首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 46 毫秒
1.
拉萨地区夏季地面臭氧的观测和特征分析   总被引:5,自引:0,他引:5  
1998年 6~ 9月 ,在西藏拉萨郊区 (海拔 36 5 0m ,2 9.6 5°N ,91.16°E)对地面臭氧进行了连续观测。该地区夏季地面臭氧日平均浓度在 10~ 6 0nL/L ,夏初的浓度较高于夏季后期。地面臭氧浓度的日变化呈单峰型 ,峰值出现在当地时间 10~ 18时 ,具有光化学过程臭氧生成的典型变化特征。局地风速、降水、太阳总辐射等气象因素的变化对地面臭氧浓度具有不同程度的影响。拉萨地区大规模宗教活动中的露天生物体燃烧 ,对地面臭氧浓度的增加有十分明显的贡献  相似文献   

2.
为探讨ECMWF业务预报模式(以下简称ECMWF)的地面气温预报不一致性问题,本文利用2015年12月1日—2016年11月30日业务预报中常用的地面气温预报数据,研究ECMWF地面气温预报产品在不同季节里的不一致性指数分布及变化特征。结果表明:各个季节不一致性指数有不同的特点,冬季不一致性指数最大,大值区主要分布在除华南和青藏高原外的大部分区域;而夏季不一致性指数最小,在青藏高原地区不一致性指数相对较大;春、秋两季不一致性指数大小均处于冬、夏季之间。此外,研究还发现冬季地面气温预报不一致性指数单日变化较大,而夏季较小。夏季不同起报时间的地面气温预报比较稳定。  相似文献   

3.
利用2017~2018年阿克达拉逐时臭氧浓度监测数据和同期气象观测资料,分析了阿克达拉近地面臭氧浓度的日変化和年季变化特征,并分析了臭氧浓度与气象条件之间的关系。结果表明:臭氧浓度日变化呈现单峰型,下午16点前后达到最高值,最高值分别为42.86 ppb和38.37 ppb;2017和2018年阿克达拉臭氧最高月分别出现在3月和2月,月平均臭氧浓度为49.37 ppb和37.94 ppb,最低月出现在12月,浓度为18.36 ppb和18.90 ppb;2017~2018年阿克达拉近地面臭氧浓度的季节变化规律为:春季>夏季>冬季>秋季;阿克达拉的主导风向是NW和E,夏季主导风向为NW,冬季则以偏东风为主;夏季受西北气流影响,阿克达拉西北方向的污染源对当地近地面臭氧浓度影响较大。  相似文献   

4.
利用2013—2015年廊坊市环境监测数据及同期气象资料,采用相关分析等统计方法,分析廊坊市臭氧浓度的日变化特征、超标规律以及气象因素对其的影响。结果表明:臭氧浓度的日变化特征明显,为"1谷1峰"型,每日07:00—08:00左右达到谷值,15:00—16:00达到峰值;臭氧超标只集中出现在春季、夏季与秋季的部分月份,1—3月、11—12月不存在臭氧超标情况,超标现象日变化特征明显,主要出现在11:00—20:00。气象因素对臭氧浓度的影响很大,风向为西南风与东南风时臭氧超标率较高;臭氧超标时,地面天气类型主要为高压后部或高压底部,高空天气类型主要为脊前西北气流或平直西风环流;臭氧浓度与相对湿度呈显著负相关,与温度、日照呈显著正相关。  相似文献   

5.
承德市臭氧污染气象条件预报方法研究   总被引:1,自引:0,他引:1  
利用2014-2016年承德市环境监测站和气象站的数据,分析了气象条件对承德市O3-8h浓度的影响,探讨了臭氧污染气象条件的预报方法。结果表明:4-7月是承德市O3-8h浓度较高的月份,O3浓度的日变化特征为午后浓度高而夜间浓度低;O3污染的天气形势为500 hPa受高压脊和偏西气流影响,850 hPa有强暖平流和20℃以上的高温,地面受低压前部和高压后部之间的偏南气流影响;有利于O3-8h出现高浓度的气象因子为日平均气温大于23℃、日最高气温大于28℃、日平均海平面气压995-1007 hPa、日平均水汽压18-28 hPa、偏南风大于1 m·s-1。利用气象因子综合评分建立臭氧污染指数,与O3-8h浓度的相关系数高达0.7553,说明臭氧污染指数能较好地预报臭氧污染天气。  相似文献   

6.
重庆市空气污染扩散气象条件指标研究   总被引:2,自引:1,他引:1  
胡春梅  刘德  陈道劲 《气象科技》2009,37(6):665-669
根据地面常规要素、L波段雷达探测资料风速和温度与污染指数(API:Air Pollution Index)的相关性,建立空气污染扩散条件的综合气象指数(A),按指数大小分类确定潜势预报指标,并应用历史同期气候概率作空气污染潜势预报。通过相关分析发现:与API关系密切的不是20:00的气象要素而是08:00的气象要素;地面要素中,对污染物浓度影响最大的是08:00的24 h变压,而温度的高低对API影响因季节而不同;L波段雷达资料中,150 m风速3、00 m和地面温差与API相关性较好。由相关性好的上述3个要素构造的综合气象指数及确定的扩散条件预报指标是合理的,在实际业务预报中,预报效果较好。  相似文献   

7.
利用邢台市生态环境局的大气污染物监测数据和同期气象观测资料,对邢台市2018年6月10—24日的一次臭氧污染过程进行了分析。结果表明:(1)污染过程中邢台市4个监测点臭氧质量浓度变化趋势基本一致,邢师高专臭氧质量浓度最高,市环保局最低;臭氧质量浓度日变化呈单峰型,05:00—06:00最低,15:00最高,邢师高专臭氧质量浓度昼夜差最大,市环保局昼夜差最小。(2)晴天、阴天、雨天臭氧质量浓度变化趋势大致相同,日变化也呈单峰型,晴天臭氧质量浓度日变化剧烈,雨天则变化平缓。(3)臭氧质量浓度与平均气温、最高气温、最低气温、太阳辐射、平均风速均呈显著的正相关关系,其中与最高气温相关系数最高;臭氧质量浓度与NO_2、PM_(10)、CO、PM_(2.5)污染物之间呈显著负相关关系。(4)经过较强太阳辐射照射后,当最高气温在29℃及以上,相对湿度在30%~60%之间,风向为偏南风时,臭氧质量浓度在12:00—19:00时段易超标。  相似文献   

8.
福建省夏季易发生臭氧污染,为了解福建省臭氧变化特征,利用中国环境监测总站全国城市空气质量实时发布平台的实时数据分析了福建省各地级市2015—2017年逐小时臭氧平均变化。研究结果表明,莆田市是福建省臭氧平均浓度最高的城市;福建省各城市2015—2017年逐日臭氧浓度均呈现增加趋势,且存在明显的月变化动态。福建省各地区周末臭氧浓度低于工作日臭氧浓度。该研究结果可为不同地区臭氧管控提供参考。  相似文献   

9.
利用广东省惠州市区2013—2016年逐日、逐时的环境和气象资料, 研究了珠江三角洲(简称“珠三角”)东侧惠州市臭氧污染特征及其与气象条件关系。结果表明:惠州市臭氧污染具有明显的月和季节变化特征, 10月臭氧平均浓度最高, 臭氧超标日和污染日主要出现在7—10月。惠州市臭氧浓度日变化呈单峰变化, 06—08时最低, 最大值出现在午后14—15时。臭氧浓度变化和气象条件关系密切, 低浓度臭氧大多出现在气温较低、相对湿度和风速较大、云量较多伴有降水、日照时数较小的天气, 臭氧浓度超标多出现在气温较高、相对湿度和风速较小、云量较少一般无降水、日照充足的天气。惠州市臭氧超标主要出现在地面和低空偏西风下, 这可能与惠州市处于珠三角城市群下风向的区域污染输送有关。   相似文献   

10.
基于广西区域的地面气象观测数据、臭氧浓度数据和臭氧激光雷达观测资料,采用后向轨迹方法,分析了2021年6月6-8日广西出现的一次大范围长时间由南向北变化的臭氧污染过程的形成原因.结果 表明,此次臭氧区域污染的主要原因是本地臭氧生成,次要原因是珠三角地区臭氧向广西区域输送;臭氧浓度与气象要素密切相关,与气温呈现较为一致的正相关,与降水量、地面风速和相对湿度呈现较为明显的负相关.  相似文献   

11.
The observational results in Lin'an show the elevated average concentrations of surface ozone and Nitric Oxides(NO_x)in the rural area in the eastern mid-latitudes of China.The mechanism of its variations was explained by the theo-retical analysis.In the case of breeze,the photochemical reactions controlled by solar radiation is the determined factorsaffecting the variations of the surface O_3 and NO_x.A study of the correlation between NO_x and SO_2 demonstrates thatthe biomass burning is an important local emission source of NO_x.  相似文献   

12.
The controlled simulation experiments revealed that ozone concentration increases cause various degrees of injury to leaves of crop and vegetable.The injury to vegetables is greater than that to crops.Ozone can dramatically affect stomatal conductance,photosynthetic rate and transpiration rate,and consequently the yield of crops.No matter how long exposure time was, stomatal conductance increased and photosynthetic and transpiration rates decreased with increases in ozone concentration.When ozone concentration was 100 nmol/mol,yields of rice and winter wheat declined by 27.1% and 60.5% respectively.When up to 200 nmol/mol,there was a significant reduction of yields:a decline up to 33.7% for rice and 81.3% for winter wheat.On the other hand,ozone benefits the improvement of grain quality such as amino acid and protein.  相似文献   

13.
A 2-D global chemistry-transport model is set up in this paper.The model simulates theatmospheric ozone distributions well with specified dynamical conditions.The analysis of ozonevariation mechanism shows that ozone is chemically in quasi-equilibrium except for the polar nightregion where the variation of ozone concentration is under the control of dynamical processes,thatthe oxygen atoms which produce ozone are mainly provided by the photolysis of O_2 in the upperstratosphere and by the photolysis of NO_2 in the lower stratosphere and the troposphere.and thatthe ozone is destroyed mainly by NO_x:the reactions between NO_x and O_3 and the odd oxygen cyclecontribute 80% to more than 90% of the ozone destruction.  相似文献   

14.
Ozone photochemical production and loss in very different environments at Waliguan baselinestation and Lin'an background station were simulated by using the measurement data and photo-chemical box model.The results show that net ozone photochemical production rate is negative,about 0.5 ppb/d,at Waliguan baseline sation,because of very low precursor concentrations.Butat Lin'an background station,the net photochemical ozone production is positive,about 2—3 ppb/h.which is very closed with the measurement at Lin'an.That means ozone production was con-trolled by photochemical reactions at Lin'an background station,because of the higher precursorconcentrations.The net destruction rate,at Waliguan Mt.,is not large,so that future increase inanthropogenic emission of reactive nitrogen will lead to larger production rates of steady-state O_3concentration.  相似文献   

15.
A 2-D global chemistry-transport model is set up in this paper.The model simulates the atmospheric ozone distributions well with specified dynamical conditions.The analysis of ozone variation mechanism shows that ozone is chemically in quasi-equilibrium except for the polar night region where the variation of ozone concentration is under the control of dynamical processes,that the oxygen atoms which produce ozone are mainly provided by the photolysis of O2 in the upper stratosphere and by the photolysis of NO2 in the lower stratosphere and the troposphere.and that the ozone is destroyed mainly by NOx:the reactions between NOx and O3 and the odd oxygen cycle contribute 80% to more than 90% of the ozone destruction.  相似文献   

16.
利用广东省中山市2015—2019年的地面臭氧浓度及气象观测数据,分析了中山市近年来臭氧超标与气象条件的关系。结果表明,中山市2015—2019年臭氧超标天数从22天增加至66天,臭氧年评价值增长36%,中度污染以上天数占超标天数比例从9.1%增长至36.4%。臭氧超标主要集中在8—11月,其中9月超标天数最多。夏秋季节臭氧超标主要发生在气温高、湿度低、太阳辐射强、日间10—14时无明显降水、吹北风的气象条件下,臭氧的污染潜在源区主要位于中山西部到北部的城市。风向和气温是臭氧超标最重要的指标,夏、秋季日间吹北风且日最高气温在33 ℃或以上时超标率分别达到89.1%和78.6%。2017年和2019年在相同的最高温、相对湿度、太阳辐射强度、降水和风速条件下的臭氧超标率均远高于2015年。当臭氧起始浓度在10 μg/m3以下、11~30 μg/m3及30 μg/m3以上时,夏(秋)季从起始浓度达到超标分别用时7.1(6.9) h、6.2(6.2) h和5.8(5.9) h,相应气温上升7.2(7.1) ℃、5.8(5.8) ℃和4.7(5.1)℃,起始浓度增大时,超标耗时和气温变化均呈减小趋势。   相似文献   

17.
Ozone photochemical production and loss in very different environments at Waliguan baseline station and Lin'an background station were simulated by using the measurement data and photochemical box model.The results show that net ozone photochemical production rate is negative,about 0.5 ppb/d,at Waliguan baseline sation,because of very low precursor concentrations.But at Lin'an background station,the net photochemical ozone production is positive,about 2-3 ppb/h.which is very closed with the measurement at Lin'an.That means ozone production was controlled by photochemical reactions at Lin'an background station,because of the higher precursor concentrations.The net destruction rate,at Waliguan Mt.,is not large,so that future increase in anthropogenic emission of reactive nitrogen will lead to larger production rates of steady-state O3 concentration.  相似文献   

18.
中国地区对流层臭氧变化和分布的数值研究   总被引:15,自引:1,他引:14  
王喜红  李兴生 《气象学报》1998,56(3):333-348
利用三维中尺度非静力模式MM5和化学模式,对1994年8月16~18日,1995年1月7~9日冬夏两个不同时期中国大陆大气对流层臭氧及其前体物质的分布进行了数值模拟。同时深入地分析了青藏高原地区夏季对流层臭氧的分布。模拟结果地面臭氧和NOx的分布与观测结果基本一致,人类活动和光化过程是决定地面臭氧和NOx的主要因子。对流层臭氧浓度的分布与气流的辐合辐散存在较好的对应关系,辐合区臭氧浓度较高,辐散区臭氧浓度较低。夏季,青藏高原中低空存在很强的辐合气流,使周边臭氧向高原辐合;而高原高空,受南亚高压控制存在很强的反气旋环流,臭氧由高原向周边辐散。冬季,受西风气流控制,臭氧分布表征大尺度特征。西风急流区臭氧浓度偏低,而急流两侧臭氧浓度偏高。  相似文献   

19.
NUMERICAL INVESTIGATION OF QBO IN OZONE   总被引:1,自引:0,他引:1       下载免费PDF全文
In this paper, a two-dimensional primitive equation model, coupling dynamical, radiative andphotochemical processes, is used to simulate the quasi-biennial oscillation (QBO) in ozone. TheQBO in total ozone has been successfully simulated when the forcing of equatorial stratosphericQBO in zonal wind is imposed. The simulated characters of QBO in ozone are in close agreementwith those observed. We further analyzed the mechanism of formation and maintenance of QBO inozone. In the different phases of QBO in equatorial stratospheric wind field, the global circulationhas so great difference that it makes the effects of advection transfer and eddy transfer present aquasi-biennial periodical variation. Chemical effect and dynamical effect are basically out-of-phase.They together form and maintain the QBO in ozone. Total variation rate is a tiny difference of thetwo large amounts. At the lower level of middle-high latitudes, however, it has a phase differenceof about 1-2 months between dynamical and negative chemical effects, where the dynamical effectis comparatively greater. QBO in ozone has no clear counter effects on atmospheric circulation. The experiment resultsshow that the effects of QBO in ozone on temperature field and wind field are very small.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号