首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
南北半球大气环流与东亚季风   总被引:2,自引:2,他引:2  
本文用谐波分析,对南北半球多年平均逐月海平面气压场进行了分析,结果表明:海陆的大小和分布不同,是南北半球大气环流差异的主要原因。大陆的作用随纬度和季节而改变;夏季低纬度大陆的作用更明显,高纬度则是冬季明显。欧亚非大陆,在东亚季风形成中起了主要作用。  相似文献   

2.
郭其蕴 《气象学报》1981,39(3):298-310
本文应用沿纬圈的谐波分析,对1951—1960年各年逐月南、北半球海平面气压进行分解,对比两个半球的副热带(30°N,30°S)及中纬度(50°N,50°S)的超长波活动发现:(1)南、北两个半球月平均大气环流都存在有性质不同的两类变化,即季节性变化与非季节性变化。在海陆对比明显的北半球,不论西风带还是副热带季节性变化都比较清楚。而南半球仅副热带季节性变化明显,西风带则是非季节性变化占优势。(2)南、北两个半球大气环流的季节变化,都有明显的年际差异。通常,北半球夏季建立(南半球是夏季结束)的年际差异大,北半球夏季结束(南半球是夏季建立)的年际差别较小。(3)超长波位置的年际变化与海陆分布有密切关系。陆地面积大的地区,占优势的超长波位置比较稳定,在几乎全为海洋的50°S,则超长波无论占优势与否,波槽位置的年际变化都较大。  相似文献   

3.
分析了南半球对流层500hPa平均地转西风随纬度的分布特点,平均地转西风季节变化特点,计算分析了南半球位势高度对纬向平均的偏差,分析了超长波的分布特征。以上结果均与北半球同期计算结果作了对比比较,指出了南北半球大气环流的异同点。  相似文献   

4.
大气环流的奇偶对称性(Ⅰ)理论依据和气候特征   总被引:1,自引:0,他引:1  
管兆勇  徐建军 《气象科学》1994,14(4):300-310
文中使用奇偶对称分析方法,利用观测资料对全球环流的奇偶对称分量的分布做了分析,指出奇偶分布的气候特征及其时间演变能反映南北半球海陆差异带来的影响,揭示大气对辐射加热响应的时间尺度、环流的波动结构及全球环流季节性调整等一些特征。  相似文献   

5.
平流层火山气溶胶时空传播规律及其气候效应   总被引:2,自引:1,他引:1       下载免费PDF全文
根据平流层火山气溶胶传播规律研究,该文构建了反映火山喷发强度、平流层火山气溶胶相对浓度、火山气溶胶扩散速率和反映火山爆发地理位置并且按e指数规律衰减的火山活动指数(VEI)时空分布函数,进一步建立了北半球中高纬度、南北半球低纬度和南半球中高纬度3个1945-2008年逐月火山活动指数时间序列。根据3个逐月火山活动指数时间序列分别分析了北半球中高纬度、南北半球低纬度和南半球中高纬度火山活动对于相应纬度带地面气温的影响。研究表明:无论南北半球还是热带,火山活动强时地面气温下降,火山活动弱时地面气温上升,并且地面气温对于火山活动的响应明显滞后。  相似文献   

6.
利用1979年1月—2014年6月ERA-Interim和NCEP再分析月平均资料,计算并分析全球对流层顶高度、温度等物理量的时空变化特征。结果表明:(1)对流层顶高度和温度的空间分布有很强的纬度依赖性,中高纬度地区对流层顶高度和温度变化随纬度变化分布较明显;(2)近36 a来,全球对流层顶高度整体升高(气压下降约1~2 h Pa·(10 a)~(-1)),而对流层顶温度降低(温度下降约0.1℃·(10 a)~(-1));(3)不同季节对流层顶的高度和温度场都有一定的空间结构变化,两者之间存在季节变化的协调性,且北半球较南半球的变化更复杂;(4)通过ERA-Interim资料和NCEP资料的对比,发现基于NCEP资料得到的对流层顶高度比ERA-Interim资料约高1 km,而2种资料的对流层顶温度在赤道、副热带地区比较接近,都稳定在192~200 K之间,但南、北半球中高纬度温度分布明显不同;(5)除北半球中高纬度北美洲和欧洲局部地区外,对流层顶高度的升高与对流层顶温度的下降存在明显的正相关,尤其是热带地区和南半球高纬地区,相关系数超过0.8。  相似文献   

7.
利用ERA-Interim再分析资料,研究1979~2011年间平流层温度与平流层水汽的时空演变趋势。结果表明,平流层纬向平均温度场和平流层水汽的分布随高度、纬度、季节的变化而变化,且二者密切相关,互相影响。过去33a间在热带地区平流层温度均呈上升趋势,在南北半球,温度在平流层中下层呈下降趋势,而在平流层上层呈增温趋势。平流层水汽在不同层次、不同纬度带均呈增加趋势。平流层纬向温度在南北两半球的下降趋势与平流层水汽含量的增加趋势,进一步验证了全球气候正在变暖的事实。   相似文献   

8.
热带印度洋与全球大气相互作用的信息传输特征分析   总被引:2,自引:0,他引:2  
基于气象场信息源汇概念和定义方法, 使用海表温度(SST)和位势高度场(GH)资料计算热带印度洋和全球大气相互作用过程中的信息传递, 给出了热带印度洋(20°S~20°N, 50°E~100°E)与热带地区、北半球和南半球大气之间的信息传递的区域分布特征, 并分析热带印度洋与大气相互作用中信息传递特征的季节差异和年代际变化。研究结果表明, 热带印度洋信息源主要分布在(10°S~10°N, 60°E~90°E)的区域内, 北半球和南半球大气信息汇均呈现显著的带状分布, 且主要分布在中纬度地区, 而热带地区的大气信息汇则主要分布于热带中东太平洋上空。热带印度洋对处在冬半年的半球的影响更强, 不同季节下热带印度洋与大气相互作用中的信息源汇证实了这一可能性。同时, 热带印度洋与大气之间的信息传递特征在20世纪70年代末期的年代际气候转型前后南北半球的变化不太一致:北半球大气对热带印度洋的响应存在不同程度的减弱, 南半球则存在不同程度的增强。  相似文献   

9.
近十五年全球臭氧变化   总被引:16,自引:1,他引:15  
利用卫星观测臭氧总含量TOMS(第7版)资料,在剔除季节变化后对全球60°S-60°N范围首先进行了沿纬度分布的线性趋势和周期分析。结果表明:自本世纪70年代末,各纬带上的臭氧总量都呈下降趋势,强度随纬度升高而加剧,并发现总体上北半球臭氧的下降趋势较南半球更加明显;同时证实了准两年振荡是臭氧变化中除年周期外最显著的周期。并对臭氧变化中的准两年振荡作了遥相关分析;发现准两年振荡在强度和位相上基本呈纬向分布并主要表现出赤道对称的特征。135~170°E地区臭氧总量变化所表现出的不同于其它地区的原因可能是这一地区常年频繁出现的对流活动;而臭氧总量下降趋势表现出的北半球同纬度地区均大于南半球的南北半球差异可能是由两半球人类活动的差异引起  相似文献   

10.
彭冲  张祖强 《气象》2012,38(9):1033-1041
本文使用CDAAC(COSMIC Data Analysis and Archival Center)提供的1995—2010年GPS掩星干反演大气温度和我国无线电探空温度资料,选择临近的廓线进行匹配,以掩星资料为基准,分析上对流层/下平流层区域(200~30 hPa)探空温度与掩星温度之间的偏差。分析多种时空匹配条件下总的温度偏差和标准差的结果表明,匹配条件对偏差平均值影响较小,主要影响偏差标准差,选择探空和掩星廓线时间差小于3 h、距离小于200 km作为匹配条件。就全国平均而言,探空温度和掩星温度相差很小,其中在上对流层的偏差大于下平流层,偏差的标准差随高度增加而变大。在上对流层昼夜偏差都为正,下平流层白天为正、夜间为负,温度偏差和标准差在白天大于夜间,说明掩星资料具有足够的精度可以识别出太阳辐射对我国探空温度的影响。偏差在低纬较大,随纬度升高逐渐减小,与使用掩星资料计算的大气垂直减温率有较好的对应关系,其变化特征与探空滞后误差比较一致,说明使用掩星资料可以辨别滞后误差对探空资料的影响。就全国平均而言,L波段探空仪和59型探空仪的平均温度偏差都相对较小,但在不同纬度表现不同;在低纬地区二者偏差对比明显,59型探空仪具有较大的偏差,L波段探空仪偏差较小,高纬地区二者偏差相对都较小;59型探空仪的偏差标准差始终大于L波段探空仪。结果说明掩星资料可以分辨仪器换型对温度偏差的影响,探空仪的升级使我国探空资料的精准度提高,特别在纬度较抵的区域,偏差的改进更加明显。  相似文献   

11.
A survey of the spatial and temporal behavior of the atmospheric general circulation as it relates to both polar regions is presented. The review is based on the European Centre for Medium-Range Weather Forecasts (ECMWF) 40-year reanalysis (ERA-40), updated using ECMWF operational analyses. The analysis spans 1960–2005 in the Northern Hemisphere, but is restricted to 1979–2005 in the Southern Hemisphere because of difficulties experienced by ERA-40 prior to the modern satellite era.The seasonal cycle of atmospheric circulation is illustrated by focusing on winter and summer. The huge circulation contrasts between the land-dominated Northern Hemisphere and the ocean-dominated Southern Hemisphere stand out. The intensification of the North Atlantic Oscillation/Northern Annular Mode and the Southern Annular Mode in DJF is highlighted and likely due to warming of the tropical Indian Ocean. The Arctic frontal zone during northern summer and the semi-annual oscillation throughout the year in the Southern Hemisphere are prominent features of the high latitude circulation in the respective hemispheres.Rotated principal component analysis (RPCA) is used to describe the primary modes of temporal variability affecting both polar regions, especially the links with the tropical forcing. The North Atlantic Oscillation is a key modulator of the atmospheric circulation in the North Atlantic sector, especially in winter, and is the dominant control on the moisture transport into the Arctic Basin. The Pacific-South American teleconnection patterns are primary factors in the high southern latitude circulation variability throughout the year, especially in the Pacific sector of Antarctica where the majority of moisture transport into the continent occurs.  相似文献   

12.
105°E和125°E越赤道气流与南、北半球环流变化的关系   总被引:4,自引:2,他引:2  
采用1980~2004年5~8月NCEP/NCAR逐日再分析资料, 将105°E和125°E越赤道气流增强过程按一定标准进行取样, 并对增强过程中越赤道气流的变化特点及其相应的南、 北半球环流特征进行分析, 结果表明: 越赤道气流的增强往往对应着通道南侧或北侧从热带到副热带地区的环流调整, 而这种环流调整在南半球主要指澳洲冷空气活动, 在北半球主要为辐合带的变化, 二者是影响越赤道气流的主要环流因子; 北半球辐合带的变化与西太平洋副高的东西振荡有密切关系, 前者的分布形态在一定程度上决定了南半球环流及越赤道气流变化对北半球热带外环流的影响情况; 125°E越赤道气流比105°E越赤道气流的增强过程通常更为显著, 这与它们对应的南、 北半球环流调整的差异有关。  相似文献   

13.
副热带高压脊线移动的三维结构特征   总被引:1,自引:2,他引:1  
文中定义了东西风交界面作为表征副热带高压脊线位置的动力学参量 ,并利用 NCEP/NCAR再分析月平均资料在三维空间中考察了东西风交界面的空间、时间变化特征。分析结果表明 :副热带高压位置移动以季节变化为主 ,季节变化由南北移动和斜率变化两类运动组成 ;副热带高压位置移动的年际变化和 ENSO事件关系密切 ;南半球副热带高压具有纬向对称的垂直结构 ,北半球副热带高压垂直结构较为复杂 ,尤其是西太平洋副热带高压表现出在全球副热带高压系统中的独特性。  相似文献   

14.
利用1948—2010年NCEP/NCAR逐月位势高度再分析资料、美国国家海洋局提供的1948—2010年逐月海温再分析资料,分别定义了1 000—500 hPa和500—200 hPa厚度,利用EOF、SVD等方法研究了北半球对流层厚度时空演变特征及其与大气环流和海面温度的关系。结果表明,冬季平均厚度EOF第一模态均具有北太平洋及附近高纬度亚洲大陆地区与北美大陆高纬地区反位相变化的特点,而夏季第一模态则是北半球范围内较一致的位相分布;冬、夏季平均厚度EOF第二模态均突出体现了欧亚大陆及附近地区与北半球其他地区反位相变化的特点;冬、夏季厚度场的变化形势与大气环流及海面温度具有密切联系。  相似文献   

15.
利用1958—2014年47个CMIP6模式输出资料和NCEP/NCAR再分析资料,研究了模式大气中南北涛动(InterHemispheric Oscillation,IHO)的季节变化特征,且评估了CMIP6对IHO季节特征的模拟能力。结果表明:47个CMIP6模式都能模拟出IHO的季节演变特征,但模式间存在一定差异。通过比较,筛选出模拟IHO季节循环较好的16个模式,它们能成功模拟出半球大气质量的时间演变和空间结构。进一步分析表明,水汽对IHO季节变化有抵消作用且半球内部水汽质量变化可驱动越赤道质量流的产生;地表净短波辐射夏高冬低,其加热造成的水汽蒸发在水汽质量变化中起到重要作用;地表净长波辐射在春秋变化幅度较大,与大气质量逐月变化吻合。对比再分析资料表明,CMIP6模式模拟的半球大气质量的峰谷值变化有明显的月份偏差,且CMIP6模式模拟的地表气压异常值的偏差主要出现在北太平洋、欧亚大陆、南半球中纬度地区和两极极区,模拟的南北半球的蒸发和降水量、赤道风场、地表净长波和短波辐射通量等均存在明显的偏差。  相似文献   

16.
南半球西风指数变化与中国夏季降水的关系   总被引:1,自引:1,他引:0  
根据NCEP/NCAR提供的1950~2007年南半球12~2月、6~8月500 hPa位势高度的月平均再分析资料,采用合成分析方法讨论与中国夏季3类雨型相对应的南半球500 hPa距平高度场的分布特征;运用多变量方差分析方法确定12~2月和6~8月与3类雨型相对应的南半球西风指数波动关键区A;分析关键区A的西风波动与中国夏季降水之间的关系;寻找南、北半球西风相互作用影响中国夏季降水分布的可能途径。分析表明,6~8月与3类雨型相对应的南半球500 hPa距平高度场显示出不同的距平分布形式,并存在显著差异区在(35°N~50°N,35°E~80°E)。12~2月南半球的西风指数变化关键区A在22.5°W~2.5°W,6~8月关键区A在10°E~55°E。南半球关键区A的西风指数强弱变化与中国夏季降水的关系密切,且12~2月南半球的西风波动对北半球夏季关键区的西风环流的变化有预测意义,而前期南半球关键区A的平均西风指数与北半球夏季高度场的显著负相关区在贝加尔湖。南、北半球大气环流经向传播是两半球西风相互作用的可能途径,前期南半球的异常西风使夏季贝加尔湖的平均槽强度变化,进而造成北半球关键区的西风环流异常,从而影响中国夏季雨型的分布。  相似文献   

17.
BCC_CSM对全球海冰面积和厚度模拟及其误差成因分析   总被引:3,自引:0,他引:3  
本文评估了国家气候中心发展的BCC_CSM模式对全球海冰的模拟能力,结果表明:该气候系统模式能够较好地模拟出全球海冰面积和厚度的时空分布特征,且南半球海冰模拟能力优于北半球。通过对比分析发现:年平均海冰面积模拟误差最大的区域位于鄂霍次克海、白令海和巴伦支海等海区,年平均海冰厚度分布与观测相近,在北半球冬季模拟的厚度偏薄;从海冰季节变化来看,模拟的夏季海冰面积偏低,冬季偏高;从海冰年际变化来看,近60年南北半球海冰面积模拟都比观测偏多,但南半球偏多幅度较小,然而北半球海冰年际变化趋势的模拟却好于南半球。另外,通过对海冰模拟误差成因分析,发现模拟的净辐射能量收入偏低使得海温异常偏冷,是导致北半球冬季海冰模拟偏多的主要原因。  相似文献   

18.
Climate Change in the Subtropical Jetstream during 1950–2009   总被引:1,自引:0,他引:1  
A study of six decades(1950–2009) of reanalysis data reveals that the subtropical jetstream(STJ) of the Southern(Northern) Hemisphere between longitudes 0°E and 180°E has weakened(strengthened) during both the boreal winter(January,February) and summer(July, August) seasons. The temperature of the upper troposphere of the midlatitudes has a warming trend in the Southern Hemisphere and a cooling trend in the Northern Hemisphere. Correspondingly, the north–south temperature gradient in the upper troposphere has a decreasing trend in the Southern Hemisphere and an increasing trend in the Northern Hemisphere, which affects the strength of the STJ through the thermal wind relation. We devised a method of isotach analysis in intervals of 0.1 m s-1in vertical sections of hemispheric mean winds to study the climate change in the STJ core wind speed, and also core height and latitude. We found that the upper tropospheric cooling of the Asian mid-latitudes has a role in the strengthening of the STJ over Asia, while throughout the rest of the globe the upper troposphere has a warming trend that weakens the STJ. Available studies show that the mid-latitude cooling of the upper troposphere over Asia is caused by anthropogenic aerosols(particularly sulphate aerosols) and the warming over the rest of the global mid-latitude upper troposphere is due to increased greenhouse gases in the atmosphere.  相似文献   

19.
李文毅  张洋 《气象科学》2023,43(4):427-437
本文通过对观测和再分析数据采用最大协方差分析以及回归、合成等分析方法,研究了青藏高原夏季地表气温与南半球大气环流之间的遥相关关系。结果表明,前期(4月)南半球极地—中高纬度大气环流呈现负位势高度异常、较低纬度印度洋—西太平洋区域呈现正位势高度异常时,高原中部和东部大部分区域夏季出现暖异常。在上述遥相关中,印度洋—西太平洋海温异常可能起到了重要的中间桥梁作用。在高原夏季温度偏高的年份,前期跨赤道的印度洋—西太平洋海温也持续偏暖,带来的海陆热力对比减小、经向跨赤道气流减弱有利于削弱夏季的季风环流,使得高原夏季降水偏少,有利于形成高原夏季的暖异常。在这一高原气温—南半球大气环流的遥相关关系中,4月南半球的大气位势高度场异常和与印度洋—西太平洋海温异常相关的异常高度场分布也十分相似。这一前期的跨赤道区域海温异常与南半球中高纬度位势高度场异常的因果关系仍有待进一步揭示。  相似文献   

20.
The results of spectroscopic total column measurements of CO and CH4 at different points of the Northern and Southern Hemispheres in 1970–1985, are reported. Seasonal cycles of CO are evident for all the sites. The Northern Hemispheric long-term positive trend of CO seems to be 1.5–2% per year. In the Southern Hemisphere, temporal increasing was not detected and a possible upper limit for it is about 0.6% per year. Methane concentration in the Northern Hemisphere increases at a rate of 1.2% per year.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号