首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 125 毫秒
1.
吴晓  白文广  张婉春 《气象》2018,44(6):844-849
FY-3B卫星VIRR仪器的向外长波辐射(outgoing long-wave radiation,OLR)产品处理采用与NOAA/AVHRR相同的算法模型,即用窗区通道亮温-通量等效亮度温度的回归关系式计算OLR,但两星的OLR业务产品与目前国际质量最好的云和地球辐射能量系统(cloud and earth’s radiant energy system,CERES)仪器观测OLR产品相比,存在约10 W·m~(-2)的系统负偏差。FY-3B的原因在于OLR反演模式建立过程中红外辐射传输计算软件的精度不够。鉴于此,本文采用美国21世纪开发的逐线辐射传输模型计算软件(LBLRTM),模拟计算了全球2521条大气廓线的大气顶辐射率光谱,在此基础上计算了每条廓线的OLR和FY-3B/VIRR窗区通道亮温,应用最小二乘法统计回归模拟数据,重新建立了由FY-3B/VIRR窗区通道亮温计算OLR的回归关系式及系数。模式应用于FY-3BL1级数据,处理2016年1,3,7和10月的FY-3B逐日全球OLR资料,该资料与AQUA-TERRA卫星的CERES仪器OLR观测产品相比,得到日平均OLR:RMSE=9~15 W·m~(-2),R=0.9834,Bias=-0.3W·m~(-2);月平均OLR:RMSE=4~7W·m~(-2),R=0.9915,Bias=-0.3W·m~(-2),表明改进的模式能处理出无系统偏差的、精度基本与CERES观测相当的OLR产品,尽管单通道反演算法有着固有的模式回归误差。  相似文献   

2.
FY-2D静止气象卫星OLR反演模式   总被引:2,自引:0,他引:2  
介绍FY-2D卫星OLR反演模式的建立过程以及模式与NOAA卫星OLR反演模式的相互对比,包括:地球大气红外辐射传输方程,全球3812条大气廓线的大气顶射出辐射率、射出长波辐射通量密度的模拟计算,3812条廓线FY-2D窗区通道1、2、水汽通道的通道辐射率模拟计算,通道辐射率的临边变暗订正关系式的确立、3个通道波段的窄波段辐射通量密度的模拟计算.通过3812条廓线的窄波段辐射通量密度与OLR的X-Y坐标散点图,建立OLR回归关系式;并通过NOAA-17 AVHRR通道5 OLR反演模式与FY-2D窗区通道2 OLR反演模式形式的互比,得出两星的OLR反演模式接近,给出2007年2~4月OLR产品个例和产品精度分析.  相似文献   

3.
基于FY-3/IRAS利用非线性模式反演OLR   总被引:1,自引:0,他引:1       下载免费PDF全文
FY-3系列卫星星载IRAS仪器设有26个通道,其中20个通道用于探测地球大气在红外波段的热辐射,通道辐射率代表了地球大气系统在大气顶的向外辐射光谱信息,与总波段的射出长波辐射(OLR)通量相关性高。该文基于逐线辐射传输模式计算软件LBLRTM对全球2521条大气廓线的大气顶射出辐射率模拟数据,计算了每条廓线的OLR和FY-3B/IRAS,FY-3C/IRAS通道辐射率,用统计回归方法建立了利用IRAS的多通道辐射率计算OLR的非线性理论回归模式;应用模式和FY-3B/IRAS,FY-3C/IRAS的L1级数据,处理得到2016年4月1-30日的全球日平均、月平均OLR格点产品。与Aqua/CERES,Terra/CERES仪器宽波段观测OLR产品对比表明:对于水平分辨率为1°×1°的全球月平均OLR格点产品,均方根误差为2.22 W·m-2,相关系数为0.9982 W·m-2,平均偏差为-0.2 W·m-2,表明FY-3/IRAS仪器定标及反演模式均达到较高水平。文中还回顾了历史上不同气象卫星的多种OLR反演算法模式,并对不同模式精度进行了比较。  相似文献   

4.
从FY3A卫星IRAS的多通道辐射率估算OLR   总被引:1,自引:1,他引:0       下载免费PDF全文
吴晓 《气象科学》2010,30(1):106-110
介绍了从FY3A卫星IRAS仪器的通道辐射率估算OLR的技术,包括:用红外辐射传输正演的方法建立IRAS多通道辐射率加权求和计算OLR的反演模式,以及由此模式计算得到的OLR产品。模式的全球RMS=3.53 W/m2,表明远高于从NOAA AVHRR通道5亮温计算OLR的反演模式精度。文中给出IRAS全球OLR产品个例,及该OLR产品与NOAA-17 OLR产品的精度对比。  相似文献   

5.
FY 2D静止气象卫星OLR反演模式   总被引:1,自引:0,他引:1  
吴晓 《气象科技》2008,36(5):634-638
介绍FY2D卫星OLR反演模式的建立过程以及模式与NOAA卫星OLR反演模式的相互对比,包括:地球大气红外辐射传输方程,全球3812条大气廓线的大气顶射出辐射率、射出长波辐射通量密度的模拟计算,3812条廓线FY2D窗区通道1、2、水汽通道的通道辐射率模拟计算, 通道辐射率的临边变暗订正关系式的确立、3个通道波段的窄波段辐射通量密度的模拟计算。通过3812条廓线的窄波段辐射通量密度与OLR的XY坐标散点图,建立OLR回归关系式;并通过NOAA17 AVHRR通道5 OLR反演模式与FY2D窗  相似文献   

6.
利用MODTRAN辐射传输模式,结合FY-2E星载辐射计红外分裂窗通道的光谱响应特征,计算了中纬度的夏、冬季晴空大气情况下,卫星观测亮温度对大气水汽及气溶胶的敏感性。在模拟条件下,计算星载辐射计红外通道温度灵敏度(0.2 K)对应的大气水汽及气溶胶含量变化的临界值分别为0.42 g/cm2和0.25。以此为参照值,利用FY-2E晴空大气可降水量产品及MODIS大气气溶胶产品实际数据,分析了在导风模块常用尺度(80 km×80 km)内大气水汽、气溶胶含量的变化引起FY-2E星载辐射计红外分裂窗通道观测亮温度差异超过星载辐射计红外通道的温度灵敏度的可能性,结果表明实际大气存在满足上述临界值条件的情况。研究结果为把晴空大气水汽、气溶胶作为卫星红外云图上的晴空区导风示踪物,提供了理论和实际依据。   相似文献   

7.
射出长波辐射(OLR)是大气科学研究领域的关键参量,并在辐射相互作用、气候变化和灾害监测等方面发挥重要作用。2018年6月5日静止气象卫星FY2H成功发射,OLR产品是FY2H的业务产品之一。在原有FY2系列OLR反演算法基础上,参考国际上NOAA/HIRS OLR反演算法,结合FY2H/VISSR 3个红外通道设置,建立适合FY2H的OLR反演算法。利用该算法处理FY2H/VISSR的L1级观测数据,生成实时及日、旬、月平均的OLR产品。FY2H的OLR产品与CERES均匀性下垫面的瞬时视场OLR产品对比,RMSE=3.38 W/m~2,R=0.99,Bias=0.77 W/m~2;与CDR日平均OLR产品对比,RMSE为5~7 W/m~2,R为0.97~0.98,Bias为-2.2~1.9 W/m~2;与CDR旬平均OLR产品对比,RMSE为3~5 W/m~2,R=0.99,Bias为-1.1~0.4 W/m~2;与CDR月平均OLR产品对比,RMSE为2~4 W/m~2,R=0.99,Bias为-1.1~0.4 W/m~2。这表明FY2H OLR改进算法达到了较高的精度,可满足卫星设计和应用研究精度需求。  相似文献   

8.
针对FY-3A星载微波垂直探测的同化应用,在扩展WRF3Dvar中FY-3A微波资料同化功能和快速辐射传输模式RTTOV微波云雨粒子散射RTTOV-SCATT模块接口的基础上,以2008年“凤凰”台风为研究对象,试验了FY-3A晴空条件下微波资料同化应用对数值预报的影响,并以此为控制试验,进一步讨论云检测方案和偏差订正调整对资料应用效果的作用。在WRF3Dvar同一框架下,使用RTTOV和CRTM云雨散射模块对云雨条件下FY-3A微波亮温进行模拟,分析云雨辐射效应对FY-3A微波温度和湿度传感器观测模拟的影响,并比较两个快速辐射传输模式结果间的异同。结果表明:本个例中FY-3A微波资料的使用对台风强度预报误差的减小比路径预报更为明显。云检测是影响卫星资料效能发挥的关键因素之一,3.0和5.0分别是MWTS和MWHS使用单窗区通道作为云检测时的合适阀值。使用FY-3A资料导出的偏差订正系数可以改善偏差订正结果,并提高预报准确率。此外,对于MWTS,通道1是受云雨粒子辐射效应影响最显著的通道,通道2同样具有明显影响。MWHS全部5个探测通道均受云雨粒子辐射效应影响,云雨条件下通道1、2的模拟偏差最大。RTTOV和CRTM的结果具有相同的统计特征,但CRTM云雨粒子辐射效应带来的偏差比RTTOV要大。   相似文献   

9.
采用红外窗区通道法尝试对FY-2C静止气象卫星图像上的不透明云的云顶气压进行反演,并结合MODIS反演产品和CloudSat/CPR雷达探测产品对反演结果进行对比分析。结果表明:(1) 对于厚实密蔽的云层,不透明云云顶气压的反演结果与MODIS反演结果一致性较好,特别是对于发展较强的对流云和厚实密蔽的多层云,易满足云层比辐射率近似为1的条件,可近似看作黑体;(2) 对于单层云和光学厚度不够厚的云层,反演结果更接近辐射中心,尤其是对于锋面云带暖水云上空覆盖卷云的情况,由于FY-2C对于薄卷云的检测不如MODIS细致,导致反演结果与MODIS和CloudSat存在一定偏差。   相似文献   

10.
FY-1C极轨气象卫星扫描辐射仪第10通道的观测波长为0.90~0.965μm,位于弱水汽吸收区,邻近的第2通道观测波长为0.84~0.89μm,位于大气窗区。该文根据R.Frouin提出的算法,用FY-1C资料实现了近红外水汽吸收区和窗区两个通道联合反演水汽总含量。所用的反演关系式为其中,水汽吸收区与窗区两个通道的反射率之比r可以从卫星测值中求出;在探空站所在的地方,沿光路的水汽总含量m为己知量,可以用统计方法求出系数A和B;在没有探空站的地方,可以根据系数A和B,用反演关系式求m。影响系数A的因素主要是大气的温、压、湿廓线和仪器的通道响应函数,影响系数B的因素是地表反射率。由于这些对反演关系式中的系数取值有影响的因素随时间和地点有变化,对不同地区和时段的探空站分别进行统计,得到不同的系数进行反演,取得了较好的效果。另外,还用质量控制手段控制了定位误差可能带来的影响。独立样本真实性检验表明,反演值和探空测值之间的偏差约为15%~20%,相关系数在90%以上。  相似文献   

11.
闵敏  吴晓 《气象》2020,46(3):336-345
本文介绍一种利用FY-4A成像仪遥感数据和全球预报系统(GFS)资料估算全天空地表长波辐射通量的反演方法。该方法通过辐射传输模拟和统计回归计算建立云天地表下行长波辐射通量的反演模式,并基于GFS资料处理云覆盖地区的地表上、下行长波辐射通量。这种全天空状况下两种通量的反演结合了FY-4A晴空地表长波辐射业务产品和本文反演模式处理的云天地表上、下行长波辐射通量。2018年9月1日的处理结果与Aqua/CERES同类产品相对比,精度为:RMSE=20.52 W·m^-2,R=0.9481,Bias=3.3 W·m^-2(夜间地表下行辐射通量对比);RMSE=25.58 W·m^-2,R=0.9096,Bias=5.4 W·m^-2(白天地表下行辐射通量对比);RMSE=10.97 W·m^-2,R=0.9762,Bias=-3.3 W·m^-2(夜间地表上行辐射通量对比);RMSE=19.97 W·m^-2,R=0.9283,Bias=5.0 W·m^-2(白天地表上行辐射通量对比)。这些结果表明本文发展的方法能够反演出精度较好的云天上下行长波辐射通量资料,为今后利用FY-4后续星处理生成全天空状况下的地表长波辐射通量产品奠定了理论基础。  相似文献   

12.
Hourly outgoing longwave radiation(OLR) from the geostationary satellite Communication Oceanography Meteorological Satellite(COMS) has been retrieved since June 2010. The COMS OLR retrieval algorithms are based on regression analyses of radiative transfer simulations for spectral functions of COMS infrared channels. This study documents the accuracies of OLRs for future climate applications by making an intercomparison of four OLRs from one single-channel algorithm(OLR12.0using the 12.0 μm channel) and three multiple-channel algorithms(OLR10.8+12.0using the 10.8 and 12.0 μm channels; OLR6.7+10.8using the 6.7 and 10.8 μm channels; and OLR All using the 6.7, 10.8, and 12.0 μm channels). The COMS OLRs from these algorithms were validated with direct measurements of OLR from a broadband radiometer of the Clouds and Earth's Radiant Energy System(CERES) over the full COMS field of view [roughly(50°S–50°N, 70°–170°E)] during April 2011.Validation results show that the root-mean-square errors of COMS OLRs are 5–7 W m-2, which indicates good agreement with CERES OLR over the vast domain. OLR6.7+10.8and OLR All have much smaller errors(~ 6 W m-2) than OLR12.0and OLR10.8+12.0(~ 8 W m-2). Moreover, the small errors of OLR6.7+10.8and OLR All are systematic and can be readily reduced through additional mean bias correction and/or radiance calibration. These results indicate a noteworthy role of the6.7 μm water vapor absorption channel in improving the accuracy of the OLRs. The dependence of the accuracy of COMS OLRs on various surface, atmospheric, and observational conditions is also discussed.  相似文献   

13.
利用FY-2C卫星数据反演云辐射特性   总被引:2,自引:0,他引:2  
周青  赵凤生  高文华 《大气科学》2010,34(4):827-842
本文利用FY-2C静止卫星提供的可见光、中红外和热红外观测数据, 开展了水云光学厚度、粒子有效半径和云顶温度的云参数遥感探测理论和反演方法研究。基于FY-2C可见光、中红外(3.75 μm)与热红外(11 μm)通道辐射率对云光学厚度、 云滴有效半径、云顶温度辐射参数的敏感性分析, 提出三通道同时反演云的光学厚度、云滴有效半径及云顶温度的迭代方案; 通过个例分析进行了云参数反演试验, 并将结果与MODIS的云反演产品进行了对比, 最后对反演误差进行了分析。主要结论如下:(1) 个例反演得到的云参数与各通道探测数据有着较好的对应关系, 迭代计算标准偏差在允许的计算精度范围内(<0.89%), 反演结果具有合理性; (2) 通过与MODIS云反演产品的对比可以看到, 两者云光学厚度、云滴有效半径的均值和直方图分布都非常一致, 而MODIS的云顶温度比FY-2C反演值要高, 考虑到FY-2C的 11 μm通道测量的辐射值与MODIS相比偏小, 因此认为我们的反演方法与MODIS方法的精度是相当的。  相似文献   

14.
国家气候中心MJO监测预测业务产品研发及应用   总被引:2,自引:1,他引:1       下载免费PDF全文
热带大气低频振荡 (MJO) 和北半球夏季季节内振荡 (BSISO) 对全球范围天气气候事件有重要影响,是次季节-季节 (S2S) 预报最主要的可预报性来源之一。国家气候中心 (BCC) 基于我国完全自主的T639全球分析场数据、风云三号气象卫星射出长波辐射 (OLR) 资料以及BCC第2代大气环流模式系统的实时预报,发展了MJO实时监测预测一体化业务技术,建立了ISV/MJO监测预测业务系统 (IMPRESS1.0),已投入实时业务运行,在全国气象业务系统得到应用。该文着重介绍该系统提供的MJO和BSISO指数监测预测数据和图形产品,并描述了这些业务产品在2015年对MJO典型个例的实时监测预测应用情况。监测分析和预报检验表明,基于我国自主资料的监测结果能够较为准确地表征MJO和BSISO指数的振荡和演变过程,该系统对MJO和BSISO事件分别至少具备16 d和10 d左右的预报技巧。因此,基于IMPRESS1.0的MJO/BSISO监测预测一体化业务产品可为制作延伸期预报提供重要的参考依据。  相似文献   

15.
青藏高原地区云对OLR的强迫作用   总被引:6,自引:3,他引:6  
王可丽  钟强 《高原气象》1992,11(3):259-266
  相似文献   

16.
国家卫星气象中心FY-3C/VIRR(visible and infrared radiometer,可见光红外扫描辐射计)海表温度产品在云检测产品的基础上,采用多通道MCSST(multichannel SST)算法进行晴空区海温反演。该文详细介绍了海表温度产品算法、产品设计、质量控制及质量检验方法。FY-3C/VIRR海表温度产品包括5 min段原始投影海温和5 km全球等经纬度投影海温。设计逐像元的海温质量标识,将海温像元分为优、良、差3个等级,用户可根据应用目标选择海温的质量等级。与日最优插值海温OISST(optimum interpolation SST)相比,FY-3C/VIRR 2015年1月—2019年12月的5 min段海温质量检验结果表明:质量等级为优的海温,白天和夜间的偏差分别为-0.18℃和-0.06℃,均方根误差分别为0.85℃和0.8℃;白天海温均方根误差有季节性波动,夏季有的月份均方根误差大于1℃(如2015年7月、2016年7月和2019年7月);在海温回归系数不变的条件下,夜间海温偏差的季节性波动与星上黑体温度相关显著。从一级数据质量、定位、业务运行状况等方面讨论引起海表温度产品异常的原因,为FY-3C/VIRR历史数据定位、定标和产品重处理及用户应用提供重要的参考信息。  相似文献   

17.
本文利用2018年3月12日—2019年2月28日近一年(2018年春季—冬季)贵州山区(从江、三穗、桐梓、贵阳、紫云、兴仁、威宁7站)地面太阳辐照度观测资料对FY-4A反演辐照度进行检验与订正分析。结果表明:(1)卫星反演辐照度取值范围比地面观测小,整体而言反演辐照度偏高,晴空条件下反演精度远高于云条件,正午偏差最小,下午偏差最大。(2)卫星反演辐照度与地面观测辐照度具有较为一致的日变化和季节变化,两者呈显著正相关,相关系数随海拔高度呈负相关。(3)平均偏差往往随着地面观测的增大而减小,当地面观测辐照度大于800 W?m-2时,反演辐照度往往偏小。(4)对地面观测辐照度进行阈值划后,用多元线性回归方法对反演辐照度订正,订正后的产品在贵州具有较好的适用性。  相似文献   

18.
本文利用2018年3月12日—2019年2月28日近一年(2018年春季—冬季)贵州山区(从江、三穗、桐梓、贵阳、紫云、兴仁、威宁7站)地面太阳辐照度观测资料对FY-4A反演辐照度进行检验与订正分析。结果表明:(1)卫星反演辐照度取值范围比地面观测小,整体而言反演辐照度偏高,晴空条件下反演精度远高于云条件,正午偏差最小,下午偏差最大。(2)卫星反演辐照度与地面观测辐照度具有较为一致的日变化和季节变化,两者呈显著正相关,相关系数随海拔高度呈负相关。(3)平均偏差往往随着地面观测的增大而减小,当地面观测辐照度大于800 W?m-2时,反演辐照度往往偏小。(4)对地面观测辐照度进行阈值划后,用多元线性回归方法对反演辐照度订正,订正后的产品在贵州具有较好的适用性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号