首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
利用綦江近年的观测资料、Micaps、地闪资料,分析綦江短时强降水发生的时空分布规律及其发生前的物理量(K指数、SI指数、CAPE指数等)预报(预警)指标。结果表明,綦江各街镇每年均有不同频次的短时强降水发生,多年累计频次呈西北向东南逐渐增多的趋势,与綦江西南高、东北低的地貌特点较为一致。短时强降水都发生在春、夏、秋季,且多发生在14时—次日08时之间。綦江短时强降水主要有深厚湿层型、上干下湿型两种,且发生前往往会有K指数大值区、SI指数负值大值区、θse大值区、低层涡度大值区以及水汽通量散度负值大值区,只要SI指数呈负值、K指数30、经过修正后的CAPE值700这三项中有两项满足时,且中低层垂直风切变较小时,对短时强降水的发生具有较好的指示意义。当SI指数的负值绝对值越大、K指数越大、CAPE值越大,发生强对流天气的概率越大。  相似文献   

2.
收集整理2007—2016年岳阳冰雹、雷雨大风、短时强降水3类强对流天气过程及其实况、再分析资料,基于探空图计算能量指标及不稳定指标,分析其与强对流发生的关系,寻找预报指标阈值,并进行预报试验。研究结果表明:①TT≥49℃、A≥20℃、K≥40℃时比较容易出现短时强降水天气,但在降雹与雷雨大风过程中,A10℃或K≥35℃的机率比短时强降水中的低,雷雨大风中的CAPE值明显比冰雹和短时强降水中的大。②2月下旬—4月上旬, LI20℃、Wm1.2 m·s~(-1)、△Z3 000 m(2~3个条件满足)可作为冰雹的预报指标;雷雨大风指标阈值为△θse_(700-850)≤-7℃、SI≤-1.2℃、垂直风切变(1 000~500 hPa)≥10 m·s~(-1);③每年的日能量平衡高度变化可分为两个阶段,当第一阶段中能量平衡高度高于250 hPa,且处于变化曲线中的极值时,往往对应出现强对流天气;第二阶段中能量平衡高度大部分高于250 hPa,要参考其他预报指标进行强对流天气预报。  相似文献   

3.
2016年8月22日夜间,青海省海东地区大部出现短时强降水天气,导致互助、平安等县(区)部分乡镇出现洪涝灾害,给当地群众造成严重损失。利用高空、地面观测、卫星云图、雷达等资料,采用中尺度天气图分析技术,得到预报此类短时强降水的一些依据:(1)短时强降水发生的主要影响系统是西伸到高原东部的副热带高压及自高原北侧移入的的短波槽;地面干线及辐合线也是短时强降水天气的中尺度触发机制。(2)700h Pa青海东部的东南暖湿气流为此次短时强降水提供充沛的水汽来源,并与中高层较干冷的大气形成"上干冷下湿热"的不稳定大气层结。(3)高空强辐散,中低层辐散、辐合交替配置为短时强降水提供了较好的动力条件。(4)短时强降水前期cape值显著增加,达到787.8J/K,cin值显著减小至16.3J/K,抬升指数达到1.69℃;短时强降水发生前6h青海东部有对流云发展,云顶亮温可达196~214K,强降水发生在TBB梯度最大的区域。(5)强降水的时间和落区与雷达CR的强回波区一致,且发生时当地最强CR值达56dBz,VIL值达到10kg.m~(-2)。  相似文献   

4.
本文利用遵义市2016-2020年夏季逐时降水资料和ERA5再分析资料,分析遵义市夏季短时强降水的时空分布特征,并统计午后和后半夜前发生短时强降水的物理量特征,得到以下结论:(1)遵义市夏季短时强降水日变化呈现双锋结构,夜间的峰值主要发生在6月,白天峰值贡献主要来自7-8月。6月和7月的短时强降水是夜间多于白天,而8月则是白天多于夜间,且多为午后强对流。遵义市夏季短时强降水夜间出现异常值概率的大于白天。(2)有6个县的夜雨均值明显高于昼雨,且在昼雨的1倍以上,仅有凤冈和湄潭的夜雨均值低于昼雨均值,7个县日变化双峰结构较为明显,仁怀有明显的4峰结构,可能与我市西高东低的地形分布有关。(3)遵义市夏季短时强降水在西部、北部地区发生短时强降水的概率较高,西部主要集中在河谷地带,北部主要集中在娄山山脉,短时强降水平均站次6-8月逐渐减少,10站次以上站点逐渐北推且减少,可能与副高西伸北抬有关。(4)高海拔站点午后短时强降水对CAPE、K、LI要求更低,低海拔站点需要更好的抬升和中低层暖湿条件,850hPa与500hPa温差则是高海拔站点高于低海拔站点。(5)与14时相比,后半夜发生短时强降水对CAPE、LI、T850-500等要求变低,且抬升指数有4个站均值高于0℃,指示意义没有午后好,后半夜短时强降水K指数的要求变高,大气可降水量要求也是变高的,但主要是高海拔站点变高。  相似文献   

5.
《气象》2021,(4)
利用2007—2017年5—9月四川盆地84个国家自动站逐小时观测资料和时间间隔6 h的ERA-Interim再分析资料,分析了四川盆地不同强度短时强降水发生发展所需的热力、水汽和垂直风切变等条件,并对不同强度短时强降水的环境物理量特征进行了对比。结果表明,极端短时强降水的抬升凝结高度、自由对流高度和平衡高度(EL)均高于普通短时强降水,EL可以较好地区分极端短时强降水和普通短时强降水,约75%的极端短时强降水和普通短时强降水分别发生在EL高于258.6和658.2 hPa的环境下。极端短时强降水的对流有效位能(CAPE)和对流抑制能量值同样高于普通短时强降水,约50%的极端短时强降水和普通短时强降水的CAPE值分别高于792.5和451.9 J·kg~(-1)。不同强度短时强降水的850和500 hPa假相当位温差(θ_(se850)-θ_(se500))差异显著,极端短时强降水的θ_(se850)-θ_(se500)数值明显高于普通短时强降水,10℃可做为区分二者的参考阈值。约50%的短时强降水大气整层可降水量(PW)超过58 mm,不同强度短时强降水的PW差异不明显,但极端短时强降水具有较为明显的上干下湿垂直分布特征。垂直风切变和上升运动对四川盆地不同强度短时强降水的区分没有明确的指示意义。  相似文献   

6.
利用常规观测、自动站逐时雨量及EC细网格等资料,分析2010-2018年6-8月天山北坡71次短时强降水过程时空分布特点、温度对数压力图(T-lnP)形态及其关键物理参数等,并对其分类,通过集合箱线图分析各型物理参数特征,归纳总结预警阈值。结果表明:天山北坡短时强降水主要受低槽(涡)及其分裂短波影响,多发生在沿山、山地迎风坡、戈壁湖泊绿洲交界等地附近,6月出现最多,7月和8月相当,午后至夜间发生概率较大。T-lnP温湿廓线形态主要可分为整层湿(I型)、上干下湿(II型)、上湿下干(III型)和干绝热(IV型)等4型,其中IV型33次为最多,占总次数46.5%,其次是III型28次,占总次数38%,第三是I型8次,最少II型仅3次。在分析关键物理参数集合箱线图各区间值基础上,以25%百分位作为建议预警最低阈值,总结提炼关键物理参数阈值为T850 -500≥23℃,地面至700hPa露点温度平均值≥1.5℃,CAPE≥110 J?Kg-1,CIN≥30 J?Kg-1; 0~6km垂直风切变≥6.5 m?s-1,暖云层厚度≥1.1 km,K指数≥24.3℃,SI指数≥-1.3℃,抬升指数(LI)≥-3.9℃及A指数≥-9.8等,并给出各型组合物理参数。  相似文献   

7.
利用1985-2018年汛期(5-9月)豫东地区20个国家站小时降水资料和2011-2018年同期豫东地区区域自动站观测数据、NCEP(1°×1°)再分析资料、高空地面观测资料等,统计分析了该区域小时雨强分别≥20mm/h、≥30mm/h和≥50mm/h的短时强降水时空分布特征,结果发现:豫东地区近34年汛期平均年降水量为458.9~577.5 mm/a,短时强降水次数为72.8次/a;2000年是短时强降水多发年份,≥20mm/h的雨强出现158次,是常年平均次数的1.17倍;主汛期的7-8月是不同强度短时强降水多发时期,34年来共计发生≥20mm/h的短时强降水1821次,占同强度短时强降水总次数(2476次)的近74.0%;在短时强降水的日变化中,05时是不同强度短时强降水多发时段,20时为次多发时段。对不同环流背景影响下短时强降水过程的水汽、动力、热力及能量等物理量作统计分析,低槽型短时强降水过程的动力条件优于其他两个类型的,850hPa涡度平均值达3.8×10~(-5)s~(-1),700hPa垂直速度平均值达-0.36 Pa·s~(-1);副高边缘型短时强降水过程不稳定能量条件优势显著,850hPa假相当位温平均值达354.1 K,500-850hPa假相当位温差的平均值达-17.80℃,K指数平均值为38.1℃、CAPE值平均值为2075.0 J·kg~(-1);而台风倒槽型短时强降水过程则在水汽输送方面更具优势,850 hPa比湿平均值为15.5g·kg~(-1),整层可降水量达70.0 mm。  相似文献   

8.
运用2010—2018年夏季阿勒泰地区区域自动站逐时降水量及阿勒泰站探空资料,统计分析短时强降水过程的T-logP形态及关键环境参数特征,以集合预报箱形图确定关键环境参数阈值。结果表明,阿勒泰地区短时强降水T-logP图形态可分为整层湿和上干下湿2种类型;主要出现在沿山、山麓、山区地带和乌伦古湖南部附近;6月下旬至7月下旬多发,午后至傍晚较易发生;造成该地区夏季短时强降水的环境参数多表现为7月最大,6月最小,说明7月更有利于短时强降水的发生;该地区夏季短时强降水的发生表现为一定的不稳定层结、露点温度维持在10℃左右,垂直风切变为中等偏弱,CAPE值较小;通过对各环境参数箱形图分析,总结归纳出该区短时强降水总体阈值。从而为阿勒泰地区夏季短时强降水潜势预报提供参考依据。  相似文献   

9.
针对2009—2017年6~9月天津地区140次短时强降水天气过程,将NCEP FNL(1°×1°)全球分析资料与地面气象观测数据融合,计算天津地区短时强降水的融合物理量参数,通过偏差和偏差区间占有率等分析融合物理量的可信度,并在大量样本统计基础上给出不同月份的短时强降水环境参量特征和指标。结果表明:(1)基于NCEP FNL分析资料与地面气象观测数据的融合物理量在短时强降水潜势判断中具有较高的可信度,融合CAPE、LI、LCL平均绝对误差分别为260.7J.kg-1、0.9℃、14hPa,与融合前的NCEP FNL物理量相比绝对误差分别降低了58.1%、48.0%、49.0%。(2)不同月份短时强降水发生所必需的水汽、热力和能量等环境条件差异显著,TPW、K、LI、CAPE、LCL和Z0均呈现明显的月变化特征。(3)若以75%短时强降水发生的环境条件作为预报指标,7~8月TPW、K、CAPE、Z0、LCL物理量阈值极为相近,短时强降水多发生在TPW>45kg.m-2、K>32℃、CAPE>835J.kg-1、LCL>882 hPa、Z0>4300m条件下,6月物理量指标要求明显降低,如TPW>34kg.m-2、K>30℃、CAPE>353J.kg-1、LCL>880 hPa、Z0>3900m,9月预报指标要求则最低。  相似文献   

10.
基于我国中东部2002—2009年5—9月逐小时降水观测资料和一天四次的NCEP最终分析资料,通过时空匹配处理,得到强度为20~49.9 mm·h-1(A类)、50~79.9 mm·h-1(B类)和不小于80 mm·h-1(C类)的短时强降水天气样本序列,逐类统计分析用于表征其发生发展环境条件的水汽、热力、抬升触发和垂直风切变等物理量的分布特征。结果表明:表征水汽条件的大气可降水量(TPW)对三类短时强降水有一定的指示意义,A、B、C类短时强降水必要的TPW值分别为27、32、42 mm,短时强降水量越大,其所需水汽含量越高。约50%的三类短时强降水均出现在TPW大于60 mm的湿环境中。表征热力、能量、动力和垂直风切变条件的物理量对三类短时强降水的环境条件区分并不显著,环境大气中水汽多少可能是决定短时强降水级别的必要因素。B类和C类短时强降水的高概率密度区域范围大致为TPW在55~70 mm之间、0—6 km垂直风切变在5~15 m·s-1之间,而C类短时强降水在TPW与最佳对流有效位能(BCAPE)以及0—6 km垂直风切变与BCAPE的概率密度分布图中均有两个显著高概率密度区,可能与CAPE影响高级别短时强降水产生的两种机制有关。  相似文献   

11.
黔西南短时强降水时空特征分析   总被引:1,自引:0,他引:1  
利用黔西南州2006—2016年8县站全年逐小时降水量,对短时强降水特征及其与暴雨的关系进行分析,得出:(1)87%的短时强降水集中在20~40 mm/h,空间基本特征为"东多西少";94%的短时强降水出现在5—8月,3个级别的短时强降水都是在6月到达峰值;20~40 mm/h的短时强降水频次明显大于其它级别,60 mm/h的短时强降水只在夏季出现过;短时强降水主要出现在夜间,占总频次的70%,白天为低发时段,其中46%的短时强降水出现在前半夜,后半夜占25%,上午出现的频次最少,且3个级别的短时强降水都是在前半夜出现的频次最多。(2)黔西南州68%的暴雨天气中伴有短时强降水,二者的相关系数为0.94;所有短时强降水累计频次、暴雨日数与暴雨过程中出现的短时强降水的累积频次三者的空间分布基本特征均为"东多西少";暴雨量与当日最大小时降水量为显著正相关关系。  相似文献   

12.
Summary A numerical prediction model is described which uses the full set of prognostic equations on a domain roughly the size of the United States with a 96 km horizontal grid resolution and six sigma-coordinate levels. Within this grid resides a nested domain of approximately 1000×1000 km with 24 km horizontal resolution. In this nested grid only modifications to the wind field by the better resolved terrain are considered on the lowest two sigma levels. The terrain effects necessitate adjustments in the location of these two sigma levels. Adjusted wind fields cause modifications in the mass and moisture divergence fields, hence in precipitation. These modifications are averaged into the appropriate meteorological fields on the larger grid.The algorithms used by our model allow continuous interaction between both grids with high computational efficiency.The relative importance of synoptic forcing and terrain is demonstrated for the cases of the Big Thompson, Colorado, flood of 1976 and the Cheyenne, Wyoming, flood of 1985.With 15 Figures  相似文献   

13.
一次强降水超级单体风暴过程分析   总被引:3,自引:1,他引:2       下载免费PDF全文
概述了2006年6月16日影响大连机场的一次由强降水超级单体导致的“黑昼”天气的天气背景,应用卫星云图分析了雷暴云团的演变过程;利用大连市气象局新一代天气雷达资料,分析了强降水超级单体的雷达回波特征。结果表明:“黑昼”现象出现的主要原因是高空受东北冷涡控制,东北冷涡底部干冷空气与暖湿东南气流汇合,在大连地区上空形成了强降水超级单体。新一代天气雷达图像上强度图的演变与强降水超级单体模式相吻合;剖面图上显示出强降水超级单体的明显结构;存在着中气旋和中等到强的垂直风切变;分析了此次过程中出现冰雹的相关因子。  相似文献   

14.
Summary Seven synoptic patterns responsible for heavy precipitation in Austria were identified with a trajectory clustering method. Back trajectories at different levels, at different times during each day, and from different locations in Austria were utilised together with one potential vorticity value. In addition, seven regions within Austria with similar daily precipitation were identified. The response of heavy precipitation in each of these regions to the synoptic patterns was studied. The results correspond to the synoptic experience and reflect known meteorological situations, such as southerly and northerly Stau or the Vb pattern. The analyses are based on the 15-year re-analysis of the ECMWF (1979–1993), used to calculate the back trajectories, and daily precipitation sums of 131 climate stations in Austria. This paves the way to future applications in climate change research, as the necessary input data are also available from global climate models. The clustering was performed with a promising new procedure, a combination of hierarchical and iterative (K-means) clustering.  相似文献   

15.
以江苏1961—2020年夏季(6—9月)强降水事件的监测为例,分析评估了多种强降水事件的判定指标,如以百分位法、Gamma分布法和重现期法为代表的频率匹配阈值法及考虑偏离气候态程度的异常度法。结果表明,由于降水事件的区域差异和季节内变化特征,强(极端强)降水事件判定指标的设计应分区域分时段讨论,且能定量反映降水强度大、相对气候态异常显著且发生概率少(极少)的特点。不同判定方法所强调的强(极端强)降水事件的特点不同,如百分位法Type-Ⅱ强调了降水极值的极少发生,异常度法突出反映大幅度偏离气候态的程度。不同指标所确立的阈值大小也存在明显差别,如对于江苏夏季极端强降水事件的判定,百分位法Type-Ⅱ阈值最高,其次是异常度法,分别相当于20、10 a一遇最大降水量,百分位法Type-Ⅲ和Gamma分布法则相当于5 a一遇最大降水量。在与降水相关的服务工作中,不同地区需制定更详细的地方标准来明确强降水事件的定义,增强服务用语的规范性。  相似文献   

16.
基于TRMM卫星降雨资料、MERRA-2卫星位势高度、风速、垂直速度等资料,对1909号台风"利奇马"的移动特征及其引发浙江、江苏、山东等地暴雨进行诊断分析.分析结果发现,台风"利奇马"是北上型台风,移动路径主要受副高与1910号台风"罗莎"等系统影响.在北上的过程中,由于台风倒槽与西风槽携带的冷空气配合,且存在大量不稳定能量,引发了此次强降水过程.此外,低空急流及西风槽为降水提供了良好的动力上升条件,南海西南季风与台风"罗莎"是台风"利奇马"充沛的水汽与能量来源,为暴雨提供了良好的水汽条件.  相似文献   

17.
利用2011-2020年5-9月新乡市国家级自动气象站逐小时降水量观测数据,对新乡市短时强降水的时空分布特征及过程发生前的环境背景场进行分析,结果表明:新乡市短时强降水空间分布与局地地形关系密切,短时强降水频次和极值雨强均呈现由西至东递减的趋势.短时强降水频次年变化差异显著,多的年份可达52次,少的年份仅3次,月变化呈...  相似文献   

18.
A coupled mesoscale atmospheric-land surface model is used to simulate a twelve-day heavy precipitation event in California. In addition to the temporal variation of the large-scale flow, local topography played a crucial role in the simulated precipitation and land-surface snow budget through orographically-generated vertical motion and a decrease of atmospheric temperature with increasing altitude. The observed and simulated heavy precipitation occurred at locations where orographic lifting is strong: western slopes of the Sierra Nevada Mountains and the Coastal Range. Due to rainshadow effects, the Central Valley area, which is located at the lee side of the Coastal Range, received only a small amount of precipitation. The snowline appeared at altitudes as low as 750 m above sea level, and most of the precipitation above the 1.8 km level was snow. Maximum rainfall was located near the 1 km elevation along the western slope of the Sierra-Nevada while snowfall maxima appeared along the ridge of the Sierra Nevada Mountains. Snow accumulation was also strongly dependent upon surface elevations. The simulation suggested that over 75% of the fresh snowfall during the study period was added to the existing snow cover at elevations above 1.5 km while much of the snowfall over lower elevations melted.  相似文献   

19.
This paper is focused on the tracking of heavy precipitation by detecting strong wave activities in precipitating atmosphere. Based on the generalized moist potential vorticity (GMPV), a new wave-activity density and its wave-activity relation are first derived. The wave-activity density, which is the second-order portion of GMPV and quadratic in disturbance, is then applied to a heavy-rainfall event in North China. It is shown that the wave-activity density contains the vertical shear of wind perturbation, vertical vorticity perturbation and the spatial gradients of latent heating function perturbation associated with the moisture condensation. Due to these important characteristics of precipitating atmosphere, the wave-activity density shows strong anomalies over the precipitation region. The total GMPV and its basic-state and first-order components are also analyzed as comparisons. The result shows that the basic-state GMPV is not capable of diagnosing precipitation, while the total GMPV and the first-order GMPV, although present strong anomalies, are not capable of distinguishing precipitation and non-precipitation areas. This is likely due to the basic state information contained in GMPV and its basic-state and first-order components, which has no direct relation to the precipitation. The spatial distribution of wave-activity density further verifies its capability on detecting and tracing heavy precipitation. Moreover, the statistical result reveals the wave-activity density has a high correlation coefficient with the observational rainfall in a long time series and passes through the significance test.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号