首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 140 毫秒
1.
The forest model ForClim was used to evaluate the applicability of gap models in complex topography when the climatic input data is provided by a global database of 0.5° resolution. The analysis was based on 12 grid cells along an altitudinal gradient in the European Alps. Forest dynamics were studied both under current climate as well as under four prescribed 2 × CO2 scenarios of climatic change obtained from General Circulation Models, which allowed to assess the sensitivity of mountainous forests to climatic change.Under current climate, ForClim produces plausible patterns of species composition in space and time, although the results for single grid cells sometimes are not representative of reality due to the limited precision of the climatic input data.Under the scenarios of climatic change, three responses of the vegetation are observed, i.e., afforestation, gradual changes of the species composition, and dieback of today's forest. In some cases widely differing species compositions are obtained depending on the climate scenario used, suggesting that mountainous forests are quite sensitive to climatic change. Some of the new forests have analogs on the modern landscape, but in other cases non-analog communities are formed, pointing at the importance of the individualistic response of species to climate.The applicability of gap models on a regular grid in a complex topography is discussed. It is concluded that for their application on a continental scale, it would be desirable to replace the species in the models by plant functional types. It is suggested that simulation studies like the present one must not be interpreted as predictions of the future fate of forests, but as means to assess their sensitivity to climatic change.  相似文献   

2.
Summary The importance of linking measurements, modeling and remote sensing of land surface processes has been increasingly recognized in the past years since on the diurnal to seasonal time scale land surface–atmosphere feedbacks can play a substantial role in determining the state of the near-surface climate. The worldwide Fluxnet project provides long term measurements of land surface variables useful for process-based modeling studies over a wide range of climatic environments.In this study data from six European Fluxnet sites distributed over three latitudinal zones are used to force three generations of LSMs (land surface models): the BUCKET, BATS 1E and SiB 2.5. Processes simulating the exchange of heat and water used in these models range from simple bare soil parameterizations to complex formulations of plant biochemistry and soil physics.Results show that – dependent on the climatic environment – soil storage and plant biophysical processes can determine the yearly course of the land surface heat and water budgets, which need to be included in the modeling system. The Mediterranean sites require a long term soil water storage capability and a biophysical control of evapotranspiration. In northern Europe the seasonal soil temperature evolution can influence the winter energy partitioning and requires a long term soil heat storage scheme. Plant biochemistry and vegetation phenology can drive evapotranspiration where no atmospheric-related limiting environmental conditions are active.  相似文献   

3.
This study reports the first assessment of the compounding effects of land-use change and greenhouse gas warming effects on our understanding of projections of future climate. An AGCM simulation of the potential impacts of tropical deforestation and greenhouse warming on climate, employing a version of NCAR Community Climate Model (CCM1-Oz), is presented. The joint impacts of tropical deforestation and greenhouse warming are assessed by an experiment in which removal of tropical rainforests is imposed into a greenhouse-warmed climate. Results show that the joint climate changes over tropical rainforest regions comprise large reductions in surface evapotranspiration (by about –180 mm yr–1) andprecipitation (by about –312 mm yr–1) over the Amazon Basin, along with anincrease of surface temperature by +3.0 K. Over Southeast Asia, similar but weaker changes are found in this study. Precipitation is decreased by –172 mmyr–1, together with the surface warming of 2.1 K. Over tropical Africa, changes in regional climate is much weaker and with some different features, such as the increase of precipitation by 25 mm yr–1. Energy budgetanalyses demonstrates that the large increase of surface temperature in the joint experiment is not solely produced by the increase of CO2concentration, but is a joint effect of the reduction of surface evaporation (due to deforestation) and the increase of downward atmospheric longwave radiation (due to the doubling of CO2 concentration). Furthermore, impactsof tropical deforestation on the greenhouse-warmed climate are estimated by comparing a pair of tropical deforestation simulations. It is found that in CCM1-Oz, deforestation has very similar impacts on greenhouse-warmed regional climates as on current climates over tropical rainforest regions. The extra-tropical climatic response to tropical deforestation is identified in both sets of tropical deforestation experiments. Statistically significant responses are seen in the large-scale atmospheric circulation such as changes in the velocity potential and vertically integrated kinetic and potential energy fields. Wave propagation patterns are identified in the large-scale circulation anomalies, which provides a mechanism for interpreting the model responses in the extra-tropics. In addition, this study suggests that land-use change such as tropical deforestation may affect projections of future climate.  相似文献   

4.
Potential effects of climate change on a semi-permanent prairie wetland   总被引:4,自引:0,他引:4  
We assessed the potential effects of a greenhouse gas-induced global climate change on the hydrology and vegetation of a semi-permanent prairie wetland using a spatially-defined, rule-based simulation model. An 11-yr simulation was run using current versus enhanced greenhouse gas climates. Projections of climatic change were from the Goddard Institute for Space Studies (GISS) general circulation model. Simulations were also run using a range of temperature (+2 and +4 °C) and precipitation change values (–20, –10, 0, +10, +20%) to determine the responsiveness of wetland vegetation and hydrology to a variety of climate scenarios.Maximum water depths were significantly less under the enhanced greenhouse gas scenario than under the current climate. The wetland dried in most years with increased temperature and changes in precipitation. Simulations also revealed a significant change in the vegetation, from a nearly balanced emergent cover to open water ratio to a completely closed basin with no open water areas. Simulations over a range of climate change scenarios showed that precipitation changes (particularly increases) had a greater impact on water levels and cover ratios when the temperature increase was moderate (+2 °C).These potential changes in wetland hydrology and vegetation could result in a dramatic decline in the quality of habitat for breeding birds, particularly waterfowl. Continued research on climate and wetland modeling is needed.  相似文献   

5.
Anthropogenic, Climatic, and Hydrologic Trends in the Kosi Basin, Himalaya   总被引:1,自引:0,他引:1  
A great debate exists concerning theinfluence of land-use and climatic changes onhydrology in the Himalayan region and its adjacentplains. As a representative basin of the Himalayas, westudied basinwide land-use, climatic and hydrologictrends over the Kosi Basin (54,000 km2) in themountainous area of the central Himalayan region. Theassessment of anthropogenic inputs showed that thepopulation of the basin grew at a compound rate ofabout one percent per annum during the past fourdecades. The comparison of land-use data between thesurveys made during the 1960s and 1978–1979 did notreveal noticeable trends in land-use change. Theanalysis of meteorological and hydrological timeseries from 1947 to 1993 showed some increasingtendency of temperature and precipitation. Thestatistical tests of hydrologic trends indicated anoverall decrease in discharge on the Kosi River andits major tributaries. The decreasing trends ofstreamflow were more significant during the low-flowmonths. The statistical analysis of homogeneityshowed that the climatic as well as the hydrologictrends were more localized in nature lacking adistinct basinwide significance.  相似文献   

6.
We use a georeferenced model of ecosystem carbon dynamics to explore the sensitivity of global terrestrial carbon storage to changes in atmospheric CO2 and climate. We model changes in ecosystem carbon density, but we do not model shifts in vegetation type. A model of annual NPP is coupled with a model of carbon allocation in vegetation and a model of decomposition and soil carbon dynamics. NPP is a function of climate and atmospheric CO2 concentration. The CO2 response is derived from a biochemical model of photosynthesis. With no change in climate, a doubling of atmospheric CO2 from 280 ppm to 560 ppm enhances equilibrium global NPP by 16.9%; equilibrium global terrestrial ecosystem carbon (TEC) increases by 14.9%. Simulations with no change in atmospheric CO2 concentration but changes in climate from five atmospheric general circulation models yield increases in global NPP of 10.0–14.8%. The changes in NPP are very nearly balanced by changes in decomposition, and the resulting changes in TEC range from an increase of 1.1% to a decrease of 1.1%. These results are similar to those from analyses using bioclimatic biome models that simulate shifts in ecosystem distribution but do not model changes in carbon density within vegetation types. With changes in both climate and a doubling of atmospheric CO2, our model generates increases in NPP of 30.2–36.5%. The increases in NPP and litter inputs to the soil more than compensate for any climate stimulation of decomposition and lead to increases in global TEC of 15.4–18.2%.  相似文献   

7.
The climatic impact of albedo changes associated with land-surface alterations has been examined. The total surface global albedo change resulting from major land-cover transformations (i.e. deforestation, desertification, irrigation, dam-building, urbanization) has been recalculated, modifying the estimates of Sagan et al., (1979). Tropical deforestation (11.1 million ha yr-1, or 0.6% yr-1, Lanly, 1982) ranks as a major cause of albedo change, although uncertainties in the areal extent of desertification could conceivably render this latter process of similar significance. The maximum total global albedo change over the last 30 yr for the various processes lies between 0.000 33 and 0.000 64, corresponding to a global temperature decrease of between 0.06 K and 0.09 K (scaled from the 1-D radiative convective model of Hansen et al., 1981), which falls well below the interannual and longer period variability.An upper bound to the impact of tropical deforestation was obtained by concentrating all vegetation change into a single region. The magnitude of this modification is equivalent to 35–50 yr of global deforestation at the current rate, but centered on the Brazilian Amazon. The climatic consequences of such tropical deforestation were simulated, using the GISS GCM (Hansen et al., 1983). In the simulation, a total area of 4.94 × 106 km2 of tropical moist forest was removed and replaced by a grass/crop cover. Although surface albedo increased from 0.11 to 0.19, the effect upon surface temperature was negligible. However, other climate parameters were altered. Rainfall decreased by 0.5–0.7 mm day-1 and both evapotranspiration and total cloud cover were reduced. The absence of a temperature decrease in spite of the increased surface albedo arises because the reduction in evapotranspiration has offset the effects of radiative cooling. The decrease in cloud cover also counteracts the increase in surface albedo. These locally significant changes had no major impact on regional (Hadley or Walker cells) or the global circulation patterns.We conclude that the albedo changes induced by current levels of tropical deforestation appear to have a negligibly small effect on the global climate.  相似文献   

8.
CO2 concentration is increasing, temperature is likely to rise, and precipitation patterns might change. Of these potential climatic shifts, it is precipitation that will have the most impact on tropical forests, and seasonal patterns of rainfall and drought will probably be more important than the total quantity of precipitation. Many tree species are limited in distribution by their inability to survive drought. In a 50 ha forest plot at Barro Colorado Island in Panama (BCI), nearly all tree and shrub species associated with moist microhabitats are declining in abundance due to a decline in rainfall and lengthening dry seasons. This information forms the basis for a simple, general prediction: drying trends can rapidly remove drought-sensitive species from a forest. If the drying trend continues at BCI, the invasion of drought-tolerant species would be anticipated, but computer models predict that it could take 500 or more years for tree species to invade and become established. Predicting climate-induced changes in tropical forest also requires geographic information on tree distribution relative to precipitation patterns. In central Panama, species with the most restricted ranges are those from areas with a short dry season (10–14 weeks): 26–39% of the tree species in these wet regions do not occur where it is drier. In comparison, just 11–19% of species from the drier side of Panama (18 week dry season) are restricted to the dry region. From this information, I predict that a four-week extension of the dry season could eliminate 25% of the species locally; a nine-week extension in very wet regions could cause 40% extinction. Since drier forests are more deciduous than wetter forests, satellite images that monitor deciduousness might provide a way to assess long-term forest changes caused by changes in drought patterns. I predict that increasing rainfall and shorter dry seasons would not cause major extinction in tropical forest, but that drying trends are a much greater concern. Longer dry seasons may cause considerable local extinction of tree species and rapid forest change, and they will also tend to exacerbate direct human damage, which tends to favor drought-adapted and invasive tree species in favor of moisture-demanding ones.  相似文献   

9.
Global climate change portends shifts in water demand and availability which may damage or cause intersectoral water reallocation in water short regions. This study investigates effects of climatic change on regional water demand and supply as well as the economy in the San Antonio Texas Edwards Aquifer region. This is done using a regional model which portrays both hydrological and economic activities. The overall results indicate that changes in climatic conditions reduce water resource availability and increase water demand. Specifically, a regional welfare loss of $2.2–$6.8million per year may occur as a result of climatic change. Additionally, if springflows are to be maintained at the currently desired level to protect endangered species, pumping must be reduced by 9–20% at an additional costof $0.5 to $2 million per year.  相似文献   

10.
This study analyzes the temporal change of Normalized Difference Vegetation Index (NDVI) for temperate grasslands in China and its correlation with climatic variables over the period of 1982–1999. Average NDVI of the study area increased at rates of 0.5% yr−1 for the growing season (April–October), 0.61% yr−1 for spring (April and May), 0.49% yr−1 for summer (June–August), and 0.6% yr−1 for autumn (September and October) over the study period. The humped-shape pattern between coefficient of correlation (R) of the growing season NDVI to precipitation and growing season precipitation documents various responses of grassland growth to changing precipitation, while the decreased R values of NDVI to temperature with increase of temperature implies that increased temperature declines sensitivity of plant growth to changing temperature. The results also suggest that the NDVI trends induced by climate changes varied between different vegetation types and seasons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号