首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
蒙伟光  郑彬 《气象学报》2006,64(1):81-89
在对南海夏季风的爆发及中南半岛陆面过程的可能影响进行了诊断分析的基础上,应用MM5/NOAHLSM模式,研究了中南半岛陆气相互作用对2004年南海夏季风爆发过程的可能影响。结果发现:在南海夏季风爆发前,中南半岛南海地区低层气温差确实出现低值,甚至负值;尽管短期内中南半岛土壤湿度和降水的变化没有引起季风爆发日期的改变,但对季风爆发的强度有影响。土壤湿度和降水变化引起的干异常可导致地表感热通量的增大和地表温度的升高,致使中南半岛与南海之间低层的温差异常(负温差)减小,季风爆发强度减弱;不同的是,湿异常可引起季风爆发强度增强。这一结果说明,在南海夏季风爆发前期,中南半岛上空对流活动和降水异常及其引起的土壤湿度的异常变化在一定程度上会影响到季风爆发的过程。文章还比较了不同温湿地表条件下低层大气状态的差异和地表能量、水分平衡过程的不同,分析了陆气相互作用对季风活动产生影响的物理机制。  相似文献   

2.
利用山东省80个代表站1961~2003年月平均气温资料和同期NCAR/NCEP再分析资料,运用统计学方法,分析了季风背景下冬、夏季气温异常的年际、年代际变化和周期特征及变温的空间分布,并研究了东亚冬、夏季风对气温变化的影响。结果表明,冬夏季气温变化趋势明显不同,冬季增温趋势显著,夏季无明显增温趋势;2~6年的周期振荡在不同时期通过了0.05信度检验,小波分析2004年夏季气温不会偏高推断得到证实。冬、夏季气候具有明显的季风特征,季风与气温关系密切,即强(弱)冬季风山东易冷(暖)冬;强(弱)夏季风,易暖(冷)夏。冬季风比夏季风对同期气温作用更显著。季风的隔季相关性质对气温的变化有一定影响。  相似文献   

3.
Summary Using the 60 year period (1931–1990) gridded land surface air temperature anomalies data, the spatial and temporal relationships between Indian summer monsoon rainfall and temperature anomalies were examined. Composite temperature anomalies were prepared in respect of 11 deficient monsoon years and 9 excess monsoon years. Statistical tests were carried out to examine the significance of the composites. In addition, correlation coefficients between the temperature anomalies and Indian summer monsoon rainfall were also calculated to examine the teleconnection patterns.There were statistically significant differences in the composite of temperature anomaly patterns between excess and deficient monsoon years over north Europe, central Asia and north America during January and May, over NW India during May, over central parts of Africa during May and July and over Indian sub-continent and eastern parts of Asia during July. It has been also found that temperature anomalies over NW Europe, central parts of Africa and NW India during January and May were positively correlated with Indian summer monsoon rainfall. Similarly temperature anomalies over central Asia during January and temperature anomalies over central Africa and Indian region during July were negatively correlated. There were secular variations in the strength of relationships between temperature anomalies and Indian summer monsoon rainfall. In general, temperature anomalies over NW Europe and NW India showed stronger correlations during the recent years. It has been also found that during excess (deficient) monsoon years temperature gradient over Eurasian land mass from sub-tropics to higher latitudes was directed equatowards (polewards) indicating strong (weak) zonal flow. This temperature anomaly gradient index was found to be a useful predictor for long range forecasting of Indian summer monsoon rainfall.With 12 Figures  相似文献   

4.
The ability of the Parallel Climate Model (PCM) to reproduce the mean and variability of hydrologically relevant climate variables was evaluated by comparing PCM historical climate runs with observations over temporal scales from sub-daily to annual. The domain was the continental U.S, and the model spatial resolution was T42 (about 2.8 degrees latitude by longitude). The climate variables evaluated include precipitation, surface air temperature, net surface solar radiation, soil moisture, and snow water equivalent. The results show that PCM has a winter dry bias in the Pacific Northwest and a summer wet bias in the central plains. The diurnal precipitation variation in summer is much stronger than observed, with an afternoon maximum in summer precipitation over much of the U.S. interior, in contrast with an observed nocturnal maximum in parts of the interior. PCM has a cold bias in annual mean temperature over most of the U.S., with deviations as large as ?8 K. The PCM daily temperature range is lower than observed, especiallyin the central U.S. PCM generally overestimates the net solar radiation over most of the U.S, although the diurnal cycle is simulated well in spring, summer and winter. In autumn PCM has a pronounced noontime peak in solar radiation that differs by 5–10% from observations. PCM'ssimulated soil moisture is less variable than that of a sophisticated land-surface hydrology model, especially in the interior of the country. PCM simulates the wetter conditions over the southeastern U.S. and California during warm (El Niño) events, but shifts the drier conditions in the PacificNorthwest northward and underestimates their magnitude. The temperature response to the North Pacific Oscillation is generally captured by PCM, but the amplitude of this response is overestimated by a factor of about two.  相似文献   

5.
陆海温差与东亚夏季风环流异常指数的相关分析   总被引:1,自引:2,他引:1  
利用我国0.8m月平均地温和NCAR海表月平均温度资料,对我国陆海温差与东亚夏季风的关系进行了分析。结果表明,陆海温差与季风存在显著的相关性,且相关具有明显的时间变化和地理分布的非均匀性,不同地区的相关程度有显著差异。同时,从动力学的角度进一步证明了陆海温差对季风的影响。  相似文献   

6.
利用重建的华南区域黑碳气溶胶(Black Carbon, BC)浓度资料,分析其与南海夏季风在年际尺度上的关系。结果表明,华南区域BC浓度与南海夏季风的关系在2000年前后有明显的突变,由显著负相关变为显著正相关,即由高BC浓度弱季风变为高BC浓度强季风。通过合成对比分析,发现1988—1999年(第一时间段)的华南BC主要气候效应是间接辐射强迫作用:华南BC使云粒子半径减小,抑制华南区域春季降水,增加了云的生命期,从而使到达地面的短波辐射减少,表面和低层大气降温。负温度异常激发了异常反气旋,在南海区域即有东风异常。到夏季,东风异常减弱了季风强度,同时抑制了南海地区的降水。2000—2010年(第二时间段)的华南BC主要气候效应是直接辐射强迫作用:春季高BC浓度通过直接气候效应,增暖大气,加强降水,但是雨日减少,从而使到达地面的短波辐射增多,表面和低层大气增温。正温度异常激发了异常气旋,在南海区域即有西风异常一直维持到夏季,增大了季风强度,同时增强了南海地区的降水。  相似文献   

7.
9000年前古气候的数值模拟研究   总被引:5,自引:1,他引:5  
王会军  曾庆存 《大气科学》1992,16(3):313-321
本文用大气物理所的全球大气环流模式模拟了9000年前一月份和七月份的古气候.得出:北半球夏季由于地球轨道参数的变化引起的比现在多7%的太阳辐射使得温度升高了,尤其是高纬地区,海陆对比的加强又增强了季风,季风区域降水增加了;而冬季因为太阳辐射在北半球减少了7%,温度变低了.这些结果与现有的古气候证据相一致,并与其他模拟结果进行了较详细的比较,还作了进一步的讨论.  相似文献   

8.
东亚夏季风可显著影响中国季风区气候变化,但是季风区植被净初级生产力(NPP)对夏季风气候变化的响应机理尚不明确。利用大气—植被相互作用模型(AVIM2)模拟了中国季风区植被NPP,分析了其与夏季风指数的相关关系,探讨了其对夏季风变化的响应机理。研究发现,我国南、北方植被对夏季风强度变化的响应方式和机理并不相同。强夏季风年北方植被NPP增加,而南方植被NPP减少。东亚夏季风对中国华北平原植被生长季NPP的作用主要是通过影响该地降水量实现的;京、津、冀地区植被NPP受东亚夏季风带来的气温和降水量变化的叠加影响,因而成为北方对夏季风变化最敏感的区域。东亚夏季风对我国南方江苏、安徽、湖南、湖北、江西植被NPP的作用是通过影响太阳辐射实现的,强夏季风导致太阳辐射减弱,从而使各省植被NPP减少。南方沿海的浙江和福建,强季风年带来的弱太阳辐射和低温是该地植被NPP减少的原因。广东、台湾植被NPP则主要受强夏季风带来的低温影响。  相似文献   

9.
春季欧亚大陆地表气温变化特征的气候意义   总被引:8,自引:3,他引:8       下载免费PDF全文
研究了春季欧亚大陆地表气温的年际变化及其相联系的环流场特征,发现春季欧亚大陆地表气温年际变化呈现为大陆尺度的南北跷跷板式的空间分布特征, 即当中高纬度地表气温为正距平时,副热带地区则为负距平,反之亦然。这种空间分布型代表了欧亚大陆中高纬度地表气温年际变化的主要特征。进一步的研究表明,这种变化与前期冬季北大西洋涛动(NAO)有着显著的正相关,而与同期的NAO无关。同时,欧亚大陆地表气温异常存在着明显的从冬到夏的持续性。与东亚初夏气候变化关系的研究表明,春季欧亚大陆地表气温的变化通过影响鄂霍次克高压的变化进一步影响初夏梅雨的变化。当春季欧亚大陆中高纬度地表气温为正距平时,鄂霍次克高压偏强,初夏梅雨较活跃,反之亦然。  相似文献   

10.
In this paper we present results of a numerical study using the NASA finite-volume GCM to elucidate a plausible mechanism for aerosol impact on the Asian summer monsoon involving interaction with physical processes over the Tibetan Plateau (TP). During the pre-monsoon season of March–April, dusts from the deserts of western China, Afghanistan/Pakistan, and the Middle East are transported into and stacked up against the northern and southern slopes of the TP. The absorption of solar radiation by dust heats up the elevated surface air over the slopes. On the southern slopes, the atmospheric heating is reinforced by black carbon from local emission. The heated air rises via dry convection, creating a positive temperature anomaly in the mid-to-upper troposphere over the TP relative to the region to the south. In May through early June in a manner akin to an “elevated heat pump”, the rising hot air forced by the increasing heating in the upper troposphere, draws in warm and moist air over the Indian subcontinent, setting the stage for the onset of the South Asia summer monsoon. Our results suggest that increased dust loading coupled with black carbon emission from local sources in northern India during late spring may lead to an advance of the rainy periods and subsequently an intensification of the Indian summer monsoon. The enhanced rainfall over India is associated with the development of an aerosol-induced large-scale sea level pressure anomaly pattern, which causes the East Asia (Mei-yu) rain belt to shift northwestward, suppressing rainfall over East Asia and the adjacent oceanic regions.  相似文献   

11.
太阳辐射日变化对夏季风模拟特征的影响   总被引:3,自引:0,他引:3  
王谦谦  钱永甫 《气象学报》1997,55(3):334-345
利用60°S-60°N范围,有海气耦合但无海流的七层原始方程模式,做了有无太阳辐射日变化的对比试验。结果表明:准定常的平均季风系统的形势受太阳辐射日变化的影响不明显,其主要的影响可能来自海陆和地形分布。但是模式中包含太阳辐射日变化后,大气上下层季风系统强度的模拟得到了改善。太阳辐射日变化在很大程度上影响降水的分布形势,在没有太阳辐射日变化的试验中,大陆内部的降水大大减少,而沿海地区的降水增加。土壤温度和湿度的变化与降水变化对应良好。降水增加和减少的地区呈波状分布。至于对季风发展的影响,结果表明在季风发展的初期,太阳辐射日变化可加快其发展。因此,太阳辐射日变化的引入,可使平衡态较早达到  相似文献   

12.
五道梁地区的辐射特征   总被引:10,自引:3,他引:10  
本文分析了1986年中美联合考察期间五道梁站的地面辐射平衡的气候学特征。五道梁地区夏季直接太阳辐射强,空气洁净,大气透明度好。太阳辐射在大气中的削弱以分子散射和臭氧吸收为主。总辐射中以散射为主。光谱反射率中太阳短波反射率为0.13,太阳红外反射率为0.25,雪面上二者接近;反射率受土壤湿度影响明显,在太阳高度角较小时,各波段反射率有不同的变化趋势。地表比辐射率约为0.90。地表净辐射和地面热源强度大。太阳紫外辐射大,占总辐射的比例也大。  相似文献   

13.
南海南部海区冬、夏季风转换时段主要的天气系统有副热带高压和热带辐合带;冬、夏季风转换的集中时段是5月上旬;气温和海水表层温度最高值时段是5月下旬;各气象要素连续变化规律与冬季风北退和夏季风逐步盛行的阶段性变化较明显;平均日变化幅度小,海水表层温度和气温日变化最高值与最低值时次差异相反,正午时段的气温又比海水表层温度值高。  相似文献   

14.
An atmospheric general circulation model (AGCM) and an oceanic general circulation model (OGCM) are asynchronously coupled to simulate the climate of the mid-Holocene period. The role of the solar radiation and ocean in the mid-Holocene East Asian monsoon climate is analyzed and some mechanisms are revealed. At the forcing of changed solar radiation induced by the changed orbital parameters and the changed SST simulated by the OGCM, compared with when there is orbital forcing alone, there is more precipitation and the monsoon is stronger in the summer of East Asia, and the winter temperature increases over China. These agree better with the reconstructed data. It is revealed that the change of solar radiation can displace northward the ITCZ and the East Asia subtropical jet, which bring more precipitation over the south of Tibet and North and Northeast China. By analyzing the summer meridional latent heat transport, it is found that the influence of solar radiation change is mainly to increase the convergence of atmosphere toward the land, and the influence of SST change is mainly to transport more moisture to the sea surface atmosphere. Their synergistic effect on East Asian precipitation is much stronger than the sum of their respective effects.  相似文献   

15.
The seasonal cycle of the climate of 9000 years before present was simulated with the IAP two-level atmospheric general circulation model. The incoming solar radiation was specified from the orbital parameters for 9000 years Ago. The boundary conditions of that time were prescribed to the present value because of the small differences between the two. The change in radiation makes temperature to be higher in summer and lower in winter over large areas of the land; and the increased temperature contrast between the land and the ocean strengthens the summer monsoon circulation and increases the precipitation over there. The asymmetry of temperature change between the Northern Hemisphere and the Southern Hemisphere and between summer and winter still exists, which agrees with that get from the previous perpetual experiments.  相似文献   

16.
Ground-based measurements are essential for understanding alpine glacier dynamics, especially in remote regions where in-situ measurements are extremely limited. From 1 May to 22 July 2005 (the spring-summer period), and from 2 October 2007 to 20 January 2008 (the autumn-winter period), surface radiation as well as meteorological variables were measured over the accumulation zone on the East Rongbuk Glacier of Mt. Qomolangma/Everest at an elevation of 6560 m a.s.l. by using an automatic weather station (AWS). The results show that surface meteorological and radiative characteristics were controlled by two major synoptic circulation regimes: the southwesterly Indian monsoon regime in summer and the westerlies in winter. At the AWS site on the East Rongbuk Glacier, north or northwest winds prevailed with high wind speed (up to 35 m s-1 in January) in winter while south or southeast winds predominated after the onset of the southwesterly Indian monsoon with relatively low wind speed in summer. Intensity of incoming shortwave radiation was extremely high due to the high elevation, multiple reflections between the snow/ice surface and clouds, and the high reflective surrounding surface. These factors also caused the observed 10-min mean solar radiation fluxes around local noon to be frequently higher than the solar constant from May to July 2005. The mean surface albedo ranged from 0.72 during the spring-summer period to 0.69 during the autumn-winter period. The atmospheric incoming longwave radiation was greatly affected by the cloud condition and atmospheric moisture content. The overall impact of clouds on the net all-wave radiation balance was negative in the Mt. Qomolangma region. The daily mean net all-wave radiation was positive during the entire spring-summer period and mostly positive during the autumn-winter period except for a few overcast days. On monthly basis, the net all-wave radiation was always positive.  相似文献   

17.
气象要素对太阳能电池板温度的影响   总被引:1,自引:1,他引:0       下载免费PDF全文
温度升高会引起光伏电池发电效率下降,电池板温度是确定温度折减系数的必要条件,目前我国尚没有充足的外场实测电池板温度数据。该文基于北京南郊太阳能试验站2010年全年逐时电池板温度、气温、地表温度、斜面和水平辐照度实测数据,分析了电池板温度随时间的变化及其与各气象要素的关系。结果表明:电池板温度与气温和斜面辐照度的综合相关或与地表温度的线性相关最好,但实测数据不易获得;电池板温度与气温的线性相关较好,数据较易获得且质量有保证,从现实可行性考虑,是推算电池板温度最实用的相关方程;电池板温度与气温和水平辐照度的综合相关可以作为辅助方程,用于推算气温较高情况下的电池板温度。基于2010年电池板温度实测数据和加权计算的方法,得到北京地区年平均光伏发电温度折减系数约为2%,最高可达到13.3%。  相似文献   

18.
阿尔卑斯山杉林冠层影响辐射传输的个例分析   总被引:3,自引:1,他引:2  
利用瑞士Alptal观测站杉树林冠层上方、下方的辐射观测资料,分析了冠层对短波辐射的减弱及对长波辐射的增幅作用及其季节变化。结果表明,对比较密集的常绿针叶林,冠层对入射短波辐射的透过率随着太阳高度的降低而减小,春季以后趋于稳定;冠层对长波辐射的增幅作用随天气状况而变化,这种增幅作用在晴空条件下最显著,可达1.5倍。在冬季,因为太阳辐射较弱,冠层对长波辐射的增幅作用超过对短波辐射的减弱从而增加地面净辐射。在其它季节,太阳辐射比较强,冠层对短波辐射的减弱超过对长波辐射的增幅作用而减少地面净辐射。地面净辐射与冠层上方气温的变化趋势虽然在有些时段一致,但在伴随降雪过程的降温时段,地面净辐射与气温的变化趋势近乎反相,在积雪融化时段,地面净辐射的增加比气温升高更显著,尤其是在白天。  相似文献   

19.
土壤湿度影响中国夏季气候的数值试验   总被引:10,自引:0,他引:10  
利用"全球土壤湿度计划第2阶段"提供的土壤湿度资料强迫区域气候模式RegCM3,通过数值试验讨论了土壤湿度对东亚夏季气候模拟效果的影响。结果表明,合理考虑土壤湿度的作用,能够提高区域气候模式对中国夏季降水和2 m气温的空间分布型及逐日变化的模拟效果;模拟结果与观测的相关分析显示,降水和2 m气温的年际变化都得到了有效改进,这种改进在气温上尤为明显。不过上述改进具有区域依赖性。数值试验结果表明,气温对土壤湿度的敏感性强于降水,这也从一个侧面说明提高降水模拟效果的难度。总体而言,合理的土壤湿度能够提高区域气候模式对中国夏季气候的模拟能力。因此,合理描述土壤湿度的变化,是提高中国夏季气候预报技巧的潜在途径之一。  相似文献   

20.
Wind and temperature measurements from within and above a deep urban canyon (height/width = 2.1) were used to examine the thermal structure of air within the canyon, exchange of heat with the overlying atmosphere, and the possible impacts of surface heating on within-canyon air flow. Measurements were made over a range of seasons and primarily analysed for sunny days. This allowed the study of temperature differences between opposing canyon walls and between wall and air of more than 15°C in summer. The wall temperature patterns follow those of incoming solar radiation loading with a secondary daytime effect from the longwave exchange between the walls. In winter, the canyon walls receive little direct solar radiation, and temperature differences are largely due to anthropogenic heating of the building interiors. Cool air from aloft and heated air from canyon walls is shown to circulate within the canyon under cross-canyon flow. Roofs and some portions of walls heat up rapidly on clear days and have a large influence on heat fluxes and the temperature field. The magnitude and direction of the measured turbulent heat flux also depend strongly on the direction of flow relative to surface heating. However, these spatial differences are smoothed by the shear layer at the canyon top. Buoyancy effects from the heated walls were not seen to have as large an impact on the measured flow field as has been shown in numerical experiments. At night canyon walls are shown to be the source of positive sensible heat fluxes. The measurements show that materials and their location, as well as geometry, play a role in regulating the heat exchange between the urban surface and atmosphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号