首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 145 毫秒
1.
A coupled carbon cycle-climate model is used to compute global atmospheric CO2 and temperature variation that would result from several future CO2 emission scenarios. The model includes temperature and CO2 feedbacks on the terrestrial biosphere, and temperature feedback on the oceanic uptake of CO2. The scenarios used include cases in which fossil fuel CO2 emissions are held constant at the 1986 value or increase by 1% yr–1 until either 2000 or 2020, followed by a gradual transition to a rate of decrease of 1 or 2% yr–1. The climatic effect of increases in non-CO2 trace gases is included, and scenarios are considered in which these gases increase until 2075 or are stabilized once CO2 emission reductions begin. Low and high deforestation scenarios are also considered. In all cases, results are computed for equilibrium climatic sensitivities to CO2 doubling of 2.0 and 4.0 °C.Peak atmospheric CO2 concentrations of 400–500 ppmv and global mean warming after 1980 of 0.6–3.2 °C occur, with maximum rates of global mean warming of 0.2–0.3 °C decade–1. The peak CO2 concentrations in these scenarios are significantly below that commonly regarded as unavoidable; further sensitivity analyses suggest that limiting atmospheric CO2 to as little as 400 ppmv is a credible option.Two factors in the model are important in limiting atmospheric CO2: (1) the airborne fraction falls rapidly once emissions begin to decrease, so that total emissions (fossil fuel + land use-induced) need initially fall to only about half their present value in order to stabilize atmospheric CO2, and (2) changes in rates of deforestation have an immediate and proportional effect on gross emissions from the biosphere, whereas the CO2 sink due to regrowth of forests responds more slowly, so that decreases in the rate of deforestation have a disproportionately large effect on net emission.If fossil fuel emissions were to decrease at 1–2% yr–1 beginning early in the next century, emissions could decrease to the rate of CO2 uptake by the predominantly oceanic sink within 50–100 yrs. Simulation results suggest that if subsequent emission reductions were tied to the rate of CO2 uptake by natural CO2 sinks, these reductions could proceed more slowly than initially while preventing further CO2 increases, since the natural CO2 sink strength decreases on time scales of one to several centuries. The model used here does not account for the possible effect on atmospheric CO2 concentration of possible changes in oceanic circulation. Based on past rates of atmospheric CO2 variation determined from polar ice cores, it appears that the largest plausible perturbation in ocean-air CO2 flux due to changes of oceanic circulation is substantially smaller than the permitted fossil fuel CO2 emissions under the above strategy, so tieing fossil fuel emissions to the total sink strength could provide adequate flexibility for responding to unexpected changes in oceanic CO2 uptake caused by climatic warming-induced changes of oceanic circulation.  相似文献   

2.
A terrestrial ecosystem model (Sim-CYCLE) was driven by multiple climate projections to investigate uncertainties in predicting the interactions between global environmental change and the terrestrial carbon cycle. Sim-CYCLE has a spatial resolution of 0.5°, and mechanistically evaluates photosynthetic and respiratory CO2 exchange. Six scenarios for atmospheric-CO2 concentrations in the twenty-first century, proposed by the Intergovernmental Panel on Climate Change, were considered. For each scenario, climate projections by a coupled atmosphere–ocean general circulation model (AOGCM) were used to assess the uncertainty due to socio-economic predictions. Under a single CO2 scenario, climate projections with seven AOGCMs were used to investigate the uncertainty stemming from uncertainty in the climate simulations. Increases in global photosynthesis and carbon storage differed considerably among scenarios, ranging from 23 to 37% and from 24 to 81 Pg C, respectively. Among the AOGCM projections, increases ranged from 26 to 33% and from 48 to 289 Pg C, respectively. There were regional heterogeneities in both climatic change and carbon budget response, and different carbon-cycle components often responded differently to a given environmental change. Photosynthetic CO2 fixation was more sensitive to atmospheric CO2, whereas soil carbon storage was more sensitive to temperature. Consequently, uncertainties in the CO2 scenarios and climatic projections may create additional uncertainties in projecting atmospheric-CO2 concentrations and climates through the interactive feedbacks between the atmosphere and the terrestrial ecosystem.  相似文献   

3.
Bio-controlled thermostasis involving the sulfur cycle   总被引:4,自引:0,他引:4  
The Gaia hypothesis proposed by Lovelock and Margulis presumes the existence of an unspecified biological means of ameliorating climate that has operated since the emergence of life 3500 Myr ago: Recently it was suggested that the mechanism of thermostasis may involve biospheric cycling of atmospheric carbon dioxide. We suggest an alternative hypothesis of biothermostasis operating through the sulfur cycle, rather than the carbon cycle. The mechanism would operate by altering planetary albedo through the selective creation of biospheric organic sulfide gases which go on to metamorphize into submicron particles and introduce cooling. In contrast to the carbon-cycle mechanism, sulfur-based cooling would have the ability to ameliorate climate well into the future, in principle over stellar Main Sequence time intervals. The main feature of interest is that the S cycle represents a particularly favorable thermodynamic pathway, involving three to four orders of magnitude less mass of active material cycled through the biospheric-atmospheric system (in response to a given temperature-imposed stress) than would be the case for a greenhouse gas hypothesis. There is no evidence that the suggested biospheric controlled particle-albedo change mechanism is actually operating, but we speculate that the probability of its rising importance and perhaps eventual dominance will improve when the partial pressure of atmospheric CO2 drops low enough to impose stress on metabolic processes. The intriguing thing about the process is its extremely high efficiency.  相似文献   

4.
A new complex earth system model consisting of an atmospheric general circulation model, an ocean general circulation model, a three-dimensional ice sheet model, a marine biogeochemistry model, and a dynamic vegetation model was used to study the long-term response to anthropogenic carbon emissions. The prescribed emissions follow estimates of past emissions for the period 1751–2000 and standard IPCC emission scenarios up to the year 2100. After 2100, an exponential decrease of the emissions was assumed. For each of the scenarios, a small ensemble of simulations was carried out. The North Atlantic overturning collapsed in the high emission scenario (A2) simulations. In the low emission scenario (B1), only a temporary weakening of the deep water formation in the North Atlantic is predicted. The moderate emission scenario (A1B) brings the system close to its bifurcation point, with three out of five runs leading to a collapsed North Atlantic overturning circulation. The atmospheric moisture transport predominantly contributes to the collapse of the deep water formation. In the simulations with collapsed deep water formation in the North Atlantic a substantial cooling over parts of the North Atlantic is simulated. Anthropogenic climate change substantially reduces the ability of land and ocean to sequester anthropogenic carbon. The simulated effect of a collapse of the deep water formation in the North Atlantic on the atmospheric CO2 concentration turned out to be relatively small. The volume of the Greenland ice sheet is reduced, but its contribution to global mean sea level is almost counterbalanced by the growth of the Antarctic ice sheet due to enhanced snowfall. The modifications of the high latitude freshwater input due to the simulated changes in mass balance of the ice sheet are one order of magnitude smaller than the changes due to atmospheric moisture transport. After the year 3000, the global mean surface temperature is predicted to be almost constant due to the compensating effects of decreasing atmospheric CO2 concentrations due to oceanic uptake and delayed response to increasing atmospheric CO2 concentrations before.  相似文献   

5.
A two-dimensional model of global atmospheric transport is used to relate estimated air-to-surface exchanges of carbon dioxide (CO2) to spatial and temporal variations of atmospheric CO2 concentrations and isotopic composition. The atmospheric model coupled with models of the biosphere and mixed layer of the ocean describes the gross features of the global carbon cycle. In particular this paper considers the change in isotopic composition due to interreservoir exchanges and thus the potential application and measurement requirements of new isotopic observational programs.A comparison is made between the model-generated CO2 concentration variation and those observed on secular, interannual and seasonal time scales and spatially through the depth of the troposphere and meridionally from pole-to-pole.The relationship between isotopic and concentration variation on a seasonal time-scale is discussed and it is shown how this can be used to quantitatively estimate relative contributions of biospheric and oceanic CO2 exchange. Further, it is shown that the interhemispheric gradient of concentration and isotopic ratio results primarily from the redistribution of fossil fuel CO2. Both isotopic and concentration data indicate that tropical deforestation contributes less than 2 Gt yr-1 of carbon to the atmosphere.The study suggests that changes in the rate of change of the ratio of 13C to 12C in the atmosphere of less than 0.03 yr-1 might be expected if net exchanges with the biosphere are the cause of interannual variations of CO2 concentrations.  相似文献   

6.
A global three-dimensional chemical transport model has been used to identify and evaluate possible candidates for the `missing' surface source required to balance the atmospheric budget of methyl bromide. Both natural and anthropogenic emissions of methyl bromide are `coloured' in the model, thus allowing the global CH3Br distribution to be broken-down into its source components. These coloured CH3Br tracers are then combined in various ways to create one base-line emission scenario and five further plausible scenarios. The additional emission scenarios are specifically designed to test whether the geographical distribution and seasonal cycles of additional vegetation and/or increased biomass burning emissions are consistent with atmospheric observations of methyl bromide mixing ratios. Due to an imbalance in our current understanding of the methyl bromide budget, simulated CH3Br mixing ratios from the base-line emission scenario are significantly lower than atmospheric measurements. Both the inclusion of a vegetation source in the tropics and a double strength biomass burning source substantially improve the agreement between model simulations and atmospheric measurements compared with the base-line emission scenario. While measurement data provides useful information on global fluxes and regional CH3Br seasonal cycles, small differences between the simulated seasonal cycles of different emission scenarios makes it difficult to distinguish between the relative likelihoods of model scenarios containing a tropical vegetation source or an increased biomass burning source. Further measurements performed in continental mid-to-high northern latitudes, central-southern Africa and South America would be of particular benefit in future attempts to constrain the location and magnitude of the natural terrestrial sources of methyl bromide.  相似文献   

7.
Solar radiation modification (SRM, also termed as geoengineering) has been proposed as a potential option to counteract anthropogenic warming. The underlying idea of SRM is to reduce the amount of sunlight reaching the atmosphere and surface, thus offsetting some amount of global warming. Here, the authors use an Earth system model to investigate the impact of SRM on the global carbon cycle and ocean biogeochemistry. The authors simulate the temporal evolution of global climate and the carbon cycle from the pre-industrial period to the end of this century under three scenarios: the RCP4.5 CO2 emission pathway, the RCP8.5 CO2 emission pathway, and the RCP8.5 CO2 emission pathway with the implementation of SRM to maintain the global mean surface temperature at the level of RCP4.5. The simulations show that SRM, by altering global climate, also affects the global carbon cycle. Compared to the RCP8.5 simulation without SRM, by the year 2100, SRM reduces atmospheric CO2 by 65 ppm mainly as a result of increased CO2 uptake by the terrestrial biosphere. However, SRM-induced change in atmospheric CO2 and climate has a small effect in mitigating ocean acidification. By the year 2100, relative to RCP8.5, SRM causes a decrease in surface ocean hydrogen ion concentration ([H+]) by 6% and attenuates the seasonal amplitude of [H+] by about 10%. The simulations also show that SRM has a small effect on globally integrated ocean net primary productivity relative to the high-CO2 simulation without SRM. This study contributes to a comprehensive assessment of the effects of SRM on both the physical climate and the global carbon cycle.摘要太阳辐射干预地球工程是应对气候变化的备用应急措施. 其基本思路是通过减少到达大气和地表的太阳辐射, 从一定程度上抵消温室效应引起的全球变暖. 本研究使用地球系统模式模拟理想化太阳辐射干预方法对海洋碳循环的影响. 模拟试验中, 通过直接减少太阳辐射将RCP8.5 CO2排放情景下的全球平均温度降低到RCP4.5情景下的温度. 模拟结果表明, 到2100年, 相对于RCP8.5情景, 减少太阳辐射通过增加陆地碳汇, 使大气CO2浓度降低了65 ppm. 减少太阳辐射对海洋酸化影响很小. 到 2100 年, 相对于RCP8.5情景, 减少太阳辐射使海表平均氢离子浓度减少6%, pH上升0.03, 同时使海表平均氢离子浓度的季节变化振幅衰减约10%. 模拟结果还表明, 减少太阳辐射对全球海洋净初级生产力的影响较小. 本研究有助于深化我们对太阳辐射干预地球工程的气候和碳循环效应的认知和综合评估.  相似文献   

8.
Based on LGM experiments with an atmosphere–ocean general circulation model, we systematically investigated the effects of physical changes in the ocean and induced biological effects as well on the low atmospheric CO2 concentration (pCO2) at the last glacial maximum (LGM). Numerical experiments with an oceanic carbon-cycle model showed that pCO2 was lowered by ~30 ppm in the LGM ocean. Most of the pCO2 reduction was explained by the change in CO2 solubility in the ocean due to lower sea surface temperature (SST) during the LGM. Moreover, we found that SST changes in the high-latitude Northern Atlantic could explain more than one-third of the overall change in pCO2 induced by global SST change, suggesting an important feedback between the Laurentide ice sheet and pCO2.  相似文献   

9.
There is considerable uncertainty as to whether interannual variability in climate and terrestrial ecosystem production is sufficient to explain observed variation in atmospheric carbon content over the past 20–30 years. In this paper, we investigated the response of net CO2 exchange in terrestrial ecosystems to interannual climate variability (1983 to 1988) using global satellite observations as drivers for the NASA-CASA (Carnegie-Ames-Stanford Approach) simulation model. This computer model of net ecosystem production (NEP) is calibrated for interannual simulations driven by monthly satellite vegetation index data (NDVI) from the NOAA Advanced Very High Resolution Radiometer (AVHRR) at 1 degree spatial resolution. Major results from NASA-CASA simulations suggest that from 1985 to 1988, the northern middle-latitude zone (between 30 and 60°N) was the principal region driving progressive annual increases in global net primary production (NPP; i.e., the terrestrial biosphere sink for carbon). The average annual increase in NPP over this predominantly northern forest zone was on the order of +0.4 Pg (1015 g) C per year. This increase resulted mainly from notable expansion of the growing season for plant carbon fixation toward the zonal latitude extremes, a pattern uniquely demonstrated in our regional visualization results. A net biosphere source flux of CO2 in 1983–1984, coinciding with an El Niño event, was followed by a major recovery of global NEP in 1985 which lasted through 1987 as a net carbon sink of between 0.4 and 2.6 Pg C per year. Analysis of model controls on NPP and soil heterotrophic CO2 fluxes (Rh) suggests that regional warming in northern forests can enhance ecosystem production significantly. In seasonally dry tropical zones, periodic drought and temperature drying effects may carry over with at least a two-year lag time to adversely impact ecosystem production. These yearly patterns in our model-predicted NEP are consistent in magnitude with the estimated exchange of CO2 by the terrestrial biosphere with the atmosphere, as determined by previous isotopic (13C) deconvolution analysis. Ecosystem simulation results can help further target locations where net carbon sink fluxes have occurred in the past or may be verified in subsequent field studies.  相似文献   

10.
Increased atmospheric CO2 concentration and climate change may significantly impact the hydrological and meteorological processes of a watershed system. Quantifying and understanding hydrological responses to elevated ambient CO2 and climate change is, therefore, critical for formulating adaptive strategies for an appropriate management of water resources. In this study, the Soil and Water Assessment Tool (SWAT) model was applied to assess the effects of increased CO2 concentration and climate change in the Upper Mississippi River Basin (UMRB). The standard SWAT model was modified to represent more mechanistic vegetation type specific responses of stomatal conductance reduction and leaf area increase to elevated CO2 based on physiological studies. For estimating the historical impacts of increased CO2 in the recent past decades, the incremental (i.e., dynamic) rises of CO2 concentration at a monthly time-scale were also introduced into the model. Our study results indicated that about 1–4% of the streamflow in the UMRB during 1986 through 2008 could be attributed to the elevated CO2 concentration. In addition to evaluating a range of future climate sensitivity scenarios, the climate projections by four General Circulation Models (GCMs) under different greenhouse gas emission scenarios were used to predict the hydrological effects in the late twenty-first century (2071–2100). Our simulations demonstrated that the water yield would increase in spring and substantially decrease in summer, while soil moisture would rise in spring and decline in summer. Such an uneven distribution of water with higher variability compared to the baseline level (1961–1990) may cause an increased risk of both flooding and drought events in the basin.  相似文献   

11.
Climate projections over the next two to four decades indicate that most of Australia’s wheat-belt is likely to become warmer and drier. Here we used a shire scale, dynamic stress-index model that accounts for the impacts of rainfall and temperature on wheat yield, and a range of climate change projections from global circulation models to spatially estimate yield changes assuming no adaptation and no CO2 fertilisation effects. We modelled five scenarios, a baseline climate (climatology, 1901–2007), and two emission scenarios (“low” and “high” CO2) for two time horizons, namely 2020 and 2050. The potential benefits from CO2 fertilisation were analysed separately using a point level functional simulation model. Irrespective of the emissions scenario, the 2020 projection showed negligible changes in the modelled yield relative to baseline climate, both using the shire or functional point scale models. For the 2050-high emissions scenario, changes in modelled yield relative to the baseline ranged from ?5 % to +6 % across most of Western Australia, parts of Victoria and southern New South Wales, and from ?5 to ?30 % in northern NSW, Queensland and the drier environments of Victoria, South Australia and in-land Western Australia. Taking into account CO2 fertilisation effects across a North–south transect through eastern Australia cancelled most of the yield reductions associated with increased temperatures and reduced rainfall by 2020, and attenuated the expected yield reductions by 2050.  相似文献   

12.
Liu  Tingxiang  Zhang  Shuwen  Yu  Lingxue  Bu  Kun  Yang  Jiuchun  Chang  Liping 《Theoretical and Applied Climatology》2017,130(3-4):971-978
Currently, US forests constitute a large carbon sink, comprising about 9 % of the global terrestrial carbon sink. Wildfire is the most significant disturbance influencing carbon dynamics in US forests. Our objective is to estimate impacts of climate change, CO2 concentration, and nitrogen deposition on the future net biome productivity (NBP) of US forests until the end of twenty-first century under a range of disturbance conditions. We designate three forest disturbance scenarios under one future climate scenario to evaluate factor impacts for the future period (2011–2100): (1) no wildfires occur but forests continue to age (Saging), (2) no wildfires occur and forest ages are fixed in 2010 (Sfixed_nodis), and (3) wildfires occur according to a historical pattern, consequently changing forest age (Sdis_age_change). Results indicate that US forests remain a large carbon sink in the late twenty-first century under the Sfixed_nodis scenario; however, they become a carbon source under the Saging and Sdis_age_change scenarios. During the period of 2011 to 2100, climate is projected to have a small direct effect on NBP, while atmospheric CO2 concentration and nitrogen deposition have large positive effects on NBP regardless of the future climate and disturbance scenarios. Meanwhile, responses to past disturbances under the Sfixed_nodis scenario increase NBP regardless of the future climate scenarios. Although disturbance effects on NBP under the Saging and Sdis_age_change scenarios decrease with time, both scenarios experience an increase in NBP prior to the 2050s and then a decrease in NBP until the end of the twenty-first century. This study indicates that there is potential to increase or at least maintain the carbon sink of conterminous US forests at the current level if future wildfires are reduced and age structures are maintained at a productive mix. The effects of CO2 on the future carbon sink may overwhelm effects of other factors at the end of the twenty-first century. Although our model in conjunction with multiple disturbance scenarios may not reflect the true conditions of future forests, it provides a range of potential conditions as well as a useful guide to both current and future forest carbon management.  相似文献   

13.
A coupled climate–carbon cycle model composed of a process-based terrestrial carbon cycle model, Sim-CYCLE, and the CCSR/NIES/FRCGC atmospheric general circulation model was developed. We examined the multiple temporal scale functions of terrestrial ecosystem carbon dynamics induced by human activities and natural processes and evaluated their contribution to fluctuations in the global carbon budget during the twentieth century. Global annual net primary production (NPP) and heterotrophic respiration (HR) increased gradually by 6.7 and 4.7%, respectively, from the 1900s to the 1990s. The difference between NPP and HR was the net carbon uptake by natural ecosystems, which was 0.6 Pg C year?1 in the 1980s, whereas the carbon emission induced by human land-use changes was 0.5 Pg C year?1, largely offsetting the natural terrestrial carbon sequestration. Our results indicate that monthly to interannual variation in atmospheric CO2 growth rate anomalies show 2- and 6-month time lags behind anomalies in temperature and the NiNO3 index, respectively. The simulated anomaly amplitude in monthly net carbon flux from terrestrial ecosystems to the atmosphere was much larger than in the prescribed air-to-sea carbon flux. Fluctuations in the global atmospheric CO2 time series were dominated by the activity of terrestrial vegetation. These results suggest that terrestrial ecosystems have acted as a net neutral reservoir for atmospheric CO2 concentrations during the twentieth century on an interdecadal timescale, but as the dominant driver for atmospheric CO2 fluctuations on a monthly to interannual timescale.  相似文献   

14.
This article illustrates the main difficulties encountered in the preparation of GHG emission projections and climate change mitigation policies and measures (P&M) for Kazakhstan. Difficulties in representing the system with an economic model have been overcome by representing the energy system with a technical-economic growth model (MARKAL-TIMES) based on the stock of existing plants, transformation processes, and end-use devices. GHG emission scenarios depend mainly on the pace of transition in Kazakhstan from a planned economy to a market economy. Three scenarios are portrayed: an incomplete transition, a fast and successful one, and even more advanced participation in global climate change mitigation, including participation in some emission trading schemes. If the transition to a market economy is completed by 2020, P&M already adopted may reduce emissions of CO2 from combustion by about 85 MtCO2 by 2030 – 17% of the emissions in the baseline (WOM) scenario. One-third of these reductions are likely to be obtained from the demand sectors, and two-thirds from the supply sectors. If every tonne of CO2 not emitted is valued up to US$10 in 2020 and $20 in 2030, additional P&M may further reduce emissions by 110 MtCO2 by 2030.  相似文献   

15.
Transportation contributes to a significant and rising share of global energy use and GHG emissions. Therefore modeling future travel demand, its fuel use, and resulting CO2 emission is highly relevant for climate change mitigation. In this study we compare the baseline projections for global service demand (passenger-kilometers, ton-kilometers), fuel use, and CO2 emissions of five different global transport models using harmonized input assumptions on income and population. For four models we also evaluate the impact of a carbon tax. All models project a steep increase in service demand over the century. Technology change is important for limiting energy consumption and CO2 emissions, the study also shows that in order to stabilise or even decrease emissions radical changes would be required. While all models project liquid fossil fuels dominating up to 2050, they differ regarding the use of alternative fuels (natural gas, hydrogen, biofuels, and electricity), because of different fuel price projections. The carbon tax of 200 USD/tCO2 in 2050 stabilizes or reverses global emission growth in all models. Besides common findings many differences in the model assumptions and projections indicate room for further understanding long-term trends and uncertainty in future transport systems.  相似文献   

16.
利用2004年以来东亚地区10个本底观测站大气φ(CO2)观测资料,分析了各站大气φ(CO2)的变化特征及其各站之间的差异,讨论了下垫面特征、源汇作用等对φ(CO2)变化的影响.结果表明:10个本底站大气月均φ(CO2)有明显的季节变化,高值多出现在冬春等寒冷季节,而低值则多出现在6—9月,属于北半球的夏季;大气φ(CO2)日变化趋势较为一致,15时(当地时间)前后达到全天最低,随后φ(CO2)升高,并在日落后继续积累,至清晨7时(当地时间)前后达到全天最高,之后φ(CO2)随着太阳辐射的增强而逐渐降低,且平均φ(CO2)水平与下垫面植被量成反比,φ(CO2)日变化的幅度与下垫面植被量成反比.作为全球基准站之一的瓦里关山站,2004—2008年φ(CO2)年均值逐年增加,年增长率为2.28×10-6/a.  相似文献   

17.
The concept of global warming potential was developed as a relative measure of the potential effects on climate of a greenhouse gas as compared to CO2. In this paper a series of sensitivity studies examines several uncertainties in determination of Global Warming Potentials (GWPs). For example, the original evaluation of GWPs for the Intergovernmental Panel on Climate Change (IPCC, 1990) did not attempt to account for the possible sinks of carbon dioxide (CO2) that could balance the carbon cycle and produce atmospheric concentrations of CO2 that match observations. In this study, a balanced carbon cycle model is applied in calculation of the radiative forcing from CO2. Use of the balanced model produces up to 21% enhancement of the GWPs for most trace gases compared with the IPCC (1990) values for time horizons up to 100 years, but a decreasing enhancement with longer time horizons. Uncertainty limits of the fertilization feedback parameter contribute a 20% range in GWP values. Another systematic uncertainty in GWPs is the assumption of an equilibrium atmosphere (one in which the concentration of trace gases remains constant) versus a disequilibrium atmosphere (one in which the concentration of trace gases varies with time). The latter gives GWPs that are 19 to 32% greater than the former for a 100 year time horizons, depending upon the carbon dioxide emission scenario chosen. Five scenarios are employed: constant-concentration, constant-emission past 1990 and the three IPCC (1992) emission scenarios. For the analysis of uncertainties in atmospheric lifetime (τ) the GWP changes in direct proportion toτ for short-lived gases, but to a lesser extent for gases withτ greater than the time horizontal for the GWP calculation.  相似文献   

18.
Mole fractions of atmospheric CO_2(XCO_2) have been continuously measured from October 2014 to March 2016 at the Guangzhou Panyu Atmospheric Composition Site(23.00°N,113.21°E;140 m MSL) in the Pearl River Delta(PRD)region using a cavity ring-down spectrometer.Approximately 66.63%,19.28%,and 14.09% of the observed values were filtered as background,pollutant source,and sink due to biospheric uptake,respectively,by applying a robust local regression procedure.Their corresponding mean values were 424.12±10.12 ppm(×10~(-6) mol mol~(-1)),447.83±13.63 ppm,and 408.83±7.75 ppm.The background XCO_2 levels were highest in spring and winter,moderate in autumn,and lowest in summer.The diurnal XCO_2 was at a minimum from 1400-1600 LST(Local Standard Time) and a maximum at 0500 LST the next day.The increase of XCO_2 in spring and summer was mainly associated with polluted air masses from south coastal Vietnam,the South China Sea,and the southeast Pearl River Estuary.With the exception of summer,airflow primarily from marine regions southeast of Taiwan that passed over the Pearl River Estuary had a greater impact on XCO_2,suggesting an important potential source region.  相似文献   

19.
The potential impacts of climate change on potatoes cropping in the Peruvian highlands (Altiplano) is assessed using climate projections for 2071–2100, obtained from the HadRM3P regional atmospheric model of the Hadley Centre. The atmospheric model is run under two different special report on emission scenarios: high CO2 concentration (A2) and moderate CO2 concentration (B2) for four locations situated in the surroundings of Lake Titicaca. The two main varieties of potato cultivated in the area are studied: the Andean potato (Solanum tuberosum) and the bitter potato (Solanum juzepczukii). A simple process-oriented model is used to quantify the climatic impacts on crops cycles and yields by combining the effects of temperature on phenology, of radiation and CO2 on maximum yield and of water balance on yield deficit. In future climates, air temperature systematically increases, precipitation tends to increase at the beginning of the rainy season and slightly decreases during the rest of the season. The direct effects of these climatic changes are earlier planting dates, less planting failures and shorter crop cycles in all the four locations and for both scenarios. Consequently, the harvesting dates occur systematically earlier: roughly in January for the Andean potato instead of March in the current situation and in February for the bitter potato instead of April. Overall, yield deficits will be higher under climate change than in the current climate. There will be a strong negative impact on yields for S. tuberosum (stronger under A2 scenario than under B2); the impact on S. juzepczukii yields, however, appears to be relatively mixed and not so negative.  相似文献   

20.
Terrestrial biosphere carbon storage under alternative climate projections   总被引:2,自引:1,他引:2  
This study investigates commonalities and differences in projected land biosphere carbon storage among climate change projections derived from one emission scenario by five different general circulation models (GCMs). Carbon storage is studied using a global biogeochemical process model of vegetation and soil that includes dynamic treatment of changes in vegetation composition, a recently enhanced version of the Lund-Potsdam-Jena Dynamic Global Vegetation Model (LPJ-DGVM). Uncertainty in future terrestrial carbon storage due to differences in the climate projections is large. Changes by the end of the century range from −106 to +201 PgC, thus, even the sign of the response whether source or sink, is uncertain. Three out of five climate projections produce a land carbon source by the year 2100, one is approximately neutral and one a sink. A regional breakdown shows some robust qualitative features. Large areas of the boreal forest are shown as a future CO2 source, while a sink appears in the arctic. The sign of the response in tropical and sub-tropical ecosystems differs among models, due to the large variations in simulated precipitation patterns. The largest uncertainty is in the response of tropical rainforests of South America and Central Africa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号