首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
ASCAT散射计风场在我国近海的初步检验与应用   总被引:4,自引:1,他引:3       下载免费PDF全文
张增海  曹越男  刘涛  赵伟 《气象》2014,40(4):473-481
为了弥补中国近海海区缺乏洋面风场观测资料,提高海洋气象预报能力,对MetOP-A极轨卫星搭载的ASCAT散射计反演风场资料和中国气象局在近海布设的18个浮标站测风资料进行对比。结果表明,离岸较远的海域中ASCAT反演风场的质量要优于离岸较近的海域,在较远的海域中,ASCAT风速和浮标观测风速的平均偏差为0.9 m·s~(-1),ASCAT的风速高于浮标站的风速,平均绝对偏差和均方根误差分别为1.2和1.4 m·s~(-1),风速的相关系数为0.94。统计特征分析结果显示,ASCAT散射计风场资料在中国近海有较好的可信度,在高风速的时候,ASCAT和浮标资料一致性较好,而低风速时候,ASCAT比浮标略偏大。目前,中央气象台正在逐步开展ASCAT资料的业务应用,ASCAT洋面的MICAPS格式产品和图形产品现已实现准实时运行。  相似文献   

2.
宫明晓  马艳  付业理  李华 《气象科技》2019,47(5):740-746
本文通过对比检验2013年1月至2016年6月ASCAT卫星反演风场与青岛浮标海岛站实测10m风场资料,开展ASCAT卫星反演风场在青岛沿海的适用评估。结果表明:ASCAT反演风速整体偏大,风向偏左,但整体偏差均较小。ASCAT反演风场和浮标海岛站实测风场的风速和风向的整体偏差分别为1.6m/s和-9.6°,说明ASCAT反演风场在青岛沿岸有很好的适用性,比EC再分析资料能更细致地反映青岛沿岸的风场空间分布。从风速分级比较来看,风速越弱,卫星反演风速越接近站点实测风速,反演结果越好,而风向反演结果则反之。风速和风向的反演效果皆是晚上比早晨好。并且季节变化对风速反演效果影响不大,但是对风向反演效果有一定的影响,秋冬季节风向反演结果好于春夏季节。最后,对ASCAT反演风速分别进行线性回归订正、综合误差、风速等级误差和升降轨误差订正,发现线性回归订正结果最佳。  相似文献   

3.
为了弥补海上风的常规直接观测资料较少的不足,探索将合成孔径雷达(Advanced Synthetic Aperture Radar,ASAR)观测资料用于风场研究,以江苏近海为研究对象,利用沿海地面观测数据和2008年11幅ASAR影像反演获得的风速和风向进行对比,并将卫星反演风场同化至数值模式,分析对海上风场模拟效果的改进。结果表明:ASAR影像反演的海面风场和地面实测吻合度较高,可以作为没有直接风观测的海上区域的补充。风速反演值略大于观测值,均方根误差为1.8 m·s~(-1),83.6%的站点偏差在±2 m·s~(-1)之内;风向反演值比观测值偏北,均方根误差为39.3°,41.8%的站点偏差在±22.5°之内。将反演风场同化至WRF模式后,提高了海上风场的模拟效果,风速均方根误差1月降低至0.9 m·s~(-1),7月降低至1.6 m·s~(-1);风向均方根误差1月降低为57.3°,7月降低为50.6°。  相似文献   

4.
卫星反演海面风场资料能够弥补海上气象测风资料缺乏的不足,对近海风能资源评估具有重要意义。通过ASCAT(Advanced Scatterometer)风速数据与美国及中国近海岸浮标测风资料的对比分析,结果表明,ASCAT风速的均方根误差为1.27 m·s-1。比较利用近海岸浮标逐小时风速及与其相匹配ASCAT瞬时风速计算的各项风能参数,得出ASCAT与浮标的平均风速和风功率密度的残差分别在±0.5 m·s-1和±50 W·m-2以内,该残差占浮标计算结果的比例分别在±8%和±12%以内。使用ASCAT风速资料拟合的Weibull分布函数与浮标的结果较吻合。因此,ASCAT风速资料也能够为海上风能资源评估提供有用的风能参数信息。最后使用ASCAT瞬时风速数据分析了中国近海10 m及70 m高度处的风能资源的空间分布特征,结果表明,台湾海峡平均风速和风功率密度最大。  相似文献   

5.
基于中国科学院南海海洋研究所提供的2012年1月1日—2013年12月31日西沙自动气象站观测资料以及同时间序列的欧洲中心ERA-interim再分析风场产品,统计了ASCAT和HY-2A散射计风场产品的误差特征,分析散射计资料在南海的适用性。分析得出:ASCAT和HY-2A的风速、风向与自动站一致性高,相关系数均大于0.85,ASCAT风速和风向均方根误差分别为1.57 m/s和15.42 °,HY-2A均方根误差略微偏大,分别为2.02 m/s和24.75 °;ASCAT和HY-2A散射计与ERA-interim风速、风向有很好的一致性,在不考虑低风速( < 3 m/s)的条件下,风速均方根误差分别为1.40 m/s和1.56 m/s,风向均方根误差分别为15.09 °和17.07 °,与设计精度一致,表明ASCAT与HY-2A风场产品在南海是适用的。此外,散射计相对再分析风场的偏差没有明显的季节性变化   相似文献   

6.
浙江近海冬季大风风速推算和ASCAT风速订正方法探讨   总被引:1,自引:1,他引:0  
利用2010—2014年12月至次年2月浙江省自动气象站测风资料和ASCAT散射计反演的风场资料,通过模糊聚类空间分型,选取有代表性的站点建立浙江近海冷空气大风的风速推算公式,并对ASCAT近海风场产品进行误差分析和风速订正。结果表明:冷空气影响时浙江北部近海多数自动站与舟山浮标站相比有偏南风矢量差,南部近海自动站比温州浮标站有东南风矢量差,自动站风速一般小于浮标站。海拔高度与自动站和浮标站风速差值δ相关性不显著,站点离岸距离是影响δ的主要因子。冷空气影响时浙江近海ASCAT反演风速与实况相关系数的分布具有平行于海岸线且自西向东增大的特征,相关系数超过0.5的站点一般离岸30 km以上,舟山和温州12个浮标站测风与ASCAT反演风具有较好的相关性。浙江近海ASCAT风速的误差空间差异较大,经订正后的风速分布也具有平行于海岸线、自西向东逐渐增大的特征,且与观测的误差绝对值一般小于2 m·s~(-1)。  相似文献   

7.
利用渤海观测站风场对ASCAT风场进行检验,发现其风速、风向均有较大误差,尤其在渤海中部以外的海域可信度相对较低。为提高ASCAT风场在渤海海域的精度,基于变分方法,利用渤海观测站风场对2017年9月—2018年2月的ASCAT风场进行订正,得到空间分辨率为12.5 km×12.5 km的订正风场。并对辽东湾、渤海湾、莱州湾、渤海中部和渤海海峡5个海域风场的订正误差进行检验,结果表明:ASCAT风场订正后精度提高显著,风速平均偏差从4 m·s-1减小为1 m·s-1,风向平均偏差从-30°~30°减小为-7°~4°,可见变分方法对渤海ASCAT风场有很好的订正效果,尤其对误差较大的渤海湾订正效果最为明显。对2017年12月18日的一次大风过程进行订正分析,结果表明:订正风场可以很好地反映沿岸风场信息和大风过程中的风速极值区,并能动态监测大风变化过程。变分方法解决了海面观测数据空间分辨率低、ASCAT数据精度低的问题,能够实时监测海上大风,且对大风预报有很好的指导意义,能够为海洋模式提供更精确的初始场。  相似文献   

8.
ASCAT近岸风场产品与近岸浮标观测风场对比   总被引:3,自引:1,他引:2  
利用美国西海岸7个近岸浮标2012年全年和中国近岸8个气象浮标2012年1—6月的风场观测数据,检验了卫星散射计ASCAT近岸风场产品中的风速和风向在近岸海域的精度。检验结果表明:在美国西海岸近岸海域,ASCAT近岸风场产品中的风速与浮标的风速一致性高,但ASCAT近岸风场产品中风向的精度受离岸距离、风速和风向等因素的影响,在离岸近的海域ASCAT近岸风场产品与浮标观测风场的一致性较差。统计发现,将低风速 (不超过3 m·s-1) 剔除可明显提高ASCAT近岸风场产品在近岸海域的精度。另外,ASCAT近岸风场产品的风向精度在不同风向上存在差异,表现为从陆地吹向海洋风向精度较小,而从海洋吹向陆地风向精度较高。在中国近岸海域,受地形影响,渤海海域ASCAT近岸风场产品与气象浮标观测的风向差异大,在其他近岸海域的ASCAT近岸风场产品和气象浮标的观测风场的对比结果与美国西海岸风场的对比结果特征相似。  相似文献   

9.
浙北沿岸海域海面风场反演方法的研究   总被引:2,自引:1,他引:1  
何斌  潘士雄  李海军  盛文斌  董旭 《气象》2016,42(7):875-884
高质量的海面实况风场是海洋气象监测和预报的基础,卫星反演的大陆沿岸海域海面风场的准确率不高。文章基于反映近地面风速廓线变化的指数律公式,利用浙江北部沿岸海岛或滩涂上布设的中尺度自动站来反演附近海面风场,并使用客观分析方法将反演的离散风场值转换到中尺度网格上,从而获得完整的高分辨率海面风场。指数律中参数α值对于反演风场的准确率至关重要,它主要受到下垫面状况以及大气层结状态的影响,而后者的影响较前者更大。文章使用多个风塔站的风廓线率值进行了反演风场的误差试验,结果表明:目前单一风速廓线还无法取得最优的反演效果,有必要分季节使用多站风速廓线。使用混合风速廓线得到的总体样本的平均偏差为0.04 m·s~(-1),平均绝对误差为1.51 m·s~(-1),均方根误差为2.01 m·s~(-1)。对海面反演风场的优化可以将总体样本的平均绝对误差和均方根误差分别降低到1.28和1.68 m·s~(-1)。  相似文献   

10.
由于海上测风非常昂贵,实地测风资料严重不足,而卫星反演海面风场资料可以有效地弥补这一缺陷,对近海风能资源评估具有至关重要的意义。近年来,欧洲太空局2002年3月发射的Envisat卫星搭载合成孔径雷达(SAR)图像产品在欧洲近海风能资源评估中得到了广泛应用。文中探讨了空间分辨率约1 km×1 km的SAR卫星反演海面风场资料应用于杭州湾近海风能资源评估的技术方法,通过杭州湾海域的实测风速与SAR卫星反演海面风速数据的对比分析发现:(1)14个实测站点中13个站的相对误差小于20%,其中7个站的相对误差小于10%,平均标准差为2.29 m/s;(2)以SAR卫星反演风速数据为基础计算的风能参数(形状参数和尺度参数)与实测数据计算结果的一致性较高;(3)将该数据同化进入WRF数值模式中,与控制试验相比,大部分检验站点的风速相关系数明显提高,标准差和相对误差也得到改善。SAR卫星反演风场资料可用于中国的近海风能资源评估。  相似文献   

11.
The spatial and temporal variations of daily maximum temperature(Tmax), daily minimum temperature(Tmin), daily maximum precipitation(Pmax) and daily maximum wind speed(WSmax) were examined in China using Mann-Kendall test and linear regression method. The results indicated that for China as a whole, Tmax, Tmin and Pmax had significant increasing trends at rates of 0.15℃ per decade, 0.45℃ per decade and 0.58 mm per decade,respectively, while WSmax had decreased significantly at 1.18 m·s~(-1) per decade during 1959—2014. In all regions of China, Tmin increased and WSmax decreased significantly. Spatially, Tmax increased significantly at most of the stations in South China(SC), northwestern North China(NC), northeastern Northeast China(NEC), eastern Northwest China(NWC) and eastern Southwest China(SWC), and the increasing trends were significant in NC, SC, NWC and SWC on the regional average. Tmin increased significantly at most of the stations in China, with notable increase in NEC, northern and southeastern NC and northwestern and eastern NWC. Pmax showed no significant trend at most of the stations in China, and on the regional average it decreased significantly in NC but increased in SC, NWC and the mid-lower Yangtze River valley(YR). WSmax decreased significantly at the vast majority of stations in China, with remarkable decrease in northern NC, northern and central YR, central and southern SC and in parts of central NEC and western NWC. With global climate change and rapidly economic development, China has become more vulnerable to climatic extremes and meteorological disasters, so more strategies of mitigation and/or adaptation of climatic extremes,such as environmentally-friendly and low-cost energy production systems and the enhancement of engineering defense measures are necessary for government and social publics.  相似文献   

12.
Using the International Comprehensive Ocean-Atmosphere Data Set(ICOADS) and ERA-Interim data, spatial distributions of air-sea temperature difference(ASTD) in the South China Sea(SCS) for the past 35 years are compared,and variations of spatial and temporal distributions of ASTD in this region are addressed using empirical orthogonal function decomposition and wavelet analysis methods. The results indicate that both ICOADS and ERA-Interim data can reflect actual distribution characteristics of ASTD in the SCS, but values of ASTD from the ERA-Interim data are smaller than those of the ICOADS data in the same region. In addition, the ASTD characteristics from the ERA-Interim data are not obvious inshore. A seesaw-type, north-south distribution of ASTD is dominant in the SCS; i.e., a positive peak in the south is associated with a negative peak in the north in November, and a negative peak in the south is accompanied by a positive peak in the north during April and May. Interannual ASTD variations in summer or autumn are decreasing. There is a seesaw-type distribution of ASTD between Beibu Bay and most of the SCS in summer, and the center of large values is in the Nansha Islands area in autumn. The ASTD in the SCS has a strong quasi-3a oscillation period in all seasons, and a quasi-11 a period in winter and spring. The ASTD is positively correlated with the Nio3.4 index in summer and autumn but negatively correlated in spring and winter.  相似文献   

13.
The moving-window correlation analysis was applied to investigate the relationship between autumn Indian Ocean Dipole (IOD) events and the synchronous autumn precipitation in Huaxi region, based on the daily precipitation, sea surface temperature (SST) and atmospheric circulation data from 1960 to 2012. The correlation curves of IOD and the early modulation of Huaxi region’s autumn precipitation indicated a mutational site appeared in the 1970s. During 1960 to 1979, when the IOD was in positive phase in autumn, the circulations changed from a “W” shape to an ”M” shape at 500 hPa in Asia middle-high latitude region. Cold flux got into the Sichuan province with Northwest flow, the positive anomaly of the water vapor flux transported from Western Pacific to Huaxi region strengthened, caused precipitation increase in east Huaxi region. During 1980 to 1999, when the IOD in autumn was positive phase, the atmospheric circulation presented a “W” shape at 500 hPa, the positive anomaly of the water vapor flux transported from Bay of Bengal to Huaxi region strengthened, caused precipitation ascend in west Huaxi region. In summary, the Indian Ocean changed from cold phase to warm phase since the 1970s, caused the instability of the inter-annual relationship between the IOD and the autumn rainfall in Huaxi region.  相似文献   

14.
正The Taal Volcano in Luzon is one of the most active and dangerous volcanoes of the Philippines. A recent eruption occurred on 12 January 2020(Fig. 1a), and this volcano is still active with the occurrence of volcanic earthquakes. The eruption has become a deep concern worldwide, not only for its damage on local society, but also for potential hazardous consequences on the Earth's climate and environment.  相似文献   

15.
Observed daily precipitation data from the National Meteorological Observatory in Hainan province and daily data from the National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis-2 dataset from 1981 to 2014 are used to analyze the relationship between Hainan extreme heavy rainfall processes in autumn (referred to as EHRPs) and 10–30 d low-frequency circulation. Based on the key low-frequency signals and the NCEP Climate Forecast System Version 2 (CFSv2) model forecasting products, a dynamical-statistical method is established for the extended-range forecast of EHRPs. The results suggest that EHRPs have a close relationship with the 10–30 d low-frequency oscillation of 850 hPa zonal wind over Hainan Island and to its north, and that they basically occur during the trough phase of the low-frequency oscillation of zonal wind. The latitudinal propagation of the low-frequency wave train in the middle-high latitudes and the meridional propagation of the low-frequency wave train along the coast of East Asia contribute to the ‘north high (cold), south low (warm)’ pattern near Hainan Island, which results in the zonal wind over Hainan Island and to its north reaching its trough, consequently leading to EHRPs. Considering the link between low-frequency circulation and EHRPs, a low-frequency wave train index (LWTI) is defined and adopted to forecast EHRPs by using NCEP CFSv2 forecasting products. EHRPs are predicted to occur during peak phases of LWTI with value larger than 1 for three or more consecutive forecast days. Hindcast experiments for EHRPs in 2015–2016 indicate that EHRPs can be predicted 8–24 d in advance, with an average period of validity of 16.7 d.  相似文献   

16.
Based on the measurements obtained at 64 national meteorological stations in the Beijing–Tianjin–Hebei (BTH) region between 1970 and 2013, the potential evapotranspiration (ET0) in this region was estimated using the Penman–Monteith equation and its sensitivity to maximum temperature (Tmax), minimum temperature (Tmin), wind speed (Vw), net radiation (Rn) and water vapor pressure (Pwv) was analyzed, respectively. The results are shown as follows. (1) The climatic elements in the BTH region underwent significant changes in the study period. Vw and Rn decreased significantly, whereas Tmin, Tmax and Pwv increased considerably. (2) In the BTH region, ET0 also exhibited a significant decreasing trend, and the sensitivity of ET0 to the climatic elements exhibited seasonal characteristics. Of all the climatic elements, ET0 was most sensitive to Pwv in the fall and winter and Rn in the spring and summer. On the annual scale, ET0 was most sensitive to Pwv, followed by Rn, Vw, Tmax and Tmin. In addition, the sensitivity coefficient of ET0 with respect to Pwv had a negative value for all the areas, indicating that increases in Pwv can prevent ET0 from increasing. (3) The sensitivity of ET0 to Tmin and Tmax was significantly lower than its sensitivity to other climatic elements. However, increases in temperature can lead to changes in Pwv and Rn. The temperature should be considered the key intrinsic climatic element that has caused the "evaporation paradox" phenomenon in the BTH region.  相似文献   

17.
Storms that occur at the Bay of Bengal (BoB) are of a bimodal pattern, which is different from that of the other sea areas. By using the NCEP, SST and JTWC data, the causes of the bimodal pattern storm activity of the BoB are diagnosed and analyzed in this paper. The result shows that the seasonal variation of general atmosphere circulation in East Asia has a regulating and controlling impact on the BoB storm activity, and the “bimodal period” of the storm activity corresponds exactly to the seasonal conversion period of atmospheric circulation. The minor wind speed of shear spring and autumn contributed to the storm, which was a crucial factor for the generation and occurrence of the “bimodal pattern” storm activity in the BoB. The analysis on sea surface temperature (SST) shows that the SSTs of all the year around in the BoB area meet the conditions required for the generation of tropical cyclones (TCs). However, the SSTs in the central area of the bay are higher than that of the surrounding areas in spring and autumn, which facilitates the occurrence of a “two-peak” storm activity pattern. The genesis potential index (GPI) quantifies and reflects the environmental conditions for the generation of the BoB storms. For GPI, the intense low-level vortex disturbance in the troposphere and high-humidity atmosphere are the sufficient conditions for storms, while large maximum wind velocity of the ground vortex radius and small vertical wind shear are the necessary conditions of storms.  相似文献   

18.
正While China’s Air Pollution Prevention and Control Action Plan on particulate matter since 2013 has reduced sulfate significantly, aerosol ammonium nitrate remains high in East China. As the high nitrate abundances are strongly linked with ammonia, reducing ammonia emissions is becoming increasingly important to improve the air quality of China. Although satellite data provide evidence of substantial increases in atmospheric ammonia concentrations over major agricultural regions, long-term surface observation of ammonia concentrations are sparse. In addition, there is still no consensus on  相似文献   

19.
Various features of the atmospheric environment affect the number of migratory insects, besides their initial population. However, little is known about the impact of atmospheric low-frequency oscillation(10 to 90 days) on insect migration. A case study was conducted to ascertain the influence of low-frequency atmospheric oscillation on the immigration of brown planthopper, Nilaparvata lugens(Stl), in Hunan and Jiangxi provinces. The results showed the following:(1) The number of immigrating N. lugens from April to June of 2007 through 2016 mainly exhibited a periodic oscillation of 10 to 20 days.(2) The 10-20 d low-frequency number of immigrating N. lugens was significantly correlated with a low-frequency wind field and a geopotential height field at 850 h Pa.(3) During the peak phase of immigration, southwest or south winds served as a driving force and carried N. lugens populations northward, and when in the back of the trough and the front of the ridge, the downward airflow created a favorable condition for N. lugens to land in the study area. In conclusion, the northward migration of N. lugens was influenced by a low-frequency atmospheric circulation based on the analysis of dynamics. This study was the first research connecting atmospheric low-frequency oscillation to insect migration.  相似文献   

20.
The atmospheric and oceanic conditions before the onset of EP El Ni?o and CP El Ni?o in nearly 30 years are compared and analyzed by using 850 hPa wind, 20℃ isotherm depth, sea surface temperature and the Wheeler and Hendon index. The results are as follows: In the western equatorial Pacific, the occurrence of the anomalously strong westerly winds of the EP El Ni?o is earlier than that of the CP El Ni?o. Its intensity is far stronger than that of the CP El Ni?o. Two months before the El Ni?o, the anomaly westerly winds of the EP El Ni?o have extended to the eastern Pacific region, while the westerly wind anomaly of the CP El Ni?o can only extend to the west of the dateline three months before the El Ni?o and later stay there. Unlike the EP El Ni?o, the CP El Ni?o is always associated with easterly wind anomaly in the eastern equatorial Pacific before its onset. The thermocline depth anomaly of the EP El Ni?o can significantly move eastward and deepen. In addition, we also find that the evolution of thermocline is ahead of the development of the sea surface temperature for the EP El Ni?o. The strong MJO activity of the EP El Ni?o in the western and central Pacific is earlier than that of the CP El Ni?o. Measured by the standard deviation of the zonal wind square, the intensity of MJO activity of the EP El Ni?o is significantly greater than that of the CP El Ni?o before the onset of El Ni?o.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号