首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 128 毫秒
1.
华北一次强对流天气系统的地闪时空演变特征分析   总被引:8,自引:3,他引:5  
利用地面雷电探测网,多普勒天气雷达和常规天气资料,分析了2005年8月1日发生在山东北部的一次具有前部对流线,后部大范围层状云降水(LLTS)的典型中尺度对流系统(MCS)的闪电活动演变特征。结果表明:整个过程中负地闪占主导地位,最高频数达到260次/5min;与负地闪比较,正地闪呈现不活跃状态。负地闪主要落在>40 dBz的强回波区内部及其边缘区域,而正地闪则分布在前部云砧和后部层状云降水区内。对地闪位置与回波强度的进一步对比分析发现,45~55 dBz的回波是最有利于地闪发生的区域,回波强度低于这一区域,随着回波强度的增大,地闪活动呈递增趋势,地闪频数在50~55 dBz的回波区域内达到峰值,>55 dBz的回波区域内地闪频数明显降低。  相似文献   

2.
一次冷涡天气系统中雹暴过程的地闪特征分析   总被引:19,自引:3,他引:19  
利用地面雷电定位系统、多普勒雷达和卫星观测资料,对2002年6月1日山东地区冷涡天气系统下的3个雹暴过程的地闪特征进行了详细分析,结果表明,在同样的天气条件下,产生冰雹的3个强雷暴在不同的发展阶段表现出明显不同的地闪分布特征。通过云图和地闪资料的综合分析发现,地闪主要出现在云顶亮温低于-50℃的云区内,其中负地闪分布比较集中,且偏向云顶亮温水平梯度大的一边,而正地闪则分布比较分散。地闪主要发生在大于40 dBz的区域内,负地闪通常簇集在强回波区(大于50 dBz)或邻近区域,有时密集的正地闪也出现在强回波区或临近区域,但稀疏的正地闪通常发生在强回波外围10-30 dBz的范围内,属于稳定性降水区。结合地面降雹观测资料发现降雹发生在正地闪比较活跃的阶段,正地闪频数峰值略微超前降雹时刻。比较密集的正地闪发生,通常预示着强对流天气(如冰雹、大风等)的发生。强雷暴在发展旺盛阶段通常表现的低地闪频数,可能是由“电荷抬升机制”造成的。  相似文献   

3.
2018年5月17—18日, 湖北省一次连续强风暴过程中先后出现了不同类型的强对流天气。利用FY-4A卫星、雷达和地基闪电观测等资料, 对相似环境背景下17日夜间鄂西北强对流(第1阶段, 下同)和18日上午鄂东强对流(第2阶段, 下同)的环境背景和天气系统特征等差异进行分析, 提炼卫星雷达和闪电资料对分类强对流的预报依据。(1)此次连续强风暴是副高稳定维持, 西南涡东移, 暖式切变线触发形成的, 强对流出现在副高外围西南气流和低涡东侧的辐合区中, 第1阶段短波快速东移后中高层转为冷平流, 上干下湿的层结利于冰雹和大风出现, 第2阶段则处在槽前暖湿气流中, 湿层深厚, 探空对流有效位能CAPE中等强度, 出现持续性强降水的概率较大。地面中尺度涡旋促使强对流发展维持, 18日冷空气南下是第2阶段雷电密集的主要原因。(2)鄂西北强对流正闪比例较大, 正闪峰值时刻和降雹时刻几乎一致, 零星地闪分布在强回波外侧35~50 dBZ回波中, ≥60 dBZ强回波中并未观测到地闪, 鄂东强对流闪电频次较多, 以负闪为主, 密集的负闪分布在35~55dBZ强回波区, 零星正闪和强回波外围25~35 dBZ层状云对应, 以上雷达特征对分类强对流预警都有很好的指示意义。(3) FY-4A闪电成像仪资料LMI、云顶亮温TBB低值区和二维地闪探测位置吻合, LMI总闪和二维地闪随TBB低值中心移动, 冰雹和对流性大风的TBB更低, 分布在230 K以下, 强降水则在250~270 K。   相似文献   

4.
利用地闪探测系统资料、多普勒雷达资料和卫星云图资料,分析了河南省一次雷暴过程的地闪特征及其与云体结构的关系,结果表明:在雷暴整个生命史中负地闪占据主导地位,占总地闪的99.5%;地闪平均强度与地闪频次存在负相关关系;初次地闪出现时雷暴强度迅速增强;40 d BZ强回波顶高、6 km高度50 dBZ强回波面积以及5 km高度之上50 dBZ强回波体积与地闪频次存在明显的正相关关系,在整个雷暴过程中的相关系数分别为0.80、0.91和0.93,而在雷暴不同发展阶段3种雷达参量与地闪频次的相关性有不同的变化趋势;地闪一般分布在6 km高度雷达回波≥40 dBZ、云顶亮温≤200 K的区域,有助于识别强对流区。  相似文献   

5.
一次西南涡引发暴雨的地闪特征   总被引:2,自引:0,他引:2  
利用高频次多普勒雷达回波资料、闪电定位仪及区域自动站资料,对2011年6月9日湖北暴雨过程的闪电特征进行分析。结果表明:MCS不同生命阶段地闪所处位置不同,正、负闪同时跃增到峰值是MCS成熟阶段的标志之一,地闪密集区和MCS中移速较快的强回波位置基本吻合,MCS强回波区域出现正、负闪和45-55 dBz回波后部区域对应较好,强降水发生在MCS成熟后趋于消亡阶段。  相似文献   

6.
慕建利  李泽椿  谌芸 《气象》2012,38(1):56-65
利用2007年8月8日18时至9日02时发生在陕西关中强暴雨期间的地闪、卫星TBB、雷达回波和地面加密降水资料,通过统计和对比分析的方法,分析了地闪活动特征及其与中尺度对流系统(MCS)和强降水的关系。地闪活动特征分析显示,暴雨过程中负地闪占绝对优势,为总地闪的97.7%。负闪频数和总闪频数的逐时演变趋势完全一致且呈现两峰一谷的趋势,正闪频数的变化呈现三峰两谷的趋势,但是正闪频数最大值与总闪、负闪频数峰值时间一致。负闪活跃期正负闪6 min演变均表现为多峰结构,正闪的波峰提前于负闪的波峰12 min。负闪频数变化和MCS、雷达反射率因子演变对比分析表明,负闪发生区是未来对流云团和对流发展加强区,负闪频数密集区位于对流云团前部TBB等值线密集区,负闪频数的急剧增加意味着未来对流系统的猛烈发展;负闪主要出现在回波强度大于40 dBz的区域,正闪则落到强回波中心两侧30~40 dBz的回波区,中尺度对流系统快速发展加强期,负闪密集区位于回波单体的前沿,中尺度系统发展稳定少动期,负闪大部分集中在各对流单体的强回波中心附近。对比分析地闪与暴雨发生发展的关系可见,地闪的发生和急剧增加对暴雨发生和发展加强有很好指示意义,初闪的发生提前于强降水发生,地闪急剧增加与降水强度猛增密切关联,负地闪发生密集区是未来强降水发生区。  相似文献   

7.
山东半岛一次强飑线过程地闪与雷达回波关系的研究   总被引:6,自引:0,他引:6  
利用山东省气象局地闪定位资料和青岛多普勒雷达资料,分析了2007年7月31日发生在山东半岛一次强飑线过程的地闪活动演变特征以及地闪活动与雷达回波特征的关系.结果表明,此次过程中地闪异常活跃,最大频数达到1 212 fl· (10 min)-1,但正地闪仅有15次.在飑线系统快速发展阶段,地闪频数出现了两次“跃增”现象,地闪频数随时间的增加呈“阶梯状”发展特征.地闪主要集中发生在6 km高度上雷达回波≥35 dBZ的区域,地闪频数与45 dBZ以上强回波面积的相关系数达到0.89,但也有少量地闪零星分布在弱回波区域.地闪频数与45 dBZ回波顶高的相关性要好于与35dBZ和50 dBZ回波顶高的关系,二者之间的相关系数为0.71.为了定量分析对流强度与地闪频数之间的关系,定义了8个对流强度指数,其中0℃层以上所有强回波的反射率因子值之和与0℃层以上所有强回波的反射率因子值与所在高度的乘积之和以及地闪频数的关系非常稳定.对比分析不同强度的对流系统,发现不同雷暴天气过程中的对流强度与地闪频数的关系明显不同,即对流越强,相应的对流强度与地闪频数的相关关系也越好.另外,在飑线系统的发展演变过程中,地闪频数与0℃层以上和7~11 km高度的冰相降水含量也存在着非常密切的关系,相关系数均在0.8以上.  相似文献   

8.
MCS中地闪活动特征与雷达资料相关个例分析   总被引:1,自引:1,他引:0  
通过跟踪一次中尺度带状对流系统(MCS)初生、发展、减弱的演变全过程,对地闪资料和多普勒雷达资料进行"粗化"格点处理,定性和定量地分析了地闪活动特征与组合反射率(CR)、垂直累积液态含水量(VIL)和回波顶高(ET)等雷达资料之间的相互关系。结果表明在MCS强雷暴演变过程中:①总地闪数的96.7%集中落在CR为45~55 dBz的回波区域内,在CR大于60 dBz的强回波区域内地闪总数却很少;地闪密集中心的位置与CR大于等于50 dBz的强度中心常常重合;②地闪密集中心与VIL中心常常不重合,常落在VIL高值中心的边缘或落在VIL为20~30 kg.m-2的区域中;在VIL小于20 kg.m-2的地方存在较为活跃的地闪。在VIL大于40 kg.m-2等值线范围内出现的地闪总数较少,在VIL大于50 kg.m-2的强中心几乎没有地闪出现;③单位时间间隔6 min内的地闪总数随回波顶高的变化并不明显,但与回波顶高于11 km的面积范围有着很好的正相关,表明组成MCS的云塔达到较高高度的水平面积对地闪活动的激烈程度有关。  相似文献   

9.
利用2015年夏季北京闪电综合探测(BLNET)总闪辐射源定位、多普勒天气雷达、地面自动气象站和探空资料等多种协同观测资料,详细分析了2015年8月7日北京一次强飑线过程不同阶段的闪电特征,并探讨了闪电与对流区域和地面热力条件之间的关系。飑线过程整体上以云闪为主,根据雷达回波和闪电频数可以将飑线过程分为发展、增强及减弱三个阶段。发展阶段表现为多个孤立的γ中尺度对流降水单体,随着北京城区降水单体的迅速发展,强回波顶高延伸到-20℃温度层高度,闪电辐射源高度也逐步增加,闪电明显增多,但总闪电频数整体低于80次/min。增强阶段单体合并,闪电频数快速增长,0℃层以上及以下的强回波(>40 dBZ)体积明显增大,飑线形成后,总闪和地闪均达到峰值,分别约248次/min和18次/min,负地闪占总地闪比例为90%,辐射源主要分布在线状对流降水区内,辐射源数量峰值出现在5~9 km高度层。减弱阶段飑线主体下降到0℃以下并迅速衰减,辐射源分布明显向后部层云降水区倾斜。95%的闪电发生在对流线附近10 km范围内,即对流云区和过渡区。在系统发展和增强阶段,对流云区与层云区辐射源的活跃时段基本一致;系统减弱阶段,对流降水云区辐射源数量迅速减少。在系统的不同发展阶段,闪电活跃区域对应于冷池出流同平原暖湿气流在近地面形成的相当位温强梯度带内。  相似文献   

10.
一次中尺度对流系统的闪电演变特征   总被引:19,自引:11,他引:19  
利用地面雷电探测网资料、多普勒雷达和卫星资料对一次典型的MCS过程的地闪变化特征进行了分析,结果表明,在系统发展的最初阶段全为负地闪;在MCS的成熟阶段地闪频数一直较高,在10次/min以上,负地闪占绝对优势;在消散阶段,地闪频数急剧下降,同时正地闪所占比例越来越大,甚至超过负地闪。地闪基本出现在<-50℃的云区和前部大的温度梯度区内,集中发生于<-60℃的云区。负地闪主要发生在强对流区(>40 dBz),其持续时间和强对流的维持时间几乎相当,说明负地闪可以很好地指示或有助于识别强对流区;密集的正地闪也与强回波区相对应,而稀疏的正地闪则多发生在系统后部的稳定性降水或云砧部位。同时,在MCS成熟阶段出现高正地闪频数的瞬间突增有可能对应着地面强天气的发生,在强对流天气的临近预报中应予以关注。  相似文献   

11.
The characteristics of cloud-to-ground (CG) lightning for ten hailstorms in Shandong Province of China were analyzed statistically. It is found that the hailstorms in this study present dominant positive CG flashes during periods of falling hail. One specific hailstorm on 16 June 2006 was studied in detail using the data from a CG lightning location network, Doppler radar and cloud images. Comparison between the brightness temperature of cloud-top and CG flash locations indicated that most flashes occurred in the region with temperatures lower than − 40 °C, while dense positive CG flashes occurred in the range between − 40 °C and − 50 °C. Negative CG flashes occurred mostly in the relative weak radar echo region, and positive CG flashes were distributed in the strong echo region especially with a large gradient of echo intensity. CG flashes tended to occur in the cloud region with reflectivity between 25 dBZ and 35 dBZ. Comparison between the wind field retrieved from Doppler radar and the location of CG flashes indicated that the flashes were located in the convergent region at lower to middle levels.  相似文献   

12.
低纬高原一次飑线过程的地闪演变特征分析   总被引:1,自引:0,他引:1  
尹丽云  张杰  张腾飞  许迎杰 《高原气象》2012,31(4):1100-1109
利用雷电定位资料、多普勒雷达资料和FY-2E红外卫星资料,分析了滇西南一次典型飑线过程的地闪变化特征。结果表明,这是一次由切变线云带内的对流单体与台风外围对流单体合并形成的典型飑线过程。在飑线发展初期,负地闪占主导地位,地闪频数在波动中缓慢增加;在飑线成熟阶段,地闪频数较高,负地闪频数达到最大峰值前10~15min,正地闪出现最大峰值;在飑线减弱阶段,地闪频数急速下降,正地闪所占比例急剧增加,当正地闪所占比例超过地闪总数的8%以上时,地闪活动开始呈减弱特征。负地闪主要发生在强对流区(>40dBz),对应着径向速度场上的辐合区,密集的正地闪发生在飑线成熟阶段,对应着辐合区附近>40dBz的强回波区域,稀疏的正地闪发生在强回波外围的云砧或稳定性降水部位。在飑线整个发展阶段,-10℃,-20℃层高度上雷达回波强度的每一次跳跃变化都对应着地闪频数的跳跃发展,且-10℃和-20℃层高度上雷达回波强度总在地闪频数变化之前6~30min。负地闪集中出现在-92~-90℃和-76~-74℃的云区,而正地闪集中发生在-90~-60℃的云区。  相似文献   

13.
南京一次雷雨的闪电特征与多尺度资料分析   总被引:4,自引:2,他引:2       下载免费PDF全文
顾媛  魏鸣 《气象科学》2013,33(2):146-152
为探究闪电与其他气象要素之间的关系及可预报性,本文利用探空资料、多普勒天气雷达资料、闪电定位仪资料、卫星云图资料和地面自动气象站资料,对2009年7月7日南京雷雨天气进行多尺度分析.结果表明:暴雨过程中负地闪始终占较大比例,正地闪的数目在雷暴消散阶段稍有增长;地闪频数与地面风速时序变化呈现很好的一致性;雷暴来临前风矢位温特征表明对流云发展高度较高,对流层顶的薄层超低温为强对流发生提供了热力不稳定的先兆信息,整层大气深厚的顺时针垂直切变及中低层偏南风为强对流天气提供了有利的动力和水汽条件,为雷暴潜势预报提供了依据;地闪分布与雷达回波顶高、强的风切变区域以及暴雨落区有明显对应关系;负地闪密集区位于雷达强回波核前方强度为40 ~45dBz区域处,对于回波的未来移向有指示作用.  相似文献   

14.
孙哲  魏鸣 《大气科学学报》2016,39(2):260-269
利用NCEP再分析资料、探空资料、闪电定位资料和南京、常州多普勒雷达资料,通过对比分析南京2012年2月22日春季雷暴和2011年8月10日夏季雷暴两次过程,研究不同季节影响雷暴发生的大气结构以及强弱雷暴地闪特征的差异。结果表明:风矢位温(V-3θ)图揭示的大气动力热力水汽特征能够为雷暴的潜势预报提供先兆信息。两者相较而言,春季雷暴的动力抬升作用明显;夏季雷暴主要由热对流引起,对流层上层的动力抽吸作用不明显。春季弱雷暴正地闪在总地闪中所占比例较高。无论春季弱雷暴还是夏季强雷暴,地闪落点与辐合区对应关系明显,且地闪的落点也与雷达反射率因子有较好的对应关系:地闪主要分布在强回波区(大于40 d Bz)及其外围区域。但在较强雷暴云的发展阶段,地闪多发生在风暴体伸展方向的一侧,具有引导雷达回波移动的作用,夏季强雷暴地闪簇集在垂直风切变区域。  相似文献   

15.
强对流天气雷达回波与闪电特征的个例分析   总被引:7,自引:3,他引:4  
利用闪电定位资料和多普勒天气雷达强度产品,分析了2006年6月22日发生在南京西南140km处的一次强对流天气过程中闪电的演变特征及其与回波强度的关系。结果表明,地闪多发生于雷暴云中回波强度大于40dBz且回波强度梯度较大的区域;正、负地闪频次在强对流系统发展的不同阶段呈现出不同的特点,负地闪占总闪数的90%以上,正地闪出现在系统进入成熟阶段之后,且占总闪的比例在系统消散阶段明显增大;地闪强度越大,相应的地闪频次越小,除少数弱闪(1/1〈10kA)外,二者基本上呈反相位关系。  相似文献   

16.
江西省地闪气候特征及其活动强弱评价方法探讨   总被引:1,自引:0,他引:1  
为科学评价雷电活动强弱和为雷电预报的效果检验提供参考依据,基于2003—2010年江西省闪电监测定位系统资料,分析了逐小时的闪电频数变化,发现0.01°×0.01°经/纬度分辨率格点上的地闪频数最大值出现在2004年9月18日17:00—18:00,为64次/h;相较其他时段而言,16:00—17:00闪电活动最强。基于地闪观测资料、探空及多普勒雷达资料,分析了雷达回波强度与地闪数的相关性统计特征发现,在0.1°×0.1°经纬度网格点上,0℃层以上最大回波强度大值与相应时段内的地闪频数大值常不一一对应,但地闪频数大值多出现在强回波附近。格点上的12 min内的地闪数大都≤60个,以1—20个为最多;地闪数≥40个的格点数则明显减少;对应的0℃层以上最大回波强度集中于35—60 dBz,回波强度≤35 dBz或≥60 dBz的格点数则明显偏少。回波强度介于45—55 dBz的格点数明显大于回波强度>55 dBz以及<45 dBz的格点数,表明这个区间内的闪电活动最强。因此,借助0℃以上最大回波强度可简单地区分闪电活动强弱。  相似文献   

17.
受东北冷涡与副热带高压西北部暖湿气流影响,2015年7月27日北京地区爆发了一次具有明显对流单体合并特征的强飑线灾害性强对流天气过程。利用北京闪电定位网(BLNet)总闪定位、多普勒雷达和探空资料等,详细分析了此次飑线过程整个生命史期间不同对流区的总闪活动特征。结果表明,整个飑线过程以云闪为主,地闪活动以负地闪为主;对流单体合并时云闪数量激增,飑线过程后期正地闪比例跃增。93%的闪电主要分布在距对流线10 km范围内,层云区闪电较少;层云区的闪电电荷来源主要是由对流区的电荷经过过渡区输送而来,正地闪更易发生在过渡区和层云区。对流合并过程中有大量的水汽集中,垂直积分液态含水量(VIL)峰值超前闪电峰值24 min。利用变分多普勒雷达分析系统(VDRAS)对这次过程的三维风场进了反演,据此对单体合并期间闪电增强的动力原因进行了研究。根据VDRAS反演的动力场来看,对流云单体合并主要发生在低层辐合区内,合并后上升运动加强,上升气流范围变大,闪电活动显著增强,并主要发生在具有较强垂直风切变的区域,少部分闪电发生在对流区后部开始出现下沉气流的区域。  相似文献   

18.
The analyses of spatial and temporal characteristics of positive cloud-to-ground(CG) lightning for four mesoscale convective systems and two severe local convective systems in 1989 and 1990 show that positive CG flash rate usually has two peak values.The major peak occurs during the developing stage of the storm and most of the positive CG flashes originate at the lower part of the storm.The minor occurs during the dissipative stage of the storm and most of the positive CG flashes originate at the upper part of the storm,especially in the region of the wind divergence in the storm anvil.The positive CG flash rate is almost an order of magnitude larger in the developing stage than in the dissipative stage.The appearing time of the peak of negative CG flash rate is in accordance with that of the valley of positive CG flash rate.The higher the intensity of the radar echo,the higher the positive CG flash rate.Most of the positive CG flashes occur when the weak echo area is larger,and mostly originate in the region where the radar echo intensity is about 10dBz and in the back region of the moving storms.The spatial distribution of the positive CG flashes is much more dispersive than that of the negative.The mesoscale analysis reveals a bipolar lightning pattern.The mean bipole-length reaches its minimum during the mature stage of the storm and reaches the maximum during the developing stage of the storm.The vertical distribution of the charge density is calculated by a one-dimensional charging model.Then,we discuss the producing condition of the positive CG lightning and forming cause of charge structure mentioned above.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号