首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
文中使用欧洲中期天气预报中心臭氧柱总量资料分析了西北太平洋地区大气臭氧柱总量的时空分布特征,结果表明:低纬度地区是臭氧柱总量最低的地区,纬向分布明显,臭氧柱总量随着纬度向北极的增加而增大;夏季臭氧柱总量最大值出现在北半球高纬度约80°N的地区,最低值出现在热带地区;秋季臭氧柱总量最大值出现在55°N左右的地区;最小值出现在赤道地区。冬春季,臭氧柱总量的最低值均出现在热带地区,最高值出现在北半球约50°~60°N的高纬度地区。   相似文献   

2.
内蒙古地区近3年pH值及酸雨状况分析   总被引:1,自引:0,他引:1  
利用内蒙古8个酸雨监测站2007—2009年的pH监测值,统计分析了内蒙古近3年pH值和酸雨的分布特征。得到:我区总体是东部pH值偏小,北部草原地区偏大;通辽市出现酸雨的次数最多;pH平均值的最小值各地均出现在夏季;pH极大值出现在朱日和,极小值出现在通辽;76%的酸雨出现在夏季。  相似文献   

3.

对铜川3个观测站1971—2000年30a雾日资料统计分析,发现铜川大雾在时空分布上具有明显的北多南少的特点;年际分布上呈现2峰2谷型,峰值均出现在80年代,最大谷值出现在90年代,次大谷值出现在70年代;月季变化也存在2峰2谷的特点,最大峰值在9月或11月,次大峰值出现在3月,最小谷值12—1月,次小谷值出现在初夏的5月。分析了形成铜川大雾的地域、地形影响,指出了宜君大雾与大风、雷雨交替出现的独特现象,并分析了形成原因。

  相似文献   

4.

选用华山气象站1980—2008年电线积冰观测资料,将其转换为标准冰厚,并与每日4次温度、湿度、水汽压、风速、降水量等进行相关分析。结果表明:华山标准冰厚为0~20mm。积冰主要为5mm以下,出现频率达87.56%。风速为2.1~8m/s,积冰出现频率达75.72%。15mm以上积冰只出现在日平均风速为1.1~16m/s时,并以4.1~8m/s出现频率最大,为0.45%,占该厚度的60%。出现积冰时的水汽压(日4次水汽压中的最大值)多为3.1~7hPa,15mm以上积冰只出现水汽压为4.1~8hPa时。出现积冰的湿度多为81%~100%;15mm 以上积冰也出现在该湿度范围内。当20-08时降水量为5mm以下,华山积冰出现频率达91.03%;15mm以上积冰出现在降水量为0.1~20mm时,并以5.1~20mm频率最大。华山积冰时,14时气温主要为-9.9~5o C,积冰频率达88.24%。15mm以上的积冰也出现在该温度范围内,并以-4.9~0o C间频率最大,为0.45%。华山14时气温为-4.9~0o C、日平均湿度为90%~100%时,积冰出现频率最大,为25.41%,大于四分之一,其中出现5mm 以下积冰的频率为21.19%。15mm 以上积冰主要出现条件为-4.9~0o C、湿度90%以上,出现频率为0.45%,占该厚度的66%。
 

  相似文献   

5.
一、全省出现的异常气象值及其特点1990年全省异常气象出现的程度是近几年最弱的;总次数是1986年以来最少的,且出现站点分散;大范围的异常只有一项,是近10年来最少的。但出现年值异常占总次数的21.9%,是1984年来比例最大的;历史上没有出现过的记录达10站项次,是历年中次多的一年。  相似文献   

6.
利用新疆历年电线积冰观测资料对新疆电线积冰的时空分布、种类以及电线积冰出现时的气象条件进行了初步分析。得出:电线积冰出现日数北疆多于南疆,南疆山区多于平原;电线积冰主要出现在冬季,1月和12月出现频率最高;新疆出现电线积冰的主要类型为雾凇;出现电线积冰的气象条件为当日最低气温在0℃以下,空气相对湿度70%。提出了防御电线积冰灾害的措施。  相似文献   

7.
1998年我国天气气候特点   总被引:7,自引:1,他引:6  
张清 《气象》1999,25(4):26-29
1998年我国天气气候有如下几个主要特点:南方部分地区出现冬春汛,夏季长江、嫩江和松花江流域发生严重洪涝,秋季降水偏少,部分地区出现秋旱;全国年平均气温普遍偏高;生成和登陆的台风异常偏少;风雹天气接近常年;青藏高原出现罕见雪灾。  相似文献   

8.
引起华北地区夏季出现持续干旱的环流异常型   总被引:6,自引:3,他引:3  
利用中国160个台站降水资料和ERA〖CD*2〗40再分析资料分析了华北地区夏季降水及其对应的大气环流年代际变化特征。分析结果如下:华北地区夏季降水自1977年之后明显减少,出现持续性干旱。1977~2000年500 hPa高度场出现与1966~1976年相反的遥相关波列;华北地区上空700 hPa出现反气旋型环流异常,并出现明显偏北风异常,且下沉气流加强,水汽出现辐散;此外,200 hPa高度上西风带偏南且减弱。相反,1966~1976年华北地区上空700 hPa出现气旋型环流异常,并出现偏南风异常,且上升气流加强,水汽输送辐合;此外,200 hPa上西风异常偏北加强。    相似文献   

9.
利用1998~2011年《青藏高原低涡切变线年鉴》的资料,统计分析了高原低涡的活动特征。结果表明:14年共出现高原低涡561次,其中高原东部低涡466次,高原西部低涡95次;2000~2009年,高原低涡出现次数逐年升高;高原低涡主要出现在夏季,月变化明显,其中7月出现次数最多,2月出现最少;高原低涡移出高原的影响系统包括低槽类和切变类,分别占28.8%,71.2%。   相似文献   

10.
1问题的提出统计费县气象局天气现象时发现:沙尘暴只有1962年出现过一次;扬沙在1964—1972年的9年间一次未出现,1976年至今年年有;浮尘1986—1987年两年未出现,其他年份均有。扬沙、浮尘没有记录,并不说明现象没出现;没有记录,并不排除...  相似文献   

11.
用NCEP/NCAR的再分析资料和局地纬向平均Hadley环流(反Hadley环流)诊断方程,探讨南海强夏季风年(1994年)建立初期(5月1~5日)和弱夏季风年(1998年)建立初期(5月21~25日)的物理机理。数值诊断结果表明:强南海夏季风年(1994年)建立初期候平均气压梯度力(地转风)作用相对较小,而弱夏季风年(1998年)则相对较大。1994年5月第1候候平均非地转南风比1998年5月第5候候平均非地转南风强的主要原因是1994年南海地区稳定度较小。对1994年5月第1候南海地区近地面候平均最大非地转南风起正贡献的主要因子为:潜热加热,纬向温度平流,垂直温度对流,边界效应;对1998年5月第5候南海地区近地面候平均最大非地转起主要贡献因子为:潜热加热,边界效应,垂直温度对流。  相似文献   

12.
A typical active–break cycle of the Asian summer monsoon is taken as beginning with maximum SST (pentad 0) over the north Bay of Bengal when the oceans to its west and east from longitude 40°–160°E, and between latitudes 10° and 25°N (area A) also has maximum SST. During this pentad the recently found “Cold Pool” of the Bay of Bengal (between latitudes 3°N and 10°N) has its minimum SST. An area of convection takes genesis over the Bay of Bengal immediately after pentad 0 in the zone of large SST gradient north of the Cold Pool and it pulls the monsoon Low Level Jetstream (LLJ) through peninsular India. Convection and the LLJ westerlies then spread to the western Pacific Ocean during pentads 1–4 taken as the active phase of the monsoon during which convection and LLJ have grown in a positive feed back process. The cyclonic vorticity to the north of the LLJ axis is hypothesized to act as a flywheel maintaining the convection during the long active phase against the dissipating effect of atmospheric stabilization by each short spell of deep convection. By the end of pentad 4 the SST over area A has cooled and the convection weakens there, when the LLJ turns clockwise over the Arabian Sea and flows close to the equator in the Indian ocean. A band of convection develops at pentad 5 between the equator and latitude 10°S over the Indian ocean and it is nourished by the cyclonic vorticity of the LLJ now near the equator and the moisture supply through it. This is taken as the break monsoon phase lasting for about three to four pentads beginning from pentad 5 of a composite active–break cycle of 40 day duration. With reduced wind and convection over the area A during the break phase, solar radiation and light winds make the SST there warm rapidly and a new active–break cycle begins. SST, convection, LLJ and the net heat flux at the ocean surface have important roles in this new way of looking at the active–break cycle as a coupled ocean–atmosphere phenomenon.  相似文献   

13.
By using the NCEP/NCAR pentad reanalysis data from 1968 to 2009, the variation characteristics of Middle East jet stream(MEJS) and its thermal mechanism during seasonal transition are studied. Results show that the intensity and south-north location of MEJS center exhibit obvious seasonal variation characteristics. When MEJS is strong, it is at 27.5°N from the 67 th pentad to the 24 th pentad the following year; when MEJS is weak, it is at 45°N from the 38 th pentad to the 44 th pentad. The first Empirical Orthogonal Function(EOF) mode of 200-hPa zonal wind field shows that MEJS is mainly over Egypt and Saudi Arabia in winter and over the eastern Black Sea and the eastern Aral Sea in summer. MEJS intensity markedly weakens in summer in comparison with that in winter. The 26th-31 st pentad is the spring-summer transition of MEJS, and the 54th-61 st pentad the autumn-winter transition. During the two seasonal transitions, the temporal variations of the 500-200 hPa south-north temperature difference(SNTD) well match with 200-hPa zonal wind velocity, indicating that the former leads to the latter following the principle of thermal wind. A case analysis shows that there is a close relation between the onset date of Indian summer monsoon and the transition date of MEJS seasonal transition. When the outbreak date of Indian summer monsoon is earlier than normal, MEJS moves northward earlier because the larger SNTD between 500-200 hPa moves northward earlier, with the westerly jet in the lower troposphere over 40°-90°E appearing earlier than normal, and vice versa.  相似文献   

14.
By using 40-year NCEP reanalysis daily data (1958-1997), we have analyzed the climatic characteristics of summer monsoon onset in the South China Sea (105°E ~ 120°E, 5°N ~ 20°N, to be simplified as SCS in the text followed) pentad by pentad (5 days). According to our new definition, in the monsoon area of the SCS two of the following conditions should be satisfied: 1) At 850hPa, the southwest winds should be greater than 2m/s. 2) At 850 hPa, θse should be greater than 335°K. The new definition means that the summer monsoon is the southwest winds with high temperature and high moisture. The onset of the SCS summer monsoon is defined to start when one half of the SCS area (105°E ~ 120°E,5°N ~ 20°N) is controlled by the summer monsoon. The analyzed results revealed the following: 1) The summer monsoon in the SCS starts to build up abruptly in the 4th pentad in May. 2) The summer monsoon onset in the SCS is resulted from the development and intensification of southwesterly monsoon in the Bay of Bengal. 3) The onset of the summer monsoon and establishment of the summer monsoon rainfall season in the SCS occur simultaneously. 4) During the summer monsoon onset in the SCS, troughs deepen and widen quickly in the lower troposphere of the India; the subtropical high in the Western Pacific moves eastward off the SCS in the middle troposphere; the easterly advances northward over the SCS in the upper troposphere.  相似文献   

15.
韩荣青  李维京  董敏 《气象学报》2006,64(2):149-163
用时空滤波和Morlet小波方法,分析了1958—2000年夏季东亚(20°—45°N,110°—135°E)不同纬带(由南到北分为4个区域)的降水分别与太平洋同一纬带上大气30—60 d振荡(ISO)沿纬圈传播的关系及其成因机制。发现太平洋上经向风ISO向西传播的强或弱,是东亚夏季风区降水偏多或偏少的必要条件。对逐年夏季的分析表明,无论当年东亚夏季风强与否,在所划分的几个东亚季风区所有涝的年份里,太平洋同一纬带上大气ISO向西传播都明显较强,而在这些区域绝大多数旱的年份里,相应的ISO向西传播明显较弱。进一步分析发现,经向风ISO的纬向传播对应着大气经向型环流系统的移动,向西传影响东亚夏季风区降水的ISO有来自低纬中东太平洋东风流中的低频气旋(如副热带东风带中ISO的演变);也有来自中高纬度阿拉斯加湾及鄂霍次克海一带低频低压(如洋中槽)和高压(如阻塞高压和东北太平洋高压)的向南向西频散。因此东亚夏季旱涝不但与热带季风有关,而且与中东太平洋副热带东风系统中ISO的向西传播、中高纬度长波调整时低频扰动向西南经北太平洋副热带的传播密切相关。  相似文献   

16.
The spring persistent rains (SPR) over southeastern China (SEC) is a synoptic and climatic phenomenon that is unique in East Asia. Su cient evidence proves that it results from the mechanical and thermal effects of the giant Tibetan Plateau (TP), but its temporal span and spatial distribution are not clear at present.A climatological analysis of the NCEP/NCAR circulation and sensible heat data shows that at the 13th pentad of the solar year (1st pentad of March) there are remarkable increases in the sensible heating over the main and southeastern part of the TP, the southwesterly velocity over the southeastern flank of the TP and SEC, and rainfall over SEC, indicating the onset of the SPR.However, after the 27th pentad of the solar year (3rd pentad of May), these variables, except for the sensible heating over the main part of the TP, decrease rapidly. The ridge line of the subtropical high in the mid-low troposphere over the South China Sea (SCS) slopes northward instead of southward as before. The rain belt center over SEC shifts to the SCS and the SCS monsoon breaks out, indicating the end of the SPR. Hence, it is reasonable to define the SPR temporal span from the 13th to 27th pentad of the solar year. Data analysis and numerical sensitivity experiments show that, although the warm and cold airs converge at about 30°N in the SPR period, the distribution and intensity of the SPR rain belt are obviously in influenced by the topography of the Nanling and Wuyi Mountains (NWM). The mountains can block and lift cold and warm airs, strengthening frontogenesis and rainfall. As a result, the axis of the SPR rain belt is superposed over that of the mountain range. Accordingly, the spatial distribution of the SPR extends over most of the SEC, more speci cally, to the south of the middle and lower reaches of the Yangtze River (30°N), and to the east of 110°E.  相似文献   

17.
The Earliest Onset Areas and Mechanism of the Tropical Asian Summer Monsoon   总被引:1,自引:0,他引:1  
The multi-yearly averaged pentad meteorological fields at 850 hPa of the NCEP/NCAR reanalysis dada and the TBB fields of the Japan Meteorological Agency during 1980-1994 are analyzed. It is found that if the pentad is taken as the time unit of the monsoon onset, then the tropical Asian summer monsoon (TASM) onsets earliest, simultaneously and abruptly over the whole area in the Bay of Bengal (BOB), the Indo-China Peninsula (ICP), and the South China Sea (SCS), east of 90°E, in the 27th to 28th pentads of a year (Pentads 3 to 4 in May), while it onsets later in the India Peninsula (IP) and the Arabian Sea (AS), west of 90°E. The TASM bursts first at the south end of the IP in the 30th to 31st pentads near 10°N, and advances gradually northward to the whole area, by the end of June. Analysis of the possible mechanism depicts that the rapid changes of the surface sensible heat flux, air temperature, and pressure in spring and early summer in the middle to high latitudes of the East Asian continent between 100°E and 120癊are crucially responsible for the earliest onset of the TASM in the BOB to the SCS areas. It is their rapid changes that induce a continental depression to form and break through the high system of pressure originally located in the above continental areas. The low depression in turn introduces the southwesterly to come into the BOB to the SCS areas, east of 90°E, and thus makes the SCS summer monsoon (SCSSM) burst out earliest in Asia. In the IP to the AS areas, west of 90°E, the surface sensible heat flux almost does not experience obvious change during April and May, which makes the tropical Indian summer monsoon (TISM) onset later than the SCSSM by about a month. Therefore, it is concluded that the meridian of 90°E is the demarcation line between the South Asian summer monsoon (SASM, i.e., the TISM) and the East Asian summer monsoon (EASM, including the SCSSM). Besides, the temporal relations between the TASM onset and the seasonal variation of the South Asian high (SAH) are discussed, too, and it is found that there are good relations between the monsoon onset time and the SAH center positions. When the SAH center advances to north of 20°N, the SCSSM onsets, and to north of 25°N, the TISM onsets at its south end. Comparison between the onset time such determined and that with other methodologies shows fair consistency in the SCS area and some differences in the IP area.  相似文献   

18.
Climatological characteristics of subtropical anticyclone structure during seasonal transition are investigated based on NCEP/NCAR reanalysis data.The ridge-surface of subtropical anticyclone is defined by the boundary surface between westerly to the north and easterly to the south (WEB in brief).In Afro-Asian monsoon area,the subtropical high in troposphere whose ridgelines are consecutive in wintertime takes on relatively symmetrical and zonal structure,the WEB tilts southward with increasing height.In summer,the subtropical high ridgelines are discontinuous at low levels and continuous at upper levels,the WEB tilts northward from the bottom up.Under the constraint of thermal wind relation,the WEB usually tilts toward warmer zone.May is the period when subtropical high modality most significantly varies.The structure and properties of subtropical high during seasonal transition are different from area to area.A new concept "seasonal transition axis" is proposed based on formation and variation of the vertical ridge axis of subtropical anticyclone.The subtropical high of summer pattern firstly occurs over eastern Bay of Bengal in the beginning of May.then stabilizes over eastern Bay of Bengal,Indo-China,and western South China Sea in the 3rd pentad of May,it exists over the South China Sea in the 4th-5th pentad of May and establishes over central India in the 1st-2nd pentad of June.The three consequential stages when summer modal subtropical high occurs correspond to that of Asian summer monsoon onset,respectively.To a great extent,the summer monsoon onset over the Bay of Bengal depends on the reversal of meridional temperature gradient in vicinity of the WEB in upper troposphere.The meridional temperature gradient at middle-upper levels in troposphere can be used as a good indicator for measuring the seasonal transition and Asian monsoon onset.  相似文献   

19.
关于确定东亚夏季风强度指数的探讨   总被引:8,自引:2,他引:8  
廉毅  沈柏竹  高枞亭 《气象学报》2004,62(6):782-789
文中利用作者曾定义的东亚夏季风在中国东北地区 (12 2 .5°E ,4 0°N)的建立标准 ,根据相同的方法 ,分别计算了沿 112 .5 ,117.5 ,和 12 2 .5°E上 ,2 0°N及以北每隔 5个纬度东亚夏季风建立、持续和撤退时间 (候 ) ,将某年持续和多年平均持续候数相比的标准化值 ,定义为一种沿某一经圈上某一纬度的东亚夏季风强度指数ISMΦ,还分析了该指数与中国夏季降水量场和 5 0 0hPa高度场的相关。结果表明 :(1)沿 117.5°E经度上 ,东亚夏季风在 2 0 ,2 5 ,30 ,35 ,和 4 0°N建立的平均日期分别为 2 7.2 6 ,2 8.5 4 ,34.4 3,37.12和 37.6 5 (候 ) ,撤退平均日期分别为 5 4 .4 4 ,5 3.6 9,5 1.85 ,4 8和 4 6 .76 (候 ) ,其中 117.5°E ,2 0°N代表南海的中北部 ,文中确定的该区夏季风建立、撤退日期分别为 2 7.2 6 (候 )和 5 4 .4 4 (候 ) ,与国内学者公认的 5月 4候 (2 8候 )和 10月 1候 (5 5候 )相当吻合 ;(2 )沿 112 .5°E、117.5°E和12 2 .5°E的同一纬度上 ,东亚夏季风建立的平均日期并不相同 ,西边先于东边建立 ,每隔 5个经度 ,相差约 1~ 2候 ,而撤退的平均日期 (30°N及以北 )分布则相反 ,东边先撤退 ;(3)沿 117.5°E ,30°N和 35°N的ISMΦ和沿 12 2 .5°E ,4 0°N的ISMΦ均与中国华北和东北地区大部 7~  相似文献   

20.
东亚地区水汽输送强、弱年水汽输送的异同   总被引:5,自引:1,他引:4  
利用1950-2002年NCAR/NCEP再分析逐日平均资料,计算全球格点整层水汽输送通量,分析东亚地区水汽输送强、弱年候平均水汽输送的异同点.水汽输送强、弱年都存在一条行星尺度水汽输送带,但是又有显著的差异:(1)南半球越赤道、阿拉伯海、孟加拉湾的水汽输出量不同.(2)副热带高压外围水汽的强度和影响范围不同.(3)中纬度向内蒙古中部和东北地区输送水汽的偏西风水汽输送带在水汽输送强年明显、弱年不明显.(4)在水汽输送强年中国云贵高原-长江中游-华北-东北南部有一条明显的水汽输送大值带,中国中、东部均有水汽输送,只是中国东南部和长江中下游地区水汽输送相对较少;在水汽输送弱年仅中同南方、东部沿海和东北地区南部有弱的水汽输送.(5)水汽输送强年的变化较为平缓,而水汽输送弱年则比较迅速.东哑地区偏南风水汽输送在水汽输送强、弱年的相同特征是:特征线南撤的速度非常快,在20°一30°N附近有东南风水汽输送加入,并取代西南风水汽输送;不同之处是,水汽输送强年建立的时间早、能够到达更北的纬度、强盛期长、撤退的时间迟.副热带高压南侧东南风水汽输送在水汽输送强、弱年的共同点是,西界均为95°E,由建立到强盛的速度郁非常快,在强盛期突然就东撤到130°E以东的区域;不同点是,在160°E处东南风水汽输送建证的时间不同,强盛期不同,纠达西界的时间不同,印度季风槽在95°E以西形成的东南风水汽输送持续时间和影响范围不同,西扩和东撤的速度不同.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号