain. Third, correlation coefficients for heat and momentum were analyzed with respect to local stability. The results give confidence in using the framework of local similarity for turbulence measured over London, and perhaps other cities. However, the following caveats for our data are worth noting: (i) the terrain is reasonably flat, (ii) building heights vary little over a large area, and (iii) the sensor height is above the mean roughness sublayer depth.  相似文献   

19.
The Monin–Obukhov similarity theory (MOST) functions fε and fT, of the dissipation rate of turbulent kinetic energy (TKE). ε, and the structure parameter of temperature, CT2, were determined for the stable atmospheric surface layer using data gathered in the context of CASES-99. These data cover a relatively wide stability range, i.e. ζ=z/L of up to 10, where z is the height and L the Obukhov length. The best fits were given by fε = 0.8 + 2.5ζ and fT= 4.7[ 1+1.6(ζ)2/3], which differ somewhat from previously published functions. ε was obtained from spectra of the longitudinal wind velocity using a time series model (ARMA) method instead of the traditional Fourier transform. The neutral limit fε =0.8 implies that there is an imbalance between TKE production and dissipation in the simplified TKE budget equation. Similarly, we found a production-dissipation imbalance for the temperature fluctuation budget equation. Correcting for the production-dissipation imbalance, the ‘standard’ MOST functions for dimensionless wind speed and temperature gradients (φm and φm) were determined from fε and fT and compared with the φm and φh formulations of Businger and others. We found good agreement with the Beljaars and Holtslag [J. Appl. Meteorol. 30, 327–341 (1991)] relations. Lastly, the flux and gradient Richardson numbers are discussed also in terms of fε and fT.  相似文献   

20.
A spectral approach is applied to shear-induced turbulence in stratified layers. A system of spectral equations for stationary balance of turbulent energy and temperature variances was deduced in the vicinity of the local shear scale LU = (ε/UZ3)1/2. At wavenumbers between the inertial-convective (k−5/3) and wak turbulence (k−3) subranges, additional narrow spectral intervals—‘production’ subranges—may appear (E k−1, ET k−2). The upper boundary of these subranges is determined as LU, and the lower boundaries as LR (ε/UZN2)1/2(χ/TZ2). It is shown that the scale LU is a unique spectral scale that is uniform up to a constant value for every hydrophysical field. It appears that the spectral scale LU is equivalent to the Thorpe scale LTh for the active turbulence model. Therefore, if turbulent patches are generated in a background of permanent mean shear, a linear relation between temperature and mass diffusivities exists. In spectral terms, the fossil turbulence model corresponds to the regime of the Boldgiano-Obukhov buoyancy subrange (E k−11/5, ET k−7/5). During decay the buoyancy subrange is expanded to lower and higher wavenumbers. At lower wavenumbers the buoyancy subrange is bounded by L** = 3(χ1/2/N1/2TZ), which is equivalent to the Thorpe scale LTh. In such a transition regime only, when the viscous dissipation rate is removed from the set of main turbulence parameters, the Thorpe scale does not correlate with the buoyancy scale LN ε1/2/N3/2 and fossil turbulence is realized. Oceanic turbulence measurements in the equatorial Pacific near Baker Island confirm the main ideas of the active and fossil turbulence models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号