首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
采用地面、高空常规观测资料和NCEP全球再分析资料(空间分辨率1°×1°),对2005年7月1日20时至2日20时(北京时)发生在山西的一次低涡暴雨过程从环流形势、物理量场方面进行了初步的分析,发现这次暴雨过程是受5OOhPa高空槽、副热带高压以及中尺度低涡等天气系统共同作用产生的。利用数值模拟输出的高时空分辨率资料探讨了此次暴雨过程的发生发展特征和机理,指出中低层中尺度涡旋是造成这次过程的主要天气系统,低涡的时空演变与暴雨中心的移动和雨强的变化有着较好的对应关系。湿位涡诊断表明:强降水发生时,暴雨区上空低层是不稳定区,湿位涡负中心出现在暴雨中心附近,且对流不稳定性远大于湿斜压性。地形的敏感试验进一步揭示了地形对暴雨的增幅作用。  相似文献   

2.
利用常规观测资料和NCEP1°×1°再分析资料,对2007—2016年6—8月8次副高影响下的区域性暴雨天气过程,采用统计学、天气学方法和合成技术进行分析,结果表明:在副高东退、引导高空槽东移的大尺度背景条件下,配合低层辐合系统是造成遵义市区域性暴雨过程的天气系统;暴雨过程有3种类型:低涡槽型、高空槽气旋旋转型和高空槽低涡切变型; 3种类型的天气系统进行合成分析后,找出了暴雨落区与高空系统、物理量配置之间的关系。  相似文献   

3.
“7.20”华北特大暴雨过程中低涡发展演变机制研究   总被引:22,自引:1,他引:21       下载免费PDF全文
利用中国地面加密自动站观测资料、北京地区雷达探测资料、NCEP (1°×1°) FNL资料、ECMWF ERA Interim (0.125°×0.125°)逐日再分析资料等,对造成2016年7月19-20日华北极端暴雨中的低涡系统发展演变的结构特征和加强机制进行了研究。华北地区这次特大暴雨过程出现了3个阶段降水,其中与低涡系统强烈发展对应的第2阶段降水是本次华北暴雨过程的主要降水阶段。针对该低涡的分析表明:(1)850 hPa以西南低涡为中心的低压带中,在河南西北部新生低涡系统,并且其在向华北地区移动过程中显著加强,该低涡系统在空间结构上,从倾斜涡柱逐渐发展成近乎直立的、贯穿整个对流层的深厚低涡系统;(2)中低层低涡系统快速发展过程与高低空系统构成耦合作用有关:低层低涡系统显著加强之前,对流层上层(300-200 hPa)首先出现高空槽异常加深并向南发展,该高空槽发展的开始阶段与其本身冷暖平流造成的斜压发展过程对应;而后,随着高纬度平流层高位涡沿等熵面向南运动,造成华北地区对流层上层涡度增强,形成正位涡异常区;当这一正位涡异常区叠加在对流层中低层锋区上空时,造成对流层中低层气旋快速发展并向下伸展,诱发河南西北部的新生气旋;低涡系统的发展进一步强化了低空暖平流,促使低空气旋向东北方向发展"移动"(本质上是暖平流前端造成的气旋发展),这一动力学过程反过来使高层的涡度增强;这一正反馈过程形成的耦合环流不仅造成了整个涡度柱强度增强,而且垂直结构上逐渐由倾斜涡柱演变为近乎于直立的涡柱;(3)随着低涡系统增强,极大地加强了垂直上升运动并触发了对流,形成大范围的强降水,大量的凝结潜热释放,造成了低层低涡系统在强降水开始阶段的快速发展和增强;20日00时(世界时)以后,虽然对流活动显著减弱,但低涡系统的加深维持了大范围强降水过程的持续。强降水与低涡发展的正反馈过程是这次华北暴雨得以长时间维持的重要机制之一,这一过程形成的持续性潜热释放也是对流层中上层低涡系统热力结构发生改变的重要原因。  相似文献   

4.
影响华南地区西南低涡及致洪低涡活动的统计研究   总被引:10,自引:5,他引:10       下载免费PDF全文
刘国忠  丁治英  贾显锋  莫蕤 《气象》2007,33(1):45-50
利用1996-2005年近10年的MICAPS和NCEP2.5°×2.5°再分析资料,对影响华南地区的西南低涡以及致洪低涡活动进行系统性的统计研究,给出影响低涡活动的频率、集中生成地、移动路径、生成和移动过程中的强度、影响时的生命史、平均环流场、降雨特点等气候特征,建立影响低涡致洪暴雨天气系统配置及其模式图,为华南地区低涡及其致洪暴雨预报提供依据。  相似文献   

5.
一次区域暴雨过程综合诊断分析   总被引:13,自引:10,他引:3  
利用NCEP 1°×1°的6h再分析资料对2008年7月22日河南省南阳市的区域性暴雨天气进行了综合诊断分析,结果表明:此次暴雨过程是中低层的西南涡在高空急流的引导下,沿着河套高压与副高之间的辐合带移出造成的。降雨的水汽供应主要来自对流层中低层,且水汽强辐合出现在强降雨前。随着对流活动的发展,水汽通量和水汽辐合都向高层发展,湿层明显增厚。在整个降雨过程中,700hPa垂直螺旋度正值中心的位置和强度与西南涡的移动和强弱变化有很好的对应关系,垂直螺旋度正值长轴区与切变线辐合区相吻合,在某种程度上能反映出西南涡的移动和强度的演变;垂直螺旋度强弱的变化与暴雨强度变化基本一致。高层辐散、低层辐合的大气垂直结构能增强大气的抽吸作用,促进垂直上升运动的发展,反之,抑制垂直上升运动,降雨减弱。上、下层负、正垂直螺旋度耦合的结构对暴雨的发生和维持非常有利。在雷达速度PPI上,逆风区的出现预示着局地强降雨的产生。  相似文献   

6.
利用地面观测资料和NCEP/NCAR 1°×1°再分析资料,对2013年7月17-18日四川境内的区域暴雨(7.18暴雨)进行了分析,并用WRF模式对该次暴雨过程进行了数值模拟。研究表明:7.18暴雨是一次典型的低涡暴雨,其主要强降水时段发生在北京时间18日凌晨01-02时,具有明显的夜雨特征;WRF模式对夜雨的模拟效果要好于白天,这说明WRF模式对地形复杂的四川地区白天降水的模拟能力尚需进一步提高;导致7.18暴雨的中尺度低涡具有类似锋区的斜压特征,异常陡峭的θse的分布,使得倾斜不稳定涡旋发展;较强的正涡度中心大值区有利于中小尺度低涡的形成。  相似文献   

7.
西北太平洋地区一次爆发性气旋的诊断分析   总被引:1,自引:0,他引:1  
谢甲子  寇正  王勇 《湖北气象》2009,28(3):251-254,276
采用NCEP 2.5°×2.5°每6 h再分析格点资料,对1979年1月9—12日西北太平洋地区一次爆发性气旋进行了诊断分析,重点讨论了气旋爆发的天气学特征和动力因子。结果表明:爆发性气旋的发展具有明显的非地转特性,高低空急流的耦合作用、涡度平流和凝结潜热的释放是气旋爆发性发展的主要强迫因子;爆发性气旋处于高空急流之下的对流层锋区,大气的斜压性很强,斜压能量是气旋初期生成和发展动能的主要来源。  相似文献   

8.
一次高空槽与西南涡耦合造成的华北暴雨过程分析   总被引:1,自引:0,他引:1  
2010年7月18-20日西南低涡东北上影响华北,造成了华北地区大范围大暴雨过程。本文利用NCEP/NCAR 1o×1o再分析场资料,分析了本次西南涡北上加强的原因和造成河北大暴雨的形成机制。结果表明:西南涡是这次华北暴雨的主要影响系统,暴雨的持续与西南涡和中纬度高空槽(低涡)的耦合过程密切相关;高、低空急流相互作用,有利于低层上升运动的发展和加强;高空湿位涡扰动下传,使得西南低涡发展加强;暴雨发生时,其上空正涡度中心和强散度中心相耦合,强的上升运动对低层水汽辐合抬升产生暴雨十分有利;中低层的高能高湿为低涡的发展和暴雨的维持提供了能量和水汽。  相似文献   

9.
田泽芸  高伟  佘高杰 《湖北气象》2009,28(3):222-228
利用NCEP 1°×1°6 h再分析资料和常规观测资料以及加密雨量站、多普勒雷达等资料,对2008年5—8月常德市三次大暴雨过程的动力学和热力学结构特征进行了对比分析。结果表明,第一次过程是在位势不稳定条件下由强冷空气触发产生,第二次过程是西南低涡沿江淮切变线东出造成,第三次过程是由西风带低槽东移造成;强冷空气触发的第一次过程,其强降水点较分散,而受低涡切变系统影响形成的后两次过程的雨区都较集中;后两次过程中K指数均出现两个峰值;前两次过程中均出现线状回波,其缓慢移动或少动造成第一次局地大暴雨,回波在移动过程中强度维持不变是第二次过程发生的原因;当出现混合性降水回波时,是大范围强降水发生的预兆。  相似文献   

10.
本文使用常规观测资料、四川省自动站降水资料、0.1°×0.1°的FY-2E云顶亮温资料和1°×1°的NCEP再分析格点资料对2012年7月20~23日四川东部强降水过程的主要影响系统、水汽源地、动力、热力条件等进行诊断分析,结果表明:(1)本次暴雨过程中伴有500hPa高空槽东移至四川并向南加深发展,槽后冷空气与槽前暖湿气流在四川汇合,低层有低涡发展,配以高低空急流耦合的有利形势;(2)暴雨前期水汽主要来源于孟加拉湾,随着南海台风西进,其外围偏东气流向西输送增强,西南暖湿气流北上受到抑制,使得雨带南压;(3)降水以对流性降水为主,暴雨期间水汽凝结潜热在对流层中低层起主要作用,强上升运动将低层的潜热加热向上输送,形成高空的热源中心,强降水期间大气的加热是与大气的垂直上升运动密切相关的;在本次暴雨过程垂直输送项是视热源Q1和视水汽汇Q2的主要贡献者,尤其是在强降水阶段;(4)在低涡在发展阶段,低层正涡度局地变化项首先得到发展,在低涡减弱阶段,正涡度局地变化项的峰值中心由低层向中低层抬升;(5)中尺度对流系统与小时降水分布一致,MCS的发展是触发降水的重要因素之一。   相似文献   

11.
利用NCEP/NCAR水平分辨率为1°×1°、逐6 h的分析资料,以及JTWC(美国联合台风预警中心,Joint Typhoon Warning Center)最佳TC路径资料,对2004—2010年5—9月北半球100°E~180°范围内,118例TC生成时刻周围系统辐散风的大小以及时间和空间分布特征进行了统计分析,根据作用系统的不同将TC分为7种类型,其中:1)越赤道气流型;2)越赤道气流和副高相当型;3)越赤道气流强,副高弱型;4)副高型,这4种类型最多,占总数的91.5%以上。以TC为中心,在新生TC闭合环流外500 km范围内,第Ⅰ象限为副高的影响,在第Ⅱ象限多为副高与大陆高压影响,第Ⅲ象限为越赤道气流影响,而在第Ⅳ象限多为越赤道气流影响,少数为副高影响。区域平均越赤道气流辐散风的影响强度在0.7~3.5 m·s~(-1)的范围内,副高辐散风的影响强度在0.6~1.5 m·s~(-1)的范围内。对0704号的控制试验和敏感性试验表明,去掉TC自身的作用后,仍然会在一段时间后生成新的TC,这也验证了周围系统对TC的生成有重要的作用。  相似文献   

12.
在对逐日气象资料进行纬向谐波分析的基础上, 对比和讨论了2007/2008年冬季强极涡期间和2008/2009冬季弱极涡期间平流层和对流层不同波数的行星波的变化特征, 特别关注强极涡或弱极涡发生之后, 500 hPa 沿60°N和30°N行星波1波和2波振幅和位相的差异, 以及相应的500 hPa位势场的差异, 进而讨论为什么不同的平流层极涡异常会对东亚有不同的影响, 特别讨论为什么同一种极涡异常, 对我国南北方近地面气温的影响会不同。结果表明:平流层极涡发生异常时, 平流层行星波活动有明显的异常。随着极涡异常的下传, 对流层行星波的振幅和位相也有明显的变化, 而且, 对于不同的纬度带, 其变化又有不同, 表现为:2008年1月强极涡发生之后, 500 hPa行星波1波和2波的扰动都向南伸, 而2009年1月的弱极涡(SSW)期间和之后, 1波和2波的扰动都偏北; 在对流层, 强极涡和弱极涡发生之后不但行星波1波和2波的振幅有所差异, 其位相也有明显的不同。特别是, 其位相的差异还随纬度而变化。就同一年(或者说对于同是强极涡或者同是弱极涡)而言, 无论是1波还是2波, 在60°N和30°N附近的扰动相比, 几乎反位相。这样就使得它们的500 hPa 位势场也有明显不同:在东半球, 主要表现为乌拉尔高压和东亚大槽的强度和位置不同。2008年1月强极涡发生之后, 乌拉尔高压和东亚大槽东移, 不利于冷空气向欧亚大陆北部(包括我国北方)的输送, 使这些地区的温度偏高;而2009年1月弱极涡之后, 东亚大槽西退, 利于冷空气向欧亚大陆北部输送, 导致这些地区较冷。对于同一种极涡异常(如2008强极涡或者2009弱极涡)由于南方和北方行星波扰动的位相不同, 对南方和北方冷暖空气的输送也就不一样。所以同一种极涡异常对(我国)南北地区的温度影响是不同的。  相似文献   

13.
北京一次大暴雨的水汽收支和微物理过程数值分析   总被引:1,自引:1,他引:0  
利用NCEP1°×1°再分析资料和常规气象观测资料,使用WRF模式对2012年7月21日发生在北京地区的一次特大暴雨天气过程进行数值模拟。在模拟结果的基础上,分析了此次暴雨过程的形势演变和水汽条件,并分别计算了暴雨发生过程中北京全市范围内的水汽输送、水汽收支、大气可降水量和空中各相态水物质的量值大小、空间分布情况及其相互转化关系。结果发现:这次降水主要受高空槽、低涡和地面切变线的影响。有东南、西南两条水汽输送通道,计算区域上空水汽收支变化与地面雨强的演变对应很好。中低层持续而强烈的水汽净输入,为暴雨的发生发展提供了很好的水汽条件。北京各站点大气可降水量普遍超过历史极值,反映了降水的极端性。降水发展不同阶段,云内微物理过程存在差异,降水量初期以暖雨为主,降雨量不大,之后冷雨过程增强,降水量迅速增大。  相似文献   

14.
2018年3月17日、27日,国产某型直升机在新疆五家渠地区成功完成2架次自然结冰试飞。利用NCEP/NCAR的1°×1°再分析资料、机测液态水含量资料结合常规气象资料,对2次结冰天气过程的天气环流形势、动力热力特征、液态水含量进行分析。结果表明:17日在高空冷涡、地面冷锋前的环流形势下,试飞高度层位于冷暖平流交汇处,温度为0~-4℃,比湿值为3~3.5 g/kg,处于强水汽辐合中心,并伴有弱上升运动,Ic积冰指数为20~30,云中液态水含量波动较大,飞机挂架上形成0.5 cm厚度的凇冰。27日在高空槽前和地面冷锋后的环流形势下,试飞高度层在弱冷平流中心附近,温度为0~-2℃,比湿值接近4.5 g/kg,处于弱水汽辐合中心边缘,伴有弱上升运动,Ic积冰指数为30~40,云中液态水含量稳定,飞机挂架上形成1~2 cm厚度的明冰。在气象保障中运用探空、云图、雷达、微波辐射计等资料有效预报了积冰区域及高度。  相似文献   

15.
麻素红 《气象学报》2019,77(4):662-673
2016年中国国家气象中心区域台风模式(GRAPES_TYM)对第18号热带气旋(记为TC 1618)的路径预报出现了较大的误差:其平均路径误差显著大于全年的平均误差。分析了涡旋初始化方案(包括涡旋重定位以及涡旋强度调整)对其路径预报的影响。结果显示,涡旋强度调整是造成TC1618预报路径平均误差偏大的主要原因。不同的强度调整半径(r0=12°,9°,6°,3°)对TC1618路径影响的敏感性试验结果显示,强度调整半径越大,其平均路径预报误差越大。500 hPa副热带高压以及平均海平面涡旋尺度分析发现:较大的强度调整半径(r0=12°,9°)其初始时刻的涡旋尺度较大,涡旋北侧邻近区域副热带高压等值线相对偏北,副热带高压相对偏弱。尺度大的涡旋其北移速度较大,并且在积分过程中其环流邻近区域副热带高压进一步减弱,导致涡旋环流会更早与其西北侧东移的西风槽结合,移速偏快。   相似文献   

16.
庄河地区一次大暴雨过程的多因子诊断分析   总被引:4,自引:1,他引:3       下载免费PDF全文
采用常规资料、自动站资料、多普勒雷达资料和NCEP每6 h1次,1°×1°的实时分析资料,对2007年8月10-12日庄河地区出现的一次大暴雨天气过程进行诊断分析。结果表明:受副热带高压后部深厚的暖湿气流及西风带高空槽、切变线及气旋倒槽等动力系统共同影响,庄河地区出现了大暴雨天气,但没有出现强雷暴,此过程主要影响系统是地面气旋倒槽;700 hPa和850 hPa低涡、切变线使中低层辐合加强,形成了较强的动力抬升和水汽辐合;庄河地区处于强而宽的假相当位温锋区中,位势不稳定的建立是造成此次强降水的必要条件。造成本次大暴雨天气的水汽通道有2条:一条来自孟加拉湾和减弱的热带低压,另一条来自东海。  相似文献   

17.
一次梅雨期台风远距离暴雨的分析研究   总被引:3,自引:2,他引:1  
王宏伟  方娟 《气象科学》2014,34(6):601-611
用NCEP 1°×1°再分析资料、MICAPS系统地面站资料、TRMM卫星降水资料以及自动站雨量资料分析了2011年梅雨后期发生在江苏省南京市的一次暴雨过程。结果表明:此次暴雨发生在中高层高空深槽前部、低空切变线附近、低层低涡和地面低压的东北部,是西风带低值系统及其引导的低层低涡与西进北上的"马鞍"台风共同作用产生的。925 h Pa上中国东南沿海位于低层低涡东北部的东南偏东气流影响下,将来自于西太平洋的水汽源源不断向暴雨区输送,为暴雨的发生提供了良好的水汽条件。不仅如此,此东南偏东气流还使得华南和东南沿海地区暖平流明显。低层暖平流输送伴随的小幅增温和水汽输送导致的湿度层增厚,导致南京附近大气层结不稳定是暴雨发生的热力环境。随着"马鞍"台风的西进北上,其北侧副高中的干空气逐渐被卷至中国东南沿海附近,与大陆上的暖湿气流形成明显对比,形成了一条明显的能量锋。与此同时,在长江中游地区,残余的梅雨锋也表现为一条能量锋,两条能量锋在南京附近相接,造成明显的上升运动,从而触发了暴雨的发生。  相似文献   

18.
利用2006~2015年成都地区国家站及区域站20时~20时24小时地面实况降雨量资料、常规观测资料、NCEP1°×1°再分析资料对成都市区域性暴雨进行统计分析,得出:这一时期成都地区共有43例区域性暴雨发生,次数最多的是在2013年,发生季节以7月为最多(占总次数的49%)。根据区域性暴雨影响系统的不同,将其简单分为3种类型,分别是:低涡型、高空槽和切变线型、副热带高压边缘型。3种类型暴雨的发生次数、持续时间均有不同,暴雨次数所占比例分别为40%、46%、14%,持续时间大多为1天。同时选取3个历史个例分析了不同类型区域性暴雨的大尺度环流背景特征。  相似文献   

19.
利用NCEP提供的0.25°×0.25° FNL资料和国家气象信息中心提供的高分辨率三源融合降水资料,以台风"利奇马"为研究个例,从动力和热力因素两个方面研究了中纬度高空槽与台风之间的相互作用对台风远距离暴雨的影响。研究认为中纬度高空槽—台风的相互作用是此次台风远距离暴雨的主要原因之一。在高空槽—台风的相互作用中,随着弱正PV异常从中纬度高空槽向台风区域的水平平流,台风西北部地区逐步处于高空槽前西南急流的次级环流的上升区域,而对流层深厚的暖平流恰好位于台风西北部3~5个纬距的地区,此热成风暖平流的作用增强了台风西北地区的上升运动。另外,中纬度高空槽后的干冷空气的逼近,促进了在台风西北部地区的中纬度斜压锋生,斜压锋面进一步增强了台风远距离暴雨处的动力抬升作用。同时还发现当台风与中纬度槽的距离大约是10个纬距时其相互作用最为显著。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号