首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In this analysis, the weather research and forecasting model coupled with a single-layer urban canopy model is used to simulate the climatic impacts of urbanization in the Beijing–Tianjin–Hebei metropolitan area, which has experienced significant expansion in its urban areas. Two cases examining current landscapes and the sensitivity test of urban areas replaced by cropland have been carried out to explore the changes in the surface air and atmospheric boundary structure. The impact of urbanization on annual mean surface air temperature has been found to be more than 1 °C in urban areas, and the maximum difference is almost 2 °C. The change in near-surface level temperature is most pronounced in winter, but the area influenced by urbanization is slightly larger in summer. The annual mean water vapor mixing ratio and wind speed are both reduced in the urban area. The effect of urbanization can only heat the temperature inside the urban boundary layer, below 850 hPa. The modeling results also indicate that the underlying surface thermal forces induced by the “urban heat island” effect enhance vertical air movement and engenders a convergence zone over urban areas. The convergence at low level together with the moisture increases in the layer between 850 and 700 hPa triggered the increase of convective precipitation.  相似文献   

2.
《Climate Policy》2002,2(1):111-117
This article evaluates the environmental effectiveness and economic efficiency of the Kyoto Protocol after the Bonn Agreement and the Marrakesh Accords. The US withdrawal has by far the greatest impact in reducing the environmental effectiveness, lowering the price of traded emission permits and reducing Annex I abatement costs. The decisions on sinks imply that the Annex I CO2-equivalent emissions without the US will come out at about 1/2% below base-year level, instead of over 4% below base-year level. Without US participation, the emission permit price is estimated to be low. Therefore, banking hot air by Russia and the Ukraine is of absolute importance for the development of a viable emissions trading market, and would also enhance the environmental effectiveness of the Kyoto Protocol.  相似文献   

3.
We investigate the momentum and energy exchange across the wave boundary layer (WBL). Directly at the air–sea interface, we test three wave-growth parametrizations by comparing estimates of the wave-induced momentum flux derived from wave spectra with direct covariance estimates of the momentum flux. An exponential decay is used to describe the vertical structure of the wave-induced momentum in the atmospheric WBL through use of a decay rate, a function of the dimensionless decay rate and wavenumber (A?=?α k). The decay rate is varied to minimize the difference between the energy extracted from the WBL and the energy flux computed from wave spectra using our preferred wave-growth parametrization. For wave ages (i.e. the peak phase speed to atmospheric friction velocity ratio) in the range \( 15 < c_{p}/u_{*} < 35 \) we are able to balance these two estimates to within 10%. The decay rate is used to approximate the WBL height as the height to which the wave-induced flux is 0.1 of its surface value and the WBL height determined this way is found to be between 1–3 m. Finally, we define an effective phase speed with which to parametrize the energy flux for comparison with earlier work, which we ultimately attempt to parametrize as a function of wind forcing.  相似文献   

4.
Pan  Yongjie  Lyu  Shihua  Li  Suosuo  Gao  Yanhong  Meng  Xianhong  Ao  Yinhuan  Wang  Shujin 《Theoretical and Applied Climatology》2017,127(3-4):1011-1022

Soils containing gravel (particle size ≥2 mm) are widely distributed over the Qinghai–Tibet Plateau (QTP). Soil mixed with gravel has different thermal and hydrological properties compared with fine soil (particle size <2 mm) and thus has marked impacts on soil water and heat transfer. However, the most commonly used land models do not consider the effects of gravel. This paper reports the development of a new scheme that simulates the thermal and hydrological processes in soil containing gravel and its application in the QTP. The new scheme was implemented in version 4 of the Community Land Model, and experiments were conducted for two typical sites in the QTP. The results showed that (1) soil with gravel tends to reduce the water holding capacity and enhance the hydraulic conductivity and drainage; (2) the thermal conductivity increases with soil gravel content, and the response of the temperature of soil mixed with gravel to air temperature change is rapid; (3) the new scheme performs well in simulating the soil temperature and moisture—the mean biases of soil moisture between the simulation and observation reduced by 25–48 %, and the mean biases of soil temperature reduced by 9–25 %. Therefore, this scheme can successfully simulate the thermal and hydrological processes in soil with different levels of gravel content and is potentially applicable in land surface models.

  相似文献   

5.
A method for enhancing the calculation of turbulent kinetic energy in the Mellor–Yamada–Janjić planetary boundary-layer parametrization in the Weather Research and Forecasting numerical model is presented. This requires some unconventional selections for the closure constants and an additional stability dependent surface length scale. Single column model and three-dimensional model simulations are presented showing a similar performance with the existing boundary-layer parametrization, but with a more realistic magnitude of turbulence intensity closer to the surface with respect to observations. The intended application is an enhanced calculation of turbulence intensity for the purposes of a more accurate wind-energy forecast.  相似文献   

6.
7.
8.
Abstract

A numerical model, the Parallel Ocean Program (POP) was used to run a 46-year simulation of the North Pacific Ocean beginning in January 1960. The model had a horizontal resolution of 0.25°, 28 vertical levels, and employed spectral nudging that, unlike standard nudging, nudges only specific frequency and wavenumber bands. This simulation was nudged to the mean and monthly Levitus climatology of potential temperature and absolute salinity (SA). The model was forced with the mean monthly winds, sea level pressure, net heat flux, and precipitation from the National Centers for Environmental Prediction (NCEP).

The simulation was used to examine the anomalous intrusions, previously observed from 2001 to 2002, of cooler and fresher (less spicy) water flowing southward along the coast of western North America. The simulated anomaly began in 1999 in the North Pacific, progressed southeastward towards the coast and then southward, at least as far south as southern California. The southward velocity signal, modulated by a strong annual cycle, reached Point Conception in 2000 while the temperature and SA anomalies arrived later, in 2002–03. The simulated velocity anomalies were eastward at about 3?cm s?1 in the northeast Pacific near 47°N in agreement with observations. Simulated coastal southward flow speeds reached 10–20?cm s?1 during the summer from 2000 to 2002.

This intrusion was by far the largest to occur over the entire length of the simulation. It was also the only time during the simulation when the Victoria mode was positive (associated with enhanced flow to the east via the North Pacific Gyre Oscillation (NPGO)) and the Multivariate El Niño-Southern Oscillation (ENSO) Index (MEI) was negative (La Niña conditions), tending to cause a southward flow anomaly along the coast.  相似文献   

9.
10.
Aiming at tackling the difficulty in establishing a sea surface temperature (SST) dynamical model, this study develops a non-linear dynamical–statistical model of SST fields and their correlative factors based on Genetic Algorithms (GA) and the dynamical system reconstruction idea, which greatly improves the El Niño–Southern Oscillation (ENSO) forecast model. Using Hadley SST data, sea surface wind (SSW) and sea level pressure (SLP) data from the National Centers for Environmental Prediction-National Center for Environmental Research (NCEP-NCAR), with empirical orthogonal function (EOF) time-space for reconstruction, we carry out numerical integral forecasting experiments for SST, SSW, and SLP fields. By statistical analysis of the forecasting experiments, we find that forecasts for less than 25 months perform better than longer term forecasts. Based on the model, we forecast SST, SSW, and SLP fields in September, October, and November 2014 and predict a weak La Niña event. This study explores a novel method for the complex atmosphere–ocean system.  相似文献   

11.
风场对京津冀地区雾霾的产生和消散起着决定性作用。本文利用站点观测数据,研究了京津冀地区冬季风场的年际变化及其影响因素。研究表明,京津冀地区的冬季平均风速为2.0 m s~(-1),每年降幅为0.01 m s~(-1)。大多数情况下,强风年对应热带太平洋东部的负海温异常,而弱风年份相反。此外,京津冀地区冬季风场的年际变化还受到包括北半球中高纬度气压梯度、欧亚大陆地表温度、菲律宾东部热带太平洋海面温度等多重因素的影响。  相似文献   

12.
Data collected during the SHEBA and CASES-99 field programs are employed to examine the flux–gradient relationship for wind speed and temperature in the stably stratified boundary layer. The gradient-based and flux-based similarity functions are assessed in terms of the Richardson number Ri and the stability parameter z*, z being height and Λ* the local Obukhov length. The resulting functions are expressed in an analytical form, which is essentially unaffected by self-correlation, when thermal stratification is strong. Turbulence within the stably stratified boundary layer is classified into four regimes: “nearly-neutral” (0 < z* < 0.02), “weakly-stable” (0.02 < z* < 0.6), “very-stable” (0.6 < z* < 50), and “extremely-stable” (z* > 50). The flux-based similarity functions for gradients are constant in “nearly-neutral” conditions. In the “very-stable” regime, the dimensionless gradients are exponential, and proportional to (z*)3/5. The existence of scaling laws in “extremely-stable” conditions is doubtful. The Prandtl number Pr decreases from 0.9 in nearly-neutral conditions and to about 0.7 in the very-stable regime. The necessary condition for the presence of steady-state turbulence is Ri < 0.7.  相似文献   

13.
Global warming caused by anthropogenic CO2 emissions is expected to reduce the capability of the ocean and the land biosphere to take up carbon. This will enlarge the fraction of the CO2 emissions remaining in the atmosphere, which in turn will reinforce future climate change. Recent model studies agree in the existence of such a positive climate–carbon cycle feedback, but the estimates of its amplitude differ by an order of magnitude, which considerably increases the uncertainty in future climate projections. Therefore we discuss, in how far a particular process or component of the carbon cycle can be identified, that potentially contributes most to the positive feedback. The discussion is based on simulations with a carbon cycle model, which is embedded in the atmosphere/ocean general circulation model ECHAM5/MPI-OM. Two simulations covering the period 1860–2100 are conducted to determine the impact of global warming on the carbon cycle. Forced by historical and future carbon dioxide emissions (following the scenario A2 of the Intergovernmental Panel on Climate Change), they reveal a noticeable positive climate–carbon cycle feedback, which is mainly driven by the tropical land biosphere. The oceans contribute much less to the positive feedback and the temperate/boreal terrestrial biosphere induces a minor negative feedback. The contrasting behavior of the tropical and temperate/boreal land biosphere is mostly attributed to opposite trends in their net primary productivity (NPP) under global warming conditions. As these findings depend on the model employed they are compared with results derived from other climate–carbon cycle models, which participated in the Coupled Climate–Carbon Cycle Model Intercomparison Project (C4MIP).
T. J. RaddatzEmail:
  相似文献   

14.
The Mellor–Yamada–Nakanishi–Niino (MYNN) planetary boundary-layer (PBL) scheme is a second-order turbulence closure model that is an improved version of the Mellor–Yamada scheme based on large-eddy simulation data. It simulates PBL structure and evolution well, particularly over the ocean surface. However, when used with various underlying surfaces in China, the scheme overestimates the turbulent momentum flux and the sensible heat flux. Based on observations of surface fluxes in China, we attempt to improve the MYNN model by modifying the parameters and representation of the turbulence scale. Closure constants and empirical expressions in the diagnostic equation are chosen first, and an additional component of the turbulent heat flux is considered in the potential temperature prognostic equation to improve the surface heat-flux modelling. The modified MYNN scheme is incorporated into a three-dimensional mesoscale model and is evaluated using various underlying surface observations. Amelioration of the surface turbulent fluxes is confirmed at five observational sites in China over different land-use types.  相似文献   

15.
The results of the analysis of statistical characteristics for wind speed are presented for the lower 2–km atmospheric layer over the Russian Arctic. The calculations are based on radiosonde data for the observation period of 1964–2016. The data passed the procedure of complex control of quality and the procedure of quality control specially developed for the atmospheric layer of 0–2 km. The Akima cubic spline interpolation is used for computing wind speed. The trends are estimated using the classic method. It is shown that the spatiotemporal distribution of the trends is not uniform. Wind speed and its standard deviations in the analyzed layer over the Arctic mainly increase in the layer of 400–800 m above the surface.  相似文献   

16.
The relationship between five teleconnection patterns (North Atlantic Oscillation (NAO), Arctic Oscillation (AO), East Atlantic/Western Russian (EAWR) pattern, Scandinavian (SCAND) pattern, and El Niño Southern Oscillation (ENSO)) and the frequency of occurrence of days (per month) with extreme precipitation in the Euro-Mediterranean region is investigated with National Centers for Environmental Prediction–National Center for Atmospheric Research reanalysis data. To quantify the teleconnection–precipitation relationships over the Euro-Mediterranean region, linear correlations are calculated between the monthly teleconnection indices for the five patterns and time series at each grid point of the monthly frequency of days with extreme precipitation, focusing on daily precipitation amounts that exceed a particular threshold value (a 90 % threshold is used). To evaluate dynamical processes, the teleconnection indices are also correlated with the frequencies of days with extreme values of dynamic tropopause pressure and precipitable water. The former quantity is used as a proxy for potential vorticity intrusions and the latter to identify regions of enhanced moisture. The results of this analysis indicates positive, statistically significant correlations between the NAO, AO, and SCAND indices and the frequency of extreme precipitation in the western Mediterranean; positive (negative) correlations between the EAWR index and the extreme precipitation frequency in the eastern (western) Mediterranean; and a positive correlation between the Niño3.4 index and the extreme precipitation frequency over the Iberian Peninsula and the Middle East. For all of the teleconnection patterns other than ENSO, the dynamic tropopause pressure correlation patterns resemble those for the precipitation. In contrast, similar precipitation and precipitable water correlation patterns are observed only for ENSO. These findings suggest that the teleconnections affect the interannual variation of the frequency of days with extreme precipitation over a large part of the Euro-Mediterranean region through their impact on the spatial distribution of regions with enhanced potential vorticity and air moisture.  相似文献   

17.
The Madden–Julian Oscillation(MJO) has a significant impact on global weather and climate and can be used as a predictability resource in extended-term forecasting. We evaluate the ability of the Chinese Academy of Meteorological Sciences Climate System Model(CAMS-CSM) to represent the MJO by using the diagnostic method proposed by the US Climate Variability and Predictability Program(CLIVAR) MJO Working Group(MJOWG). In general,the model simulates some major characteristics of MJO well, such as the seasonality characteristics and geographical dependence, the intensity of intraseasonal variability(ISV), dominant periodicity, propagation characteristics, coherence between outgoing longwave radiation(OLR) and wind, and life cycle of MJO signals. However, there are a few biases in the model when compared with observational/reanalyzed data. These include an overestimate of precipitation in the convergence zone of the North and South Pacific, a slightly weaker eastward propagation, and a shift in the dominant periodicity toward lower frequencies with slower speeds of eastward propagation. The model gives a poor simulation of the northward propagation of MJO in summer and shows less coherence between the MJO convection and wind. The role of moistening in the planetary boundary layer(PBL) in the eastward/northward propagation of MJO was also explored. An accurate representation of the vertical titling structure of moisture anomalies in CAMS-CSM leads to moistening of the PBL ahead of convection, which accounts for the eastward/northward propagation of MJO. Poor simulation of the vertical structure of the wind and moisture anomalies in the western Pacific leads to a poor simulation of the northward propagation of MJO in this area. Budget analysis of the PBL integral moisture anomalies shows that the model gives a good simulation of the moisture charging process ahead of MJO convection and that the zonal advection of moisture convergence term has a primary role in the detour of MJO over the Maritime Continent.  相似文献   

18.
19.
Access to food, water, and good air quality is indispensable for human life, as reflected in various United Nations Sustainable Development Goals (SDGs); however, pursuing food security may pose threats to water security and/or air quality. An important case is northwest India including the Punjab and Haryana states, which is the ‘breadbasket’ of India with a significantly increasing paddy rice area. The rapid expansion of rice farming has stressed groundwater resources and impacted air quality. Satellite observations have the potential to provide data for better decisions on food security, water storage, and air pollution, which would be vital for regional sustainable development. Based on observations from multiple satellites from 2001 to 2018, we found that paddy rice expansion (+22%) increased groundwater depletion (−1.50 cm/yr), residue burning (+500%), and air pollution (+29%, PM2.5) in the breadbasket of India. Moreover, satellite observations showed changes in these interactions after the enactment of a groundwater protection policy in 2009, which decelerated groundwater depletion (−1.20 cm/yr) due to delayed rice planting and harvest dates (∼15d); the latter elevated air pollution in November (+29%, PM2.5). Our finding stresses the need to reconcile the trade-offs and consider the interactions among SDGs 2 (food), 3 (good health), 6 (clean water), and 11 (air quality in cities), in policy-making for sustainable development. An efficient crop residue ultilization and management system, bottom-up groundwater use regulations, and cropping system shift towards less water-consuming crops are critically required to resolve the trade-offs of the food-water–air quality nexus in the northern India. Our study also showcases remote sensing approaches and methods to support and aid the achievement of the SDGs and track their progreses to support regional sustainable development.  相似文献   

20.
Abstract

The solar backscattered ultraviolet (SBUV/SBUV-2) merged ozone datasets, version 8.6, including column ozone and ozone profiles for the 1979–2012 period are examined for the 35°N–60°N zonal belt in the northern hemisphere mid-latitudes and four sub-regions: central Europe, continental Europe, North America, and East Asia. The residual long-term patterns for total ozone and ozone profiles are extracted by smoothing the time series of differences between the original and the modelled ozone time series. Modelled ozone is obtained using the standard trend model accounting for ozone variability due to changes in stratospheric halogens and various dynamical factors commonly used in previous ozone trend analyses. Since about 2005 spring and summer total ozone in the troposphere and lower stratosphere has decreased in some regions (central and continental Europe, North America, and the 35°N–60°N zonal belt) compared with modelled ozone. The negative departure from modelled ozone in 2010 is approximately 2–3% of the overall 1979–2012 monthly mean level. It seems that this decrease is a result of yet unknown dynamical processes rather than to chemical destruction because the differences have a longitudinal structure, and total ozone in the upper stratosphere still follows changes in stratospheric halogen loading.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号