首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The impact of soil moisture availability on the Bowen ratio and on the partition of net radiation flux into sensible, latent and soil heat fluxes was investigated by using one-dimensional primitive equations with a refined soil parameterization scheme. Simulation results presented that as soil moisture availability increases, the Bowen ratio and the partition of net radiation flux into sensible and soil heat fluxes decrease. The partition of net radiation flux into latent heat flux, however, increases. Quantitative relationships between Bowen ratio and the partitions with soil moisture availability were also given in this study.  相似文献   

2.
In this paper, an Atmosphere-Vegetation Interaction Model (AVIM) is coupled to the Regional Integrated Environment Model System (RIEMS), and a 10-year integration for China is performed using the RIEMS-AVIM. The analysis of the results of the 10-year integration shows that the characters of the spatial distributions of temperature and precipitation over China are well simulated. The patterns of simulated surface sensible and latent heat fluxes match well with the spatial climatological atlas: the values of winter surface sensible and latent heat fluxes are both lower than climatological values over the whole country. Summer surface sensible heat flux is higher than climatological values in western China and lower in eastern China, while summer surface latent heat flux is higher than climatological values in the eastern and lower in the western. Seasonal variations of simulated temperature and precipitation of RIMES-AVIM agree with those of the observed. Simulated temperature is lower than the observed in the Tibetan Plateau and Northwest China for the whole year, slightly lower in the remaining regions in winter, but consistent with the observed in summer. The simulated temperature of RIEMS-AVIM is higher in winter and lower in summer than that of RIEMS, which shows that the simulated temperature of RIEMS-AVIM is closer to the observed value. Simulated precipitation is excessive in the first half of the year, but consistent with the observed in the second half of the year. The simulated summer precipitation of RIEMS-AVIM has significant improvement compared to that of RIEMS, which is less and closer to the observed value. The interannual variations of temperature and precipitation are also fairly well simulated, with temperature simulation being superior to precipitation simulation. The interannual variation of simulated temperature is significantly correlated with the observed in Northeast China, the Transition Region, South China, and the Tibetan Plateau, but the correlation between precipitation simu  相似文献   

3.
The authors examine the Indian Ocean sea surface temperature(SST) biases simulated by a Flexible Regional Ocean Atmosphere Land System(FROALS) model.The regional coupled model exhibits pronounced cold SST biases in a large portion of the Indian Ocean warm pool.Negative biases in the net surface heat fluxes are evident in the model,leading to the cold biases of the SST.Further analysis indicates that the negative biases in the net surface heat fluxes are mainly contributed by the biases of sensible heat and latent heat flux.Near-surface meteorological variables that could contribute to the SST biases are also examined.It is found that the biases of sensible heat and latent heat flux are caused by the colder and dryer near-surface air in the model.  相似文献   

4.
The land surface processes of the Noah-MP and Noah models are evaluated over four typical landscapes in the Haihe River Basin(HRB) using in-situ observations. The simulated soil temperature and moisture in the two land surface models(LSMs) is consistent with the observation, especially in the rainy season. The models reproduce the mean values and seasonality of the energy fluxes of the croplands, despite the obvious underestimated total evaporation. Noah shows the lower deep soil temperature. The net radiation is well simulated for the diurnal time scale. The daytime latent heat fluxes are always underestimated, while the sensible heat fluxes are overestimated to some degree. Compared with Noah, Noah-MP has improved daily average soil heat flux with diurnal variations. Generally, Noah-MP performs fairly well for different landscapes of the HRB. The simulated cold bias in soil temperature is possibly linked with the parameterized partition of the energy into surface fluxes. Thus, further improvement of these LSMs remains a major challenge.  相似文献   

5.
The authors present a case study investigating the impacts of dust aerosols on surface atmospheric variables and energy budgets in a semi-arid region of China. Enhanced observational meteorological data, radiative fluxes, near-surface heat fluxes, and concentrations of dust aerosols were collected from Tongyu station, one of the reference sites of the International Coordinated Energy and Water Cycle Observations Project (CEOP), during a typical dust storm event in June 2006. A comprehensive analysis of these data show that in this semi-arid area, higher wind velocities and a continuously reduced air pressure were identified during the dust storm period. Dust storm events are usually associated with low relative humidity weather conditions, which result in low latent heat flux values. Dust aerosols suspended in the air decrease the net radiation, mainly by reducing the direct solar radiation reaching the land surface. This reduction in net radiation results in a decrease in soil temperatures at a depth of 2 cm. The combination of increased air temperature and decreased soil temperature strengthens the energy exchange of the atmosphere-earth system, increasing the surface sensible heat flux. After the dust storm event, the atmosphere was dominated by higher pressures and was relatively wet and cold. Net radiation and latent heat flux show an evident increase, while the surface sensible heat flux shows a clear decrease.  相似文献   

6.
Heat flux data collected from the Baiyangdian Heterogeneous Field Experiment were analyzed using the footprint method. High resolution (25 m) Landsat-5 satellite imaging was used to determine the land cover as one of four surface types: farmland, lake, wetland, or village. Data from two observation sites in September 2005 were used. One site (Wangjiazhai) was characterized by highly heterogeneous surfaces in the central area of the Baiyangdian: lake/wetland. The other site (Xiongxian) was on land with more uniform surface cover. An improved Eulerian analytical flux footprint model was used to determine “source areas” of the heat fluxes measured at towers located at each site from surrounding landscapes of mixed surface types. In relative terms results show that wetland and lake areas generally contributed most to the observed heat flux at Wangjiazhai, while farmland contributed most at Xiongxian. Given the areal distribution of surface type contributions, calculations were made to obtain the magnitudes of the heat flux from lake, wetland and farmland to the total observed flux and apportioned contributions of each surface type to the sensible and latent heat fluxes. Results show that on average the sensible heat flux from wetland and farmland were comparable over the diurnal cycle, while the latent heat flux from farmland was somewhat larger by about 30-50 W m-2 during daytime. The latent and sensible fluxes from the lake source in daytime were about 50 W m-2 and 100 W m-2 less, respectively, than from wetland and farmland. The results are judged reasonable and serve to demonstrate the potential for flux apportionment over heterogeneous surfaces.  相似文献   

7.
A variational technique (VT) is applied to estimate surface sensible and latent heat fluxes based on observations of air temperature, wind speed, and humidity, respectively, at three heights (1 m, 4 m, and 10 m), and the surface energy and radiation budgets by the surface energy and radiation system (SERBS). The method fully uses all information provided by the measurements of air temperature, wind, and humidity profiles, the surface energy budget, and the similarity profile formulae as well. Data collected at Feixi experiment station installed by the China Heavy Rain Experiment and Study (HeRES) Program are used to test the method. Results show that the proposed technique can overcome the well-known unstablility problem that occurs when the Bowen method becomes singular; in comparison with the profile method, it reduces both the sensitivities of latent heat fluxes to observational errors in humidity and those of sensible heat fluxes to observational errors in temperature, while the estimated heat fluxes approximately satisfy the surface energy budget. Therefore, the variational technique is more reliable and stable than the two conventional methods in estimating surface sensible and latent heat fluxes.  相似文献   

8.
THE SENSITIVITY TEST STUDY OF AIR-SEA SURFACE FLUX MODEL   总被引:2,自引:0,他引:2  
In this article, a sensitivity test of air-sea surface flux model was carried out with the field observation data of Project “South China Sea Air-Sea Flux Measurement in 2000”. The results show that sensible heat fluxes are sensitive to observation errors, increasing the error of model calculation; In contrast, the latent heat flux and momentum flux are not as sensitive to observation errors as the sensible heat, and their calculated results are reliable. The test result also verifies…  相似文献   

9.
Extreme heat over the North China Plain is typically induced by anomalous descending flows associated with anticyclonic circulation anomalies. However, an extreme heat event that happened in the North China Plain region on 12–13 July 2015,with maximum temperature higher than 40℃ at some stations, was characterized by only a weak simultaneous appearance of an anomalous anticyclone and descending flow, suggesting that some other factor(s) may have induced this heat event. In this study, we used the forecast data produced by the Beijing Rapid Updated Cycling operational forecast system, which predicted the heat event well, to investigate the formation mechanism of this extreme heat event. We calculated the cumulative heat in the mixed-layer air column of North China to represent the change in surface air temperature. The cumulative heat was composed of sensible heat flux from the ground surface and the horizontal heat flux convergence. The results indicated that the horizontal heat flux in the mixed layer played a crucial role in the temporal and spatial distribution of high temperatures.The horizontal heat flux was found to be induced by distinct distributions of air temperatures and horizontal winds at low levels during the two days, implying a complexity of the low-level atmosphere in causing the extreme heat.  相似文献   

10.
With the marine ship observation data set obtained by three cruise-phases of Chinese Xi-angyanghong 5 from November 5,1992 to February 19,1993 in the TOGA-COARE IOP at 2°S,156°E.the sea surface fluxes at this point are estimated by three different bulk schemes.Firstly.aquasi-linear relation is found between the neutral drag coefficients and wind speed.Then,the sta-bility-dependent drag and heat transfer coefficients are solved in the iterative method.Based onthus-derived transfer coefficients,the momentum,sensible and latent heat fluxes are calculated.In the warm pool region,the fluxes corresponding to the westeily winds are much greater thanthose of the easterly trade winds.The magnitude of sea surface fluxes depends upon the atmo-spheric stability as well,in particular in the case of weak wind condition.The estimated sea sur-face net heat budget shows that considerable amount of heat transport from ocean to atmosphere ismainly produced by the effective longwave radiation,latent and sensible heat fluxes.Among themthe value of latent heat flux is the largest and the sensible heat flux is the smallest.Finally,an ac-curacy analysis is made by direct measurements with the eddy-correlation method on the JapaneseR/V Hakuho board at the same time.It is shown that the bulk-derived fluxes are acceptable withmuch confidence.The estimated effective longwave radiation is used to compare with those by di-rect observations on Xiangyanghong 5.This research is compared with TOGA investigation in thetropical western Pacific.  相似文献   

11.
Based on oceanic and atmospheric parameters retrieved by satellite remote sensing using a neural network method, air-sea heat fluxes over the western Pacific warm pool area were calculated with the advanced the advanced Coupled Ocean-Atmosphere Response Experiment 3.0 (COARE3.0) bulk algorithm method. Then, the average annual and interannual characteristics of these fluxes were analyzed. The rela- tionship between the fluxes and the South China Sea (SCS) summer monsoon onset is highlighted. The results indicate that these fluxes have clear temporal and spatial characteristics. The sensible heat flux is at its maximum in the Kuroshio area, while the latent heat flux is at its maximum in the North Equatorial Current and Kuroshio area. The distribution of average annual air-sea heat fluxes shows that both sensible and latent heat fluxes are maximized in winter and minimized in summer. The air-sea heat fluxes have obvious interannual variations. Correlation analysis indicates a close lag-correlation between air-sea heat fluxes in the western Pacific warm pool area and at the SCS summer monsoon onset. The lagcorrelation can therefore predict the SCS summer monsoon onset, providing a reference for the study of precipitation related to the monsoon.  相似文献   

12.
The interdecadal variation of intensity of the western Pacific subtropical high(WPSH) during the period 1951-2001 is studied by using data from the National Climate Center(NCC),China Meteorological Administration.The characteristics of the circulations at 500 hPa and the surface heat flux over East Asia are also analyzed based on the NCEP/NCAR monthly reanalysis data.The results reveal that the WPSH and the circulations exhibit interdecadal variations around 1978,with enhancing intensities.The interseasonal persistence of the WPSH intensity alters correspondingly to some extent,which is more significant during 1978-2001 than during 1951-1978.The surface heat flux over East Asia also displays a remarkable interdecadal variation,which leads that of the WPSH intensity.The key variation areas of the surface sensible heat flux(SSHF) are mainly located over the eastern and western Tibetan Plateau around the late 1960s.However,the difference of the SSHF between the eastern and western Plateau exhibits a change in the mid 1970s,close to the time of the abrupt climate change of the WPSH intensity.The SSHF of the Plateau stably increases in the west and decreases in the east before the mid-late 1960s,while it stably increases in the east and decreases in the west after the mid-1970s.On the other hand,the key variation area of the surface latent heat flux(SLHF) is mainly situated over the West Pacific(WP),where the SLHF anomaly in spring changes from positive to negative in the south before 1978,but from negative to positive in the north after 1978;while in summer it turns from positive to negative all over the WP after 1978.The interdecadal variation of SLHF in both spring and summer corresponds well to the interdecadal variation of the WPSH intensity in the same season.The notable correlation between the WPSH intensity and SSHF(or SLHF) maintains without any change although each of these qnantities varies on the interdecadal scale.  相似文献   

13.
The temperature biases of 28 CMIP5 AGCMs are evaluated over the Tibetan Plateau(TP) for the period 1979–2005. The results demonstrate that the majority of CMIP5 models underestimate annual and seasonal mean surface 2-m air temperatures(T_(as)) over the TP. In addition, the ensemble of the 28 AGCMs and half of the individual models underestimate annual mean skin temperatures(T_s) over the TP. The cold biases are larger in T_(as) than in T_s, and are larger over the western TP. By decomposing the T_s bias using the surface energy budget equation, we investigate the contributions to the cold surface temperature bias on the TP from various factors, including the surface albedo-induced bias, surface cloud radiative forcing, clear-sky shortwave radiation, clear-sky downward longwave radiation, surface sensible heat flux, latent heat flux,and heat storage. The results show a suite of physically interlinked processes contributing to the cold surface temperature bias.Strong negative surface albedo-induced bias associated with excessive snow cover and the surface heat fluxes are highly anticorrelated, and the cancelling out of these two terms leads to a relatively weak contribution to the cold bias. Smaller surface turbulent fluxes lead to colder lower-tropospheric temperature and lower water vapor content, which in turn cause negative clear-sky downward longwave radiation and cold bias. The results suggest that improvements in the parameterization of the area of snow cover, as well as the boundary layer, and hence surface turbulent fluxes, may help to reduce the cold bias over the TP in the models.  相似文献   

14.
In different synoptic conditions and at different time scales,the analysis of the energy budgetsby Bowen Ratio Method and Bulk Schemes over Huaihe River Basin during the field observationperiods of HUBEX in 1999 shows that,(1)the averaged latent heat flux is an order of magnitudemore than the averaged sensible heat flux during the observation period:(2)the variation of totalcloud amount is out of phase with the terms of energy budgets except for the downward longwaveradiation which maybe is related to the cloud's height and class:(3)the values of sensible andlatent heat fluxes are small during rain episodes,but thereafter,the values become high and thenup to maximum.It is similar to the other terms of the energy budgets except for the downwardlongwave radiation.The diurnal variation of energy budgets indicates that the daytime precipitationexerts great influence to the energy budgets,but the nighttime precipitation makes little influence;(4)the variation of the latent heat flux is in phase with the evaporation,which indicates that thelatent heat flux calculated by bulk schemes is reliable:(5)the means of the sensible and latentheat flux and momentum flux by bulk schemes for the time period from May to August are,respectively,30.71W/m~2.116.81W/m~2.2.86×10~(-2)N/m~2 in 1998 and 30.28W/m~2,107.35W/m~2,2.74×10~(-2)N/m~2 in 1999.The values of these two years are similar.During summer in1999 the magnitude and activity of sensible heat flux are strongest in June and those of the latentheat flux are in August.  相似文献   

15.
The diurnal surface temperature range(DTR) has become significantly smaller over the Tibetan Plateau(TP) but larger in southeastern China, despite the daily mean surface temperature having increased steadily in both areas during recent decades.Based on ERA-Interim reanalysis data covering 1979–2012, this study shows that the weakened DTR over TP is caused by stronger warming of daily minimum surface temperature(Tmin) and a weak cooling of the daily maximum surface temperature(Tmax); meanwhile, the enhanced DTR over southeastern China is mainly associated with a relatively stronger/weaker warming of Tmax/Tmin. A further quantitative analysis of DTR changes through a process-based decomposition method—the Coupled Surface–Atmosphere Climate Feedback Response Analysis Method(CFRAM)—indicates that changes in radiative processes are mainly responsible for the decreased DTR over the TP. In particular, the increased low-level cloud cover tends to induce the radiative cooling/warming during daytime/nighttime, and the increased water vapor helps to decrease the DTR through the stronger radiative warming during nighttime than daytime. Contributions from the changes in all radiative processes(over-2?C) are compensated for by those from the stronger decreased surface sensible heat flux during daytime than during nighttime(approximately 2.5?C), but are co-contributed by the changes in atmospheric dynamics(approximately-0.4?C) and the stronger increased latent heat flux during daytime(approximately-0.8?C). In contrast, the increased DTR over southeastern China is mainly contributed by the changes in cloud, water vapor and atmospheric dynamics. The changes in surface heat fluxes have resulted in a decrease in DTR over southeastern China.  相似文献   

16.
Numerical studies have been carried out to investigate the sustention and intensification of Typhoon Nina (7503), and the impacts of saturated wetland on the sustention and rainfall of tropical cyclone (TC) over land through sensitivity experiments, using the PSU/NCAR non-hydrostatic mesoscale model MM5v3 and its TC bogus scheme. The results show that the vertical transfer of fluxes in the boundary layer over saturated wetland has significant influence on the intensity, structure, and rainfall of a landfalling TC. The latent heating flux and the sensible heating flux are both favourable for TC sustaining and intensification on which the latent heating transfer is more favourable than the sensible heating transfer. They are also favourable for the maintenance of the spiral structure, and have an evident effect on the distribution of TC rainfall. The momentum flux weakens the TC vortex wind fields significantly, and is the dominant factor to dissipate and fill in a low pressure system, while it increases the local precipitation induced by a typhoon.  相似文献   

17.
Through the use of the hourly wind, air temperature and humidity, sea surface temperature data measured on board the observing vessel Moana Wave and buoy in the warm pool of western Pacific during the IOP of TOGA COARE, we compute the fluxes over sea surface and analyze the characteristics of the variation ofthe latent heat flux with sea surface temperature. During weak rather than strong wind periods a maximum valueof latent heat flux appears at some points of SST, which is caused mainly by the variations of wind, then by the humidity difference between air and sea and the transfer coefficient with SAT. Using correlation analysis. we also analyze the relationship between the fluxes and meteorological elements during weak wind periods. wester lywind burst periods, and convective disturbed periods etc. The main conclusions are that the latent heat flux ismainly determined by wind, sensible heat flux by the potential temperature difference between air and sea and the momentum flux by wind. The precipitation affects the sensible heat flux through the potential temperature difference and wind.  相似文献   

18.
The present study compares seasonal and interdecadal variations in surface sensible heat flux over Northwest China between station observations and ERA-40 and NCEP-NCAR reanalysis data for the period 1960-2000.While the seasonal variation in sensible heat flux is found to be consistent between station observations and the two reanalysis datasets,both land-air temperatures difference and surface wind speed show remarkable systematic differences.The sensible heat flux displays obvious interdecadal variability that is season-dependent.In the ERA-40 data,the sensible heat flux in spring,fall,and winter shows interdecadal variations that are similar to observations.In the NCEP-NCAR reanalysis data,sensible heat flux variations are inconsistent with and sometimes even opposite to observations.While surface wind speeds from the NCEP-NCAR reanalysis data show interdecadal changes consistent with station observations,variations in land-air temperature difference differ greatly from the observed dataset.In terms of land-air temperature difference and surface wind speed,almost no consistency with observations can be identified in the ERA-40 data,apart from the land-air temperature difference in fall and winter.These inconsistencies pose a major obstacle to the application in climate studies of surface sensible heat flux derived from reanalysis data.  相似文献   

19.
Weather and Climate Effects of the Tibetan Plateau   总被引:5,自引:1,他引:4  
Progress in observation experiments and studies concerning the effects of the Tibetan Plateau (TP) on weather and climate during the last 5 years are reviewed. The mesoscale topography over the TP plays an important role in generating and enhancing mesoscale disturbances. These disturbances increase the surface sensible heat (SH) flux over the TP and propagate eastward to enhance convection and precipitation in the valley of Yangtze River. Some new evidence from both observations and numerical simulations shows that the southwesterly flow, which lies on the southeastern flank of the TP, is highly correlated with the SH of the southeastern TP in seasonal and interannual variability. The mechanical and thermal forcing of the TP is an important climatic cause of the spring persistent rains over southeastern China. Moreover, the thermodynamic processes over the TP can influence the atmospheric circulation and climate over North America and Europe by stimulating the large-scale teleconnections such as the Asian-Pacific oscillation and can affect the atmospheric circulation over the southern Indian Ocean. Estimating the trend in the atmospheric heat source over the TP shows that, in contrast to the strong surface and troposphere warming, the SH over the TP has undergone a significant decreasing trend since the mid-1980s. Despite the fact that in situ latent heating presents a weak increasing trend, the springtime atmospheric heat source over the TP is losing its strength. This gives rise to reduced precipitation along the southern and eastern slopes of the TP and to increased rainfall over northeastern India and the Bay of Bengal.  相似文献   

20.
Using monthly mean of surface turbulent heat exchange coefficients calculated based on datafrom four automatic weather stations(AWS)for thermal equilibrium observation in July 1993—September 1996 and of surface conventional measurements,an empirical expression is establishedfor such coefficients.With the expression,the heat exchange coefficients and the components ofsurface thermal source are computed in terms of 1961—1990 monthly mean conventional data from148 stations over the Qinghai-Xizang(Tibetan)Plateau(QXP)and its adjoining areas,and the1961—1990 climatic means are examined.Evidence suggests that the empirical expression is capable of showing the variation of the heatexchange coefficient in a climatic context.The monthly variation of the coefficients averaged overthe QXP is in a range of 4×10~(-3)-5×10~(-3).The wintertime values are bigger in the mountainsthan in the valleys and reversal in summer.Surface effective radiation and sensible heat are thedominant factors of surface total heat.In spring surface sensible heat is enhanced quickly,resulting in two innegligible regions of sensible heat,one in the west QXP and the other innorthern Tibet.with their maximums emerging in different months.In spring and summersensible heat and surface effective radiation are higher in the west than in the east.The effectiveradiation peaks for the east in October—December and the whole QXP and in June and October forthe west.The surface total heat of the plateau maximizes in May.minimizes in December andJanuary,and shows seasonal variation more remarkable in the SW compared to the eastern part.Inthe SW plateau the total heat is much more intense than the eastern counterpart in all the seasonsexcept winter.Under the effect of the sensible heat,the total heat on the SW plateau starts toconsiderably intensify in February,which leads to a predominant heating region in the west,withits center experiencing a noticeable westward migration early in summer and twice pronouncedweakening in July and after October.However,the weakening courses are owing to differentcauses.The total heat over the north of QXP is greatly strengthened in March.thus generatinganother significant thermal region in the plateau.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号