首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
l.Intr0ductionWiththedevelopmentofeconomy,theenvironmentalproblemsarebec0mingincreasinglyserious.Am0ngthem,theenhancementofgreenh0useeffectsandglobalwarm-ingaretwoimPOrtantonesthathavear0usedwideattention.Nitrousoxide(N,O)isanim-POrtantgreenhousegasandplayingagreatroleinthesetwoprocesses.SincetheIndustrialRevolution,theatmosphericN2Oconcentrationhasincreasedbyaboutl5%(IPCC,l995).Inthelast4Oyears,itincreasedrapidlyatarateof0.2%ro.3%yr-'(IPCC,l99O).Ifitin-creasesatthisrate,theatmospheri…  相似文献   

2.
华东地区稻麦轮作农田生态系统N2O排放的模拟研究   总被引:7,自引:0,他引:7  
利用DNDC(DeNitrification and DeComposition)模式,对华东地区典型稻麦轮作农田生态系统的N2O排放特征进行了模拟研究。结果表明:该模式能模拟出轮作周期中N2O的主要排放峰值和排放趋势,但与实测值相比,模拟结果普遍有些偏小。相对而言,该模式对旱地阶段的模拟结果比较理想,尤其是对春季小麦返青至成熟期的模拟最好。因此,我们就该阶段影响N2O排放的主要因子进行了敏感性研究。结果指出,对这一阶段N2O排放影响最大的是化肥的施用,其他比较重要的影响因子还包括犁地方式、有机肥、降水量、降水中的N含量以及温度等。  相似文献   

3.
The Denitrification-Decompostion (DNDC) model was used to estimate the impact of change in management practices on N2O emissions in seven major soil regions in Canada, for the period 1970 to 2029. Conversion of cultivated land to permanent grassland would result in the greatest reduction in N2O emissions, particularly in eastern Canada wherethe model estimated about 60% less N2O emissions for thisconversion. About 33% less N2O emissions were predicted for a changefrom conventional tillage to no-tillage in western Canada, however, a slight increase in N2O emissions was predicted for eastern Canada. GreaterN2O emissions in eastern Canada associated with the adoption of no-tillage were attributed to higher soil moisture causing denitrification, whereas the lower emissions in western Canada were attributed to less decomposition of soil organic matter in no-till versus conventional tilled soil. Elimination of summer fallow in a crop rotation resulted in a 9% decrease in N2O emissions, with substantial emissions occurringduring the wetter fallow years when N had accumulated. Increasing N-fertilizer application rates by 50% increased average emissions by 32%,while a 50% decrease of N-fertilizer application decreased emissions by16%. In general, a small increase in N2O emissions was predicted when N-fertilizer was applied in the fall rather than in the spring. Previous research on CO2 emissions with the CENTURY model (Smith et al.,2001) allowed the quantification of the combined change in N2O andCO2 emissions in CO2 equivalents for a wide range of managementpractices in the seven major soil regions in Canada. The management practices that have the greatest potential to reduce the combined N2O andCO2 emissions are conversion from conventional tillage to permanent grassland, reduced tillage, and reduction of summer fallow. The estimated net greenhouse gas (GHG) emission reduction when changing from cultivated land to permanent grassland ranged from 0.97 (Brown Chernozem) to 4.24 MgCO2 equiv. ha–1 y–1 (BlackChernozem) for the seven soil regions examined. When changing from conventional tillage to no-tillage the net GHG emission reduction ranged from 0.33 (Brown Chernozem) to 0.80 Mg CO2 equiv. ha–1 y–1 (Dark GrayLuvisol). Elimination of fallow in the crop rotation lead to an estimated net GHG emission reduction of 0.43 (Brown Chernozem) to 0.80 Mg CO2 equiv.ha–1 y–1 (Dark Brown Chernozem). The addition of 50% more or 50% less N-fertilizer both resulted in slight increases in combined CO2 and N2O emissions. There was a tradeoff in GHG flux with greaterN2O emissions and a comparable increase in carbon storage when 50% more N-fertilizer was added. The results from this work indicate that conversion of cultivated land to grassland, the conversion from conventional tillage to no-tillage, and the reduction of summerallow in crop rotations could substantially increase C sequestration and decrease net GHG emissions. Based on these results a simple scaling-up scenario to derive the possible impacts on Canada's Kyoto commitment has been calculated.  相似文献   

4.
Humans seem to have doubled the global rate of terrestrial nitrogen fixation. Globally 50–70% (85 Tg, 1 Tg=1012 g) of the nitrogen supplied in fertilizer (80 Tg N/a) and leguminous crops (40–80 Tg N/a) are used to feed cattle. The aim of the present study was to derive some estimates of global N2O production from animal manure. As the parameter giving the most stable numerical basis for regional and global extrapolation we adopted the molar emission ratios of N2O to NH3. These ratios were measured in cattle, pig and chicken housings with different manure handling systems, in dung-heaps and in liquid manure storage tanks. Individual molar emission ratios from outside manure piles varied over two orders of magnitude, strongly dependent on the treatment of the manure. A median emission ratio of 1.6×10-2 (n=65) was obtained in cow-sheds with slatted floors and liquid manure stored underneath and a median ratio of 24×10-2 (n=31) was measured in a beef cattle housing with a solid manure handling system.We next extrapolated to global NH3 emissions from those estimated for Europe, using N uptake by the animals as a scaling factor. Multiplication with observed N2O to NH3 ratios next provided some estimates of regional and global N2O emissions. To account for the great variability of the emission ratios of N2O/NH3, we developed upper and lower case emission scenarios, based on lower and upper quartiles of measured emission ratios. The global emission from cattle and swine manure is in the range of 0.2–2.5 Tg N-N2O/a, representing 44+-39% of the annual atmospheric accumulation rate. This N2O emission arises from about 40 Tg N/a of cattle and pig manure stored in or at animal housings. We did not account for N2O emissions from another 50 Tg N/a excreted by grazing cattle, goats and sheep, and application of the manure to agricultural fields. Our study makes it clear that major anthropogenic N2O emissions may well arise from animal manure. The large uncertainty of emission ratios, which we encountered, show that much more intense research efforts are necessary to determine the factors that influence N2O emissions from domestic animal manure both in order to derive a more reliable global estimate of N2O release and to propose alternative waste treatment methods causing smaller N2O releases. In our studies we found large enhancements in N2O releases when straw was added to the manure, which is a rather common practice. In view of the ongoing discussion in Europe to re-install the traditional solid manure system (bed down cattle) for environmental and animal welfare reasons, it is noteworthy that our measurements indicate highest N2O release from this particulary system.In a similar manner, but based on a smaller data set, we also estimated the release of CH4 from cattle and swine manure and from liquid manure only to be about 9 Tg/year in good agreement with the estimate by the Environmental Protection Agency (1994) of 8.6+-2.6 Tg/year. A total annual methane release as high as 34 Tg/a was derived for solid and liquid cattle and pig manure from animals in housings.  相似文献   

5.
Previous research has demonstrated that soil carbon sequestration through adoption of conservation tillage can be economically profitable depending on the value of a carbon offset in a greenhouse gas (GHG) emissions market. However adoption of conservation tillage also influences two other potentially important factors, changes in soil N2O emissions and CO2 emissions attributed to changes in fuel use. In this article we evaluate the supply of GHG offsets associated with conservation tillage adoption for corn-soy-hay and wheat-pasture systems of the central United States, taking into account not only the amount of carbon sequestration but also the changes in soil N2O emission and CO2 emissions from fuel use in tillage operations. The changes in N2O emissions are derived from a meta-analysis of published studies, and changes in fuel use are based on USDA data. These are used to estimate changes in global warming potential (GWP) associated with adoption of no-till practices, and the changes in GWP are then used in an economic analysis of the potential supply of GHG offsets from the region. Simulation results demonstrate that taking N2O emissions into account could result in substantial underestimation of the potential for GHG mitigation in the central U.S. wheat pasture systems, and large over-estimation in the corn-soy-hay systems. Fuel use also has quantitatively important effects, although generally smaller than N2O. These findings suggest that it is important to incorporate these two effects in estimates of GHG offset potential from agricultural lands, as well as in the design of GHG offset contracts for more complete accounting of the effect that no-till adoption will have on greenhouse gas emissions.  相似文献   

6.
Strategies for mitigating the increasing concentration of carbon dioxide (CO2) in the atmosphere include sequestering carbon (C) in soils and vegetation of terrestrial ecosystems. Carbon and nitrogen (N) move through terrestrial ecosystems in coupled biogeochemical cycles, and increasing C stocks in soils and vegetation will have an impact on the N cycle. We conducted simulations with a biogeochemical model to evaluate the impact of different cropland management strategies on the coupled cycles of C and N, with special emphasis on C-sequestration and emission of the greenhouse gases methane (CH4) and nitrous oxide (N2O). Reduced tillage, enhanced crop residue incorporation, and farmyard manure application each increased soil C-sequestration, increased N2O emissions, and had little effect on CH4 uptake. Over 20 years, increases in N2O emissions, which were converted into CO2-equivalent emissions with 100-year global warming potential multipliers, offset 75–310% of the carbon sequestered, depending on the scenario. Quantification of these types of biogeochemical interactions must be incorporated into assessment frameworks and trading mechanisms to accurately evaluate the value of agricultural systems in strategies for climate protection.  相似文献   

7.
Agricultural soils are a major source of atmospheric nitrous oxide (N2O), a potent greenhouse gas (GHG). Because N2O emissions strongly depend on soil type, climate, and crop management, their inventory requires the combination of biophysical and economic modeling, to simulate farmers’ behavior. Here, we coupled a biophysical soil-crop model, CERES-EGC, with an economic farm type supply model, AROPAj, at the regional scale in northern France. Response curves of N2O emissions to fertilizer nitrogen (Nf) inputs were generated with CERES-EGC, and linearized to obtain emission factors. The latter ranged from 0.001 to 0.0225 kg N2O-N kg???1 Nf, depending on soil and crop type, compared to the fixed 0.0125 value of the IPCC guidelines. The modeled emission factors were fed into the economic model AROPAj which relates farm-level GHG emissions to production factors. This resulted in a N2O efflux 20% lower than with the default IPCC method. The costs of abating GHG emissions from agriculture were calculated using a first-best tax on GHG emissions, and a second-best tax on their presumed factors (livestock size and fertilizer inputs). The first-best taxation was relatively efficient, achieving an 8% reduction with a tax of 11 €/ t-CO2-equivalent, compared to 68 €/t-CO2 eq for the same target with the second-best scheme.  相似文献   

8.
Presented is the assessment of the contribution that such major types of the land use in Russia as arable lands, forage lands, settlements, and peatery make to anthropogenic fluxes of carbon dioxide CO2, methane CH4, and nitrogen oxide N2O, The assessment is based on the methods of computation monitoring carried out in the period from 2000 to 2011. The results of the study demonstrated that every year arable lands cause the emission of CO2 and N2O of about 117.0 and 74.9 million t CO2 equiv, and peatery, 0.54 and 105.4 thousand t CO2 equiv, respectively. The balance of soil carbon in hayfields and pastures is close to zero. The average emissions of CH4 and N2O from the manure of pasture animals amount to 0.2 and 5.0 million t CO2 equiv/year, and those from grass fires, 276.1 and 372.5 thousand t CO2 equiv/year, respectively. The carbon balance in permanent soils of settlements is also almost close to zero, and newly built-up lands are the source of CO2 (9.5 million t/year). The natural overgrowing of fallow lands leads to the accumulation of the soil carbon (about 92.4 million t CO2/year). It was revealed that the intensity of CO2 emission is defined by the soil carbon balance and that of other gases, by the amount of nitrogen fertilizers, plant residues, and manure coming to the soil. The total emission from the land use is 106.9 million t CO2 equiv/year that makes up 4.9% of the total anthropogenic emission of greenhouse gases in the Russian Federation.  相似文献   

9.
太湖地区冬小麦田与蔬菜地N2O排放对比观测研究   总被引:10,自引:0,他引:10  
2003年11月8日至2004年6月5日对太湖地区相邻的蔬菜地和稻麦轮作生态系统的冬小麦田,在当季不施肥情况下的N2O排放进行了田间同步对比观测,分析了N2O排放时间变化以及土壤湿度、土壤温度、土壤速效氮含量和农业管理措施对N2O排放的影响。研究结果表明,小麦播种前的耕翻(表层大约7cm土壤旋耕)处理不会明显改变稻麦轮作农田整个旱地阶段的N2O排放总量,但却使小麦生长季初期的N2O排放明显减弱69%(p<0.01,p为相关概率),使小麦生长季后期的N2O排放明显偏高2.6倍(p<0.05),而对其余时间段的N2O排放作用不明显。与长期实行稻麦轮作的旱地阶段农田相比,由稻田改种蔬菜20多年的蔬菜地,其整个观测期的N2O排放总量比免耕处理小麦田同期的排放高85%(p<0.05),比耕翻处理小麦田同期的排放高99%(p<0.01)。蔬菜地N2O排放偏高的原因是土壤速效氮,特别是铵态氮含量明显偏高(p<0.01)。  相似文献   

10.
Emissions of N2O, CH4, and CO2 from soils at two sites in the tropical savanna of central Venezuela were determined during the dry season in February 1987. Measured arithmetic mean fluxes of N2O, CH4, and CO2 from undisturbed soil plots to the atmosphere were 2.5×109, 4.3×1010, and 3.0×1013 molecules cm-2 s-1, respectively. These fluxes were not significantly affected by burning the grass layer. Emissions of N2O increased fourfold after simulated rainfall, suggesting that production of N2O in savanna soils during the rainy season may be an important source for atmospheric N2O. The CH4 flux measurements indicate that these savanna soils were not a sink, but a small source, for atmospheric methane. Fluxes of CO2 from savanna soils increased ninefold two hours after simulated rainfall, and remained three times higher than normal after 16 hours. More research is needed to clarify the significance of savannas in the global cycles of N2O, CH4, CO2, and other trace gases, especially during the rainy season.  相似文献   

11.
1.IntroductionNitrousoxide(N,O)andmethane(CH.)arethemostimportantgreenhousegassesintheatmospherewithitscontributiontoglobalwarmingjustlowerthanCO2.Theirconcentrationsinatmospherehavebeennotedtoincreasecurrentlyattherateof0.25%yr--'andl.02%yr',respectively(IPCC,1995).Atpresent,theincreaseofNZOandCH4intheatmospherehasbeenestimatedtoaccountfor20--25%oftheglobalwarming(FAO&IAEA,1992;Bailes&Bridges,1992).NOdoesnotabsorbradiationdirectlyintheatmosphere,buttheincreasingconcentrationofNOmay…  相似文献   

12.
We measured the emissions of volatile aliphatic amines and ammonia produced by the manure of beef cattle, dairy cows, swine, laying hens and horses in livestock buildings. The amine emissions consisted almost exclusively of the three methylamines and correlated with those of ammonia. The molar emission ratios of the methylamines to ammonia, and data on NH3 emissions from animal husbandry in Europe, together with global statistics on domestic animals, were used to estimate the global emissions of amines. Annual global methylamine-N input to the atmosphere from animal husbandry in 1988 was 0.15±0.06 TgN (Tg=1012 g). Almost 3/4 of these emissions consisted of trimethylamine-N. This represents about half of all methylamine emissions to the atmosphere. Other sources are marine coastal waters and biomass burning.Possible reaction pathways for atmospheric methylamines are shown. Among various speculative but possible products N2O and HCN are of interest because the emission of methylamines could contribute to the global budgets of these compounds. Maximum atmospheric N2O production from methylamines are below 0.4 Tg N/year, which is less than 10% of the annual N2O growth rate. Although we do not expect the methylamine emissions to contribute in a major way to the atmospheric N2O budget, more studies are needed to establish this conclusion beyond doubt. Similar conclusions hold for HCN.  相似文献   

13.
A numerical simulation model is presented in this paper,which comprises the processes of crop growth,soil organic carbon decomposition,and methane emissions in agroecosystems.Simulation results show that the model can simulate the main process of methane emissions well,and the correlation coefficient between the simulated values and observed data is 0.79 with 239 samples,which passed a significance test of 0.01.The average error of methane emission simulation in whole growth period is about 15%.Numerical analysis of the model indicates that the average temperature during rice growth period has much impacts on methane emissions,and the basic trend of interannual methane emissions is similar to that of average temperature.The amount of methane emissions reduces about 34.93%,when the fertilizer is used instead of manure in single rice paddy.  相似文献   

14.
A numerical simulation model is presented in this paper,which comprises the processes ofcrop growth,soil organic carbon decomposition,and methane emissions in agroecosystems.Simulation results show that the model can simulate the main process of methane emissions well,and the correlation coefficient between the simulated values and observed data is 0.79 with 239samples,which passed a significance test of 0.01.The average error of methane emissionsimulation in whole growth period is about 15%.Numerical analysis of the model indicates that theaverage temperature during rice growth period has much impacts on methane emissions,and thebasic trend of interannual methane emissions is similar to that of average temperature.The amountof methane emissions reduces about 34.93%,when the fertilizer is used instead of manure in singlerice paddy.  相似文献   

15.
Increased precipitation during the vegetation periods was observed in and further predicted for Inner Mongolia. The changes in the associated soil moisture may affect the biosphere-atmosphere exchange of greenhouse gases. Therefore, we set up an irrigation experiment with one watered (W) and one unwatered plot (UW) at a winter-grazed Leymus chinensis-steppe site in the Xilin River catchment, Inner Mongolia. UW only received the natural precipitation of 2005 (129 mm), whereas W was additionally watered after the precipitation data of 1998 (in total 427 mm). In the 3-hour resolution, we determined nitrous oxide (N20), methane (CH4) and carbon dioxide (CO2) fluxes at both plots between May and September 2005, using a fully automated, chamber-based measuring system. N20 fluxes in the steppe were very low, with mean emissions (±s.e.) of 0.9-4-0.5 and 0.7-4-0.5 μg N m^-2 h^-1 at W and UW, respectively. The steppe soil always served as a CH4 sink, with mean fluxes of -24.1-4-3.9 and -31.1-4- 5.3 μg C m^-2 h^-1 at W and UW. Nighttime mean CO2 emissions were 82.6±8.7 and 26.3±1.7 mg C m^-2 h^-1 at W and UW, respectively, coinciding with an almost doubled aboveground plant biomass at W. Our results indicate that the ecosystem CO2 respiration responded sensitively to increased water input during the vegetation period, whereas the effects on CH4 and N2O fluxes were weak, most likely due to the high evapotranspiration and the lack of substrate for N2O producing processes. Based on our results, we hypothesize that with the gradual increase of summertime precipitation in Inner Mongolia, ecosystem CO2 respiration will be enhanced and CH4 uptake by the steppe soils will be lightly inhibited.  相似文献   

16.
This paper provides estimates of emissions of two important but often not well-characterized greenhouse gas (GHG) emissions related to transportation energy use: methane (CH4) and nitrous oxide (N2O). The paper focuses on emissions of CH4 and N2O from motor vehicles because unlike emissions of CO2, which are relatively easy to estimate, emissions of CH4 and N2O are a function of many complex aspects of combustion dynamics and of the type of emission control systems used. They therefore cannot be derived easily and instead must be determined through the use of published emission factors for each combination of fuel, end-use technology, combustion conditions, and emission control system. Furthermore, emissions of CH4 and N2O may be particularly important with regard to the relative CO2-equivalent GHG emissions of the use of alternative transportation fuels, in comparison with the use of conventional fuels. By analyzing a database of emission estimates, we develop emission factors for N2O and CH4 from conventional vehicles, in order to supplement recent EPA and IPCC estimates, and we estimate relative emissions of N2O and CH4 from different alternative fuel passenger cars, light-duty trucks, and heavy-duty vehicles.  相似文献   

17.
Anthropogenic emissions of methane (CH4) and nitrous oxide (N2O) from livestock agriculture (enteric fermentation, animal waste management systems, and pasture manure) and plant growing of the Russia (CH4 emissions from rice fields, direct and indirect N2O emissions from agricultural lands) are considered. In 2004, the total emissions of these greenhouse gases in the agricultural sector amounted to 1.4 × 105 thousand t CO2-equivalent, which corresponds to 45% of the 1990 level (3.1 × 105 thousand t CO2-equivalent). In 2004, the contribution of N2O to the total agricultural emissions was approximately twice (67.0%) that of CH4 (33.0%). Direct N2O emissions from agricultural soils (0.5 × 105 thousand t CO2-equivalent) and CH4 emissions from the internal fermentation of domestic animals (0.4 × 105 thousand t CO2-equivalent) are the most significant sources in the agricultural sector of the Russian Federation. In 2004, all these agricultural sources emitting methane and nitrous oxide contributed about 7% CO2-equivalent to the total emission of the anthropogenic greenhouse gases in Russia.  相似文献   

18.
The MAGICC (Model for the Assessment of Greenhouse gas Induced Climate Change) model simulation has been carried out for the 2000–2100 period to investigate the impacts of future Indian greenhouse gas emission scenarios on the atmospheric concentrations of carbon dioxide, methane and nitrous oxide besides other parameters like radiative forcing and temperature. For this purpose, the default global GHG (Greenhouse Gases) inventory was modified by incorporation of Indian GHG emission inventories which have been developed using three different approaches namely (a) Business-As-Usual (BAU) approach, (b) Best Case Scenario (BCS) approach and (c) Economy approach (involving the country’s GDP). The model outputs obtained using these modified GHG inventories are compared with various default model scenarios such as A1B, A2, B1, B2 scenarios of AIM (Asia-Pacific Integrated Model) and P50 scenario (median of 35 scenarios given in MAGICC). The differences in the range of output values for the default case scenarios (i.e., using the GHG inventories built into the model) vis-à-vis modified approach which incorporated India-specific emission inventories for AIM and P50 are quite appreciable for most of the modeled parameters. A reduction of 7% and 9% in global carbon dioxide (CO2) emissions has been observed respectively for the years 2050 and 2100. Global methane (CH4) and global nitrous oxide (N2O) emissions indicate a reduction of 13% and 15% respectively for 2100. Correspondingly, global concentrations of CO2, CH4 and N2O are estimated to reduce by about 4%, 4% and 1% respectively. Radiative forcing of CO2, CH4 and N2O indicate reductions of 6%, 14% and 4% respectively for the year 2100. Global annual mean temperature change (incorporating aerosol effects) gets reduced by 4% in 2100. Global annual mean temperature change reduces by 5% in 2100 when aerosol effects have been excluded. In addition to the above, the Indian contributions in global CO2, CH4 and N2O emissions have also been assessed by India Excluded (IE) scenario. Indian contribution in global CO2 emissions was observed in the range of 10%–26%, 6%–36% and 10%–38% respectively for BCS, Economy and BAU approaches, for the years 2020, 2050 and 2100 for P50, A1B-AIM, A2-AIM, B1-AIM & B2-AIM scenarios. CH4 and N2O emissions indicate about 4%–10% and 2%–3% contributions respectively in the global CH4 and N2O emissions for the years 2020, 2050 and 2100. These Indian GHG emissions have significant influence on global GHG concentrations and consequently on climate parameters like RF and ∆T. The study reflects not only the importance of Indian emissions in the global context but also underlines the need of incorporation of country specific GHG emissions in modeling to reduce uncertainties in simulation of climate change parameters.  相似文献   

19.
Carbon sequestration in agricultural soils is frequently promoted as a practical solution for slowing down the rate of increase of CO2 in the atmosphere. Consequently, there is a need to improve our understanding of how land management practices may affect the net removal of greenhouse gases (GHG) from the atmosphere. In this paper we examine the role of agriculture in influencing the GHG budget and briefly discuss the potential for carbon mitigation by agriculture. We also examine the opportunities that exist for increasing soil C sequestration using management practices such as reduced tillage, reduced frequency of summer fallowing, introduction of forage crops into crop rotations, conversion of cropland to grassland and nutrient addition via fertilization. In order to provide information on the impact of such management practices on the net GHG budget we ran simulations using CENTURY (a C model) and DNDC (a N model) for five locations across Canada, for a 30-yr time period. These simulations provide information on the potential trade-off between C sequestration and increased N2O emissions. Our model output suggests that conversion of cropland to grassland will result in the largest reduction in net GHG emissions, while nutrient additions via fertilizers will result in a small increase in GHG emissions. Simulations with the CENTURY model also indicated that favorable growing conditions during the last 15 yr could account for an increase of 6% in the soil C at a site in Lethbridge, Alberta. Presented at the International Workshop on Reducing Vulnerability of Agriculture and Forestry to Climate Variability and Climate Change, Ljubljana, Slovenia, 7–9 October 2002.  相似文献   

20.
Emission of nitrous oxide from temperate forest soils into the atmosphere   总被引:5,自引:0,他引:5  
N2O emission rates were measured during a 13-month period from July 1981 till August 1982 with a frequency of once every two weeks at six different forest sites in the vicinity of Mainz, Germany. The sites were selected on the basis of soil types typical for many of the Central European forest ecosystems. The individual N2O emission rates showed a high degree of temporal and spatial variabilities which, however, were not significantly correlated to variabilities in soil moisture content or soil temperatures. However, the N2O emission rates followed a general seasonal trend with relatively high values during spring and fall. These maxima coincided with relatively high soil moisture contents, but may also have been influenced by the leaf fall in autumn. In addition, there was a brief episode of relatively high N2O emission rates immediately after thawing of the winter snow. The individual N2O emission rates measured during the whole season ranged between 1 and 92 g N2O-N m–2 h–1. The average values were in the range of 3–11 g N2O-N m–2 h–1 and those with a 50% probability were in the range of 2–8 g N2O-N m–2 h–1. The total source strength of temperate forest soils for atmospheric N2O may be in the range of 0.7–1.5 Tg N yr–1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号