首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
西北太平洋台风累积动能气候异常特征分析   总被引:2,自引:1,他引:1  
黄丽娜  高建芸  孙健  武锦霖 《气象》2013,39(8):995-1003
应用美国联合台风警报中心(JTWC)提供的热带气旋数据、NCEP再分析资料和英国Hadly中心海表温度资料,分析了年台风累积动能(ACE)异常年气候特征及气候背景.结果表明:年台风累积动能有明显的年际和年代际变化;ACE异常年份由于季风槽东伸的经度、越赤道气流通道和强度以及副热带高压位置的显著差异,造成台风频数、强度和生命史的差异;当5-8月赤道中东太平洋海温为正距平、西南太平洋海温负距平时,通过异常沃克环流和局部哈得来环流的下沉支向西北太平洋输送跨赤道南风,导致该年西北太平洋ACE增多,反之该年ACE减少.  相似文献   

2.
王朋岭  周兵  韩荣青  孙冷  王遵娅  司东  孙丞虎 《气象》2012,38(4):472-479
本文基于实时和历史观测资料,利用气候统计和气候机理诊断方法,对2011年气候异常及成因进行总结分析。结果表明,全球海洋外源强迫和大气内部动力过程共同作用下的大气环流系统组合异常,是造成2011年中国大部地区降水异常偏少,温度明显偏高,呈现暖干型气候特征的主要原因。具体表现为,拉尼娜事件在2011年夏季短暂中断后,9月再次进入拉尼娜状态;西太平洋副热带高压在5月之前异常偏弱、偏东,致使长江中下游出现严重春旱,之后副热带高压有所加强,尤其在6月异常偏强,使长江中下游地区梅雨量偏多、旱涝急转;秋季副热带高压脊线偏北、中高纬度冷空气活动阶段性活跃,致使华西、黄淮地区秋雨异常偏多;热带印度洋海温演变经历负偶极型海温模态后,夏季转为全区一致型暖海温;2010/2011年东亚冬季风偏强,2011年南海夏季风爆发偏早、结束偏晚,东亚夏季风正常偏弱;西北太平洋和南海热带气旋生成数量处于偏少的年代际时段,2011年热带气旋生成数量偏少。  相似文献   

3.
曾刚  孙照渤  林朝晖 《大气科学》2010,34(2):307-322
采用1950~2000年逐月观测的不同海域(全球、热带外、热带、热带印度洋-太平洋、热带印度洋及热带太平洋) 海表温度分别驱动NCAR CAM3全球大气环流模式, 进行了多组长时间积分试验, 对比观测资料, 讨论了这些海域海表温度异常 (SSTA) 对西北太平洋副热带高压年代际变化的影响。结果表明: 全球、 热带、 热带印度洋-太平洋和热带印度洋海表温度变化均对夏季西北太平洋副热带高压的年代际变化有重要作用, 即在这些海域的海表温度变化影响下, 西北太平洋副热带高压均在1970年代中后期发生了年代际变化, 其后副高面积增大、 强度增强、 位置偏西、 偏南, 这与观测结果较一致; 热带太平洋海表温度变化对夏季西北太平洋副热带高压的年代际变化也有重要作用, 在其作用下, 夏季西北太平洋副热带高压的强度、 面积在1960年代后期发生年代际变化, 南界在1970年代中后期发生年代际变化, 这些时段以后副高强度增强、 面积增大、 偏南; 热带印度洋海表温度驱动模拟的西北太平洋副热带高压变化比热带太平洋海表温度驱动模拟的副高更接近于观测结果, 且年代际变化更显著, 其差异的可能原因在于两区海表温度在1970年代中后期以后的年代际变化能在孟加拉湾〖CD*2〗中国东南沿海区域强迫产生的异常环流不同, 前者强迫产生出反气旋性环流异常, 有利于副高的增强、 面积增大和西伸, 而后者强迫产生出气旋性环流异常, 不利于副高的西伸; 热带太平洋和热带印度洋海表温度在1970年代中后期的冷、 暖年代际背景变化对夏季西北太平洋副热带高压年代际变化有重要作用; 热带外海表温度变化对西北太平洋副热带高压年代际变化作用较小。  相似文献   

4.
在分析研究太平洋海气耦合经向模(Pacific Meridional Mode——PMM)和西北太平洋生成热带气旋频数变化关系的基础上,利用NCAR的大气环流模式CAM3模拟研究了太平洋海气耦合经向模态对西北太平洋生成热带气旋的影响。结果表明,海气耦合的经向模态通过影响热带气旋生成的大尺度环境从而影响热带气旋的频数和强度。在模式中当增加了PMM的海温强迫后,纬向风切变变小,对流层中低层相对湿度变大,热带西太平洋对流层低层出现西风异常,在西北太平洋地区形成一个异常的气旋性环流,并且匹配有较大的正涡度异常;对流层高层出现赤道东风异常和一个与低层气旋性环流相匹配的反气旋性环流,有利于对流活动的发展,从而有利于热带气旋的生成和发展。在增加了PMM的海温强迫的试验中,热带气旋中心的海平面最低气压降低,850 hPa中心附近最大切向风速增加,气旋中高层的暖心强度增强。热带气旋强度总体增加。数值模拟结果与资料分析相互映证,揭示了太平洋经向模态对西北太平洋热带气旋有重要影响。  相似文献   

5.
利用挪威卑尔根的全球大气-海洋-海冰耦合模式的300年气候态数值积分结果,结合观测资料,分析了夏季亚洲-太平洋涛动(APO)的年际变化对与西北太平洋热带气旋生成频数相关联的大尺度环流背景的影响。模式结果表明,当夏季APO异常偏强(弱)时,西太平洋副热带高压位置偏东(西)偏北(南),南亚高压位置偏北(南),西北太平洋低层大气异常辐合(辐散),高层大气异常辐散(辐合),对流活动加强(减弱)。这种环流背景条件有(不)利于西北太平洋热带气旋的发生发展,西北太平洋热带气旋频数因而偏多(少)。  相似文献   

6.
西太平洋副热带高压的年际变率受热带多个关键海区的海-气相互作用过程调控, 但彼此间的因果关联和影响机制尚不清楚。为揭示西太平洋副热带高压的年际变率与热带海温及大气环流异常之间的内在关联特性, 定义了三个关键海区以及赤道纬向西风区的特征指数, 并分别与西太平洋副热带高压强度、脊线指数进行了交叉小波和相干小波分析。研究发现:西太平洋副热带高压指数存在显著的2~3年和准5年的周期振荡, 20世纪八九十年代后, 由于暖池区海温及赤道纬向西风区的Hadley环流强迫加强, 致使副热带高压特征指数的2~3年周期振荡加强; 从位相关系看, 先是西太平洋副热带高压减弱南撤导致纬向西风加强, 其后影响赤道东太平洋海温升高, 同时暖水向东传, 使赤道中太平洋以及暖池区海温逐渐升高, 在Hadley环流作用下使副高加强北抬。基于上述西太平洋副热带高压的年际变率与热带海温及大气环流异常变化相关性诊断研究, 进一步探讨了造成这种相关性的影响机理和因果关联, 为揭示西太平洋副热带高压年际变率与热带海温及大气环流异常的相关性做探索研究。   相似文献   

7.
西北太平洋热带气旋频数的年际、年代际变化及预测   总被引:4,自引:0,他引:4  
利用1950-2009年60 a的热带气旋资料、NOAA海温、NCEP再分析资料及74项环流指数等资料,研究了西北太平洋热带气旋频数的年际、年代际变化特征,结果表明,西北太平洋热带气旋生成频数既有显著的年际变化,同时也存在明显的年代际变化。自1950年以来,西北太平洋热带气旋频数经历了一个先增加再减少的过程,其中转折点在20世纪70年代中后期,与之相对应,热带气旋路径频数也呈现明显年代际变化。在此基础上,通过分析前期春季海温场、大气环流异常及环流指数与夏季(6-10月)热带气旋生成频数的相关关系,选取了影响夏季西北太平洋热带气旋活动频数的预测因子,建立了一个夏季西北太平洋热带气旋生成频数的多元回归预测模型。检验结果表明,该模型能较好地拟合1951-2003年夏季西北太平洋热带气旋生成频数的年际变化,拟合率为0.6。对2004-2009年夏季热带气旋生成频数的独立样本预测试验表明,该模型对夏季西北太平洋热带气旋活动频数具有较好的预测能力,可以为热带气旋业务预报提供一定参考。  相似文献   

8.
2022年秋季,全国气候总体呈现暖干的特征,其中南方大部出现持续高温干旱。秋季平均气温为1961年以来历史同期最高。秋季降水季节内变率大,9月全国大部降水偏少,10月降水总体呈现南北少、中间多,11月我国中东部大部降水偏多而西部大部降水偏少。9—10月环流异常特征显示我国南方上空为偏北风距平,来自南海和西北太平洋的水汽输送条件极差,西北太平洋副热带高压偏强偏西,我国南方受下沉运动控制,有利于大部地区降水偏少、气温偏高,出现持续干旱。海温外强迫影响分析显示,2022年秋季印度-太平洋暖池异常偏暖,热带太平洋中东部偏冷,赤道印度洋西部偏冷,对应赤道印度洋上空纬向季风环流和太平洋上空Walker环流之间为显著的耦合特征。热带印度洋偶极子(TIOD)显著影响区域为江南西部和西南地区东南部,厄尔尼诺-南方涛动显著影响区域是江南大部和华南北部。即2022年秋季我国南方降水异常偏少受到TIOD负位相和拉尼娜状态的协同影响。  相似文献   

9.
2011年8月气候异常及成因分析   总被引:4,自引:1,他引:3  
在总结2011年8月我国气候异常与大气环流特征的基础上,针对西南干旱和热带气旋活动偏少两大气候异常事件的成因进行了分析。结果表明:高度场偏高、西太平洋副热带高压偏强、夏季风偏弱和水汽条件较差等大气环流异常是导致高温干旱的主要原因;中部型拉尼娜事件的滞后影响和印度洋偏暖的影响是西南干旱的重要外强迫条件。南海对流活动偏弱,菲律宾以东季风槽位置偏北,热带气旋活动区域垂直风切偏大,西北太平洋副热带高压偏强等因素导致热带气旋活动偏少。  相似文献   

10.
已有研究指出春季热带北大西洋海温对随后冬季ENSO事件的发生存在显著的影响。该研究发现它们的联系在20世纪80年代初以后显著增强。20世纪80年代初以后,春季热带北大西洋海温为正异常时,副热带东北太平洋存在显著的异常气旋环流,同时异常沃克环流在热带中东太平洋引起显著的异常下沉运动。异常气旋环流西侧的东北风异常增强气候态的风速,导致负海温异常。负海温异常通过Gill型大气响应使得热带西北太平洋产生异常的反气旋环流。同时,热带中东太平洋的沃克环流异常下沉运动也对热带西北太平洋异常反气旋环流的形成起到一定作用。热带西北太平洋反气旋环流南侧的东风异常通过海洋动力过程对随后冬季ENSO产生影响。因此,春季热带北大西洋海温对冬季ENSO存在显著的影响。然而,20世纪80年代以前,春季热带北大西洋海温相关的热带东北太平洋异常气旋环流和热带地区的异常沃克环流不显著,从而不能在热带西北太平洋产生异常反气旋。所以,20世纪80年代以前,春季热带北大西洋海温对冬季ENSO的影响不显著。进一步的分析指出,春季热带北大西洋海温对ENSO影响的年代际变化可能与热带北大西洋降水气候态的年代际变化有关。  相似文献   

11.
Abstract

Teleconnections between sea surface temperature (SST) anomalies over the Pacific and the dominant patterns of wintertime Northern Hemisphere 500‐hPa height are examined by applying statistical techniques such as rotated principal component analysis and composite analysis. It is shown that the Pacific/North American (PNA) patterns in December through March are correlated most significantly with the ENSO‐related SST anomalies in the previous October, while the western Pacific (WP) patterns in December through February are most closely linked to the ENSO‐related SST anomalies in the same season. In addition, the PNA response to the ENSO signal during La Niña events is more significant than that during El Niño events, while the WP response is stronger during El Niño events than during La Niña events. A composite analysis shows that in the El Niño winters the North Pacific centre of the PNA pattern is located about 10 degrees east of its normal position, leading to a less significant correlation between the ENSO signal and the PNA pattern in these winters.

The ENSO‐related SST anomalies include a large centre of action over the tropical Pacific and an oppositely signed anomaly centre over the North Pacific. The North Pacific centre appears to the west of the dateline in September and October. This ENSO‐related seed of SST anomalies slowly moves eastward in the following months, gradually cutting off its connection with SST anomalies over the tropical Pacific and being coupled with the PNA pattern. It is pointed out that, although the wintertime SST anomaly over the North Pacific may appear as a mode linearly independent of the ENSO signal in the same season, it is partially related to the ENSO signal in the preceding autumn.

Possible dynamical explanations of the above results are discussed. It is suggested that the WP pattern can be linked to the tropical Pacific heat source via advection of vorticity by the upper‐tropospheric divergent/convergent flow, and the intensification of vorticity gradients associated with a stronger east Asian jet is likely to be responsible for a more significant WP pattern response to the ENSO signal in the El Niño winters. On the other hand, the ENSO‐related PNA pattern could be considered a manifestation of the eastward extension (El Niño) or westward withdrawal (La Niña) of the east Asian jet stream due to the local Hadley cell over the Pacific. In addition, the ENSO‐related seed of extratropical SST anomaly over the western Pacific in autumn may also play an important role in the development of the PNA pattern in the following winter.  相似文献   

12.
A significant negative correlation between the total rainfall averaged over South Korea and the Niño-3.4 index was found for the month of September. To find out the reason for this negative correlation, composite analyses were carried out for the highest and lowest 8 years of the Niño-3.4 index. During the strong El Niño year, an anomalous anticyclone occurs in the continental East Asia, while an anomalous cyclone emerges in the subtropical western Pacific. The resultant eastward pressure gradient force induces anomalous northerlies in most regions of East Asia, which produces anomalous cold and dry conditions throughout the troposphere between 120° and 140°E, reducing the Korean rainfall. It is also found that during El Niño year, tropical cyclones (TCs) tend to recurve far east offshore of Japan because the weakening of the western North Pacific subtropical high (WNPSH). During La Niña years, on the other hand, the strengthening and westward extension of the WNPSH render more TCs influencing the Korean peninsula. Therefore, the TC track changes associated with El Niño-Southern Oscillation is another contributor to change of the Korean rainfall.  相似文献   

13.
Present work uses 1979–2005 monthly observational data to study the impacts of El Niño Modoki on dry/wet conditions in the Pacific rim during boreal summer. The El Niño Modoki phenomenon is characterized by the anomalously warm central equatorial Pacific flanked by anomalously cool regions in both west and east. Such zonal SST gradients result in anomalous two-cell Walker Circulation over the tropical Pacific, with a wet region in the central Pacific. There are two mid-tropospheric wave trains passing over the extratropical and subtropical North Pacific. They contain a positive phase of a Pacific-Japan pattern in the northwestern Pacific, and a positive phase of a summertime Pacific-North American pattern in the northeastern Pacific/North America region. The western North Pacific summer monsoon is enhanced, while the East Asian summer monsoon is weakened. In the South Pacific, there is a basin-wide low in the mid-latitude with enhanced Australian high and the eastern South Pacific subtropical high. Such an atmospheric circulation pattern favors a dry rim surrounding the wet central tropical Pacific. The El Niño Modoki and its climate impacts are very different from those of El Niño. Possible geographical regions for dry/wet conditions influenced by El Niño Modoki and El Niño are compared. The two phenomena also have very different temporal features. El Niño Modoki has a large decadal background while El Niño is predominated by interannual variability. Mixing-up the two different phenomena may increase the difficulty in understanding their mechanisms, climate impacts, and uncertainty in their predictions.  相似文献   

14.
The present study reveals cross-season connections of rainfall variability in the South China Sea (SCS) region between winter and summer. Rainfall anomalies over northern South China Sea in boreal summer tend to be preceded by the same sign rainfall anomalies over southern South China Sea in boreal winter (denoted as in-phase relation) and succeeded by opposite sign rainfall anomalies over southern South China Sea in the following winter (denoted as out-of-phase relation). Analysis shows that the in-phase relation from winter to summer occurs more often in El Niño/La Niña decaying years and the out-of-phase relation from summer to winter appears more frequently in El Niño/La Niña developing years. In the summer during the El Niño/La Niña decaying years, cold/warm and warm/cold sea surface temperature (SST) anomalies develop in tropical central North Pacific and the North Indian Ocean, respectively, forming an east–west contrast pattern. The in-phase relation is associated with the influence of anomalous heating/cooling over the equatorial central Pacific during the mature phase of El Niño/La Niña events that suppresses/enhances precipitation over southern South China Sea and the impact of the above east–west SST anomaly pattern that reduces/increases precipitation over northern South China Sea during the following summer. The impact of the east–west contrast SST anomaly pattern is confirmed by numerical experiments with specified SST anomalies. In the El Niño/La Niña developing years, regional air-sea interactions induce cold/warm SST anomalies in the equatorial western North Pacific. The out-of-phase relation is associated with a Rossby wave type response to anomalous heating/cooling over the equatorial central Pacific during summer and the combined effect of warm/cold SST anomalies in the equatorial central Pacific and cold/warm SST anomalies in the western North Pacific during the mature phase of El Niño/La Niña events.  相似文献   

15.
The role of tropical Atlantic sea surface temperature (SST) anomalies during ENSO episodes over northeast Brazil (Nordeste) is investigated using the CPTEC/COLA Atmospheric General Circulation Model (AGCM). Four sets of integrations are performed using SST in El Niño and La Niña (ENSO) episodes, changing the SST of the Atlantic Ocean. A positive dipole (SST higher than normal in the tropical North Atlantic and below normal in the tropical South Atlantic) and a negative dipole (opposite conditions), are set as the boundary conditions of SST in the Atlantic Ocean. The four experiments are performed using El Niño or La Niña SST in all oceans, except in the tropical Atlantic where the two phases of the SST dipole are applied. Five initial conditions were integrated in each case in order to obtain four ensemble results. The positive SST dipole over the tropical Atlantic Ocean and El Niño conditions over the Pacific Ocean resulted in dry conditions over the Nordeste. When the negative dipole and El Niño conditions over the Pacific Ocean were applied, the results showed precipitation above normal over the north of Nordeste. When La Niña conditions over Pacific Ocean were tested together with a negative dipole, positive precipitation anomalies occurred over the whole Nordeste. Using the positive dipole over the tropical Atlantic, the precipitation over Nordeste was below average. During La Niña episodes, the Atlantic Ocean conditions have a larger effect on the precipitation of Nordeste than the Pacific Ocean. In El Niño conditions, only the north region of Nordeste is affected by the Atlantic SST. Other tropical areas of South America show a change only in the intensity of anomalies. Central and southeast regions of South America are affected by the Atlantic conditions only during La Niña conditions, whereas during El Niño these regions are influenced only by conditions in the Pacific Ocean.  相似文献   

16.
This study investigated the distinct responses of western North Pacific (WNP) tropical cyclone (TC) activity during different decaying El Niño summers. The El Niño events were classified into two types according to the periodicity of the ENSO cycle, with positive SST anomalies in the equatorial central-eastern Pacific maintaining positive values into the following summer as the slow decaying (SD) cases, but transforming to negative values in the following summer as the rapid decaying (RD) cases. Compared with that in SD El Niño summers, the TC occurrence frequency over the WNP is significantly lower in RD El Niño summers, led by a much weaker WNP monsoon trough with more unfavorable environmental factors for TC genesis and development. Further examination showed that the apparent warming over the tropical Indian Ocean basin and cooling over the equatorial central-eastern Pacific contribute together to an enhanced lower-tropospheric anticyclone through modulation of the descending branch of the large-scale Walker circulation over the WNP, which may play a crucial role in suppressing the TC activity during the decaying summer of RD El Niño cases. In contrast, the warming equatorial central-eastern Pacific and remote western Indian Ocean induce a weakening WNP anticyclone and less suppressed deep convection during the decaying summer of SD El Niño cases. Thus, the different evolution of SST anomalies associated with different paces of El Niño decay results in the linkage between the preceding winter El Niño and the decreased WNP TC frequency in summer being more (less) robust for RD (SD) El Niño cases.摘要本文分析了El Niño事件衰减速度的差异对衰退年夏季西北太平洋热带气旋 (tropical cyclone, TC) 频数的不同影响. 按照El Niño事件衰减速度不同, 将其划分为迅速衰减 (rapid decaying, RD) 和缓慢衰减 (slow decaying, SD) 的El Niño事件. SD (RD) El Niño事件的衰退年夏季, 赤道中东太平洋海温仍维持正异常 (衰减为负异常) . 与SD El Niño事件相比, RD El Niño事件衰退年夏季西北太平洋TC频数显著减少. 进一步的分析揭示了导致TC频数差异的大尺度环境要素, 指出热带印度洋-太平洋海温异常密切相关的西北太平洋低层反气旋异常在其中起到了关键作用.  相似文献   

17.
This study examined a strong positive correlation between the North Atlantic Oscillation (NAO) index during June and the total tropical cyclone (TC) genesis frequency in the western North Pacific during July and August. To investigate a possible cause for this relation, the mean difference between highest positive NAO years and lowest negative NAO years was analyzed by dividing into when the El Niño and La Niña years were included and when the El Niño and La Niña years were not included.When the El Niño and La Niña years were included, for positive NAO years, the TCs mostly occurred in the northwestern region of tropical and subtropical western Pacific, and showed a pattern that migrate from the sea northeast of the Philippines, pass the East China Sea, and move toward the mid-latitudes of East Asia. In contrast, for negative NAO years, the TCs mostly occurred in the southeastern region of tropical and subtropical western Pacific, and showed a pattern that migrate westward from the sea southeast of the Philippines, pass the South China Sea, and move toward the southern coast of China and Indochinese peninsula. These two different TC migration patterns affect the recurving location of TC, and for positive NAO years, the recurving of TC was averagely found to take place in the further northeast. In addition, the migration patterns also affect the TC intensity, and the TCs of positive NAO years had stronger intensity than the TCs of negative NAO years as sufficient energy can be absorbed from the ocean while moving north in the mid-latitudes of East Asia. The TCs of negative NAO years showed weak intensity as they weaken or disappear shortly while landing on the southern coast of China and Indochinese peninsula. On the other hand, the above result of analysis is also similarly observed when the El Niño and La Niña years were not included.  相似文献   

18.
The relationships between ENSO and the East Asian-western North Pacific monsoon simulated by the Flexible Global Ocean-Atmosphere-Land System model, Spectral Version 2 (FGOALS-s2), a state-of-the-art coupled general circulation model (CGCM), are evaluated. For El Nio developing summers, FGOALS-s2 reproduces the anomalous cyclone over the western North Pacific (WNP) and associated negative precipitation anomalies in situ. In the observation, the anomalous cyclone is transformed to an anomalous anticyclone over the WNP (WNPAC) during El Nio mature winters. The model reproduces the WNPAC and associated positive precipitation anomalies over southeastern China during winter. However, the model fails to simulate the asymmetry of the wintertime circulation anomalies over the WNP between El Nio and La Nia. The simulated anomalous cyclone over the WNP (WNPC) associated with La Nia is generally symmetric about the WNPAC associated with El Nio, rather than shifted westward as that in the observation. The discrepancy can partially explain why simulated La Nin a events decay much faster than observed. In the observation, the WNPAC maintains throughout the El Nio decaying summer under the combined effects of local forcing of the WNP cold sea surface temperature anomaly (SSTA) and remote forcing from basinwide warming in the tropical Indian Ocean. FGOALS-s2 captures the two mechanisms and reproduces the WNPAC throughout the summer. However, owing to biases in the mean state, the precipitation anomalies over East Asia, especially those of the Meiyu rain belt, are much weaker than that in the observation.  相似文献   

19.
A high-resolution (T213) coupled ocean–atmosphere general circulation model (CGCM) has been used to examine the relationship between El Niño/Southern Oscillation (ENSO) and tropical cyclone (TC) activity over the western North Pacific (WNP). The model simulates ENSO-like events similar to those observed, though the amplitude of the simulated Niño34 sea surface temperature (SST) anomaly is twice as large as observed. In El Niño (La Niña) years, the annual number of model TCs in the southeast quadrant of the WNP increases (decreases), while it decreases (increases) in the northwest quadrant. In spite of the significant difference in the mean genesis location of model TCs between El Niño and La Niña years, however, there is no significant simultaneous correlation between the annual number of model TCs over the entire WNP and model Niño34 SST anomalies. The annual number of model TCs, however, tends to decrease in the years following El Niño, relating to the development of anticyclonic circulation around the Philippine Sea in response to the SST anomalies in the central and eastern equatorial Pacific. Furthermore, it seems that the number of model TCs tends to increase in the years before El Niño. It is also shown that the number of TCs moving into the East Asia is fewer in October of El Niño years than La Niña years, related to the anomalous southward shift of mid-latitude westerlies, though no impact of ENSO on TC tracks is found in other months. It is found that model TCs have longer lifetimes due to the southeastward shift of mean TC genesis location in El Niño years than in La Niña years. As the result of longer fetch of TCs over warm SST, model TCs appear to be more intense in El Niño years. These relationships between ENSO and TC activity in the WNP are in good agreement with observational evidence, suggesting that a finer-resolution CGCM may become a powerful tool for understanding interannual variability of TC activity.  相似文献   

20.
In the summers of 1998 and 2010, severe floods occurred in the middle and lower reaches of the Yangtze River. Although an El Niño event took place preceding each of the summer floods, significant differences between the two summer floods and the two El Niño events were identified. The 1997/98 El Niño is a conventional one with strongest warming in the central-eastern Pacific, whereas the 2009/10 event is an El Niño Modoki with strongest warming in the central Pacific. In this study, summer rainfall anomalies (SRA) in the two years were first compared based on the rainfall data at 160 stations in mainland China, and a significant difference in SRA was found. To understand the underlying mechanism for the difference, the atmospheric circulation systems, particularly the western North Pacific anticyclone (WNPAC), the western Pacific subtropical high (WPSH), and the low-level air flows, were compared in the two years by using the NCEP/NCAR reanalysis data. The results display that the WNPAC was stronger in 2010 than in 1998, along with a northwestward shift, causing weakened southwesterly from the Bay of Bengal to the South China Sea but intensified southerly in eastern China. This resulted in less water vapor transport from the tropical Indian Ocean and the South China Sea but more from the subtropical western Pacific to East Asia. Subsequently, the rainband in 2010 shifted northward. The difference in the WNPAC was caused by the anomalous ascending motion associated with the warming location in the two El Niño events. Furthermore, the role of tropical sea surface temperature (SST) in modulating these differences was investigated by conducting sensitivity experiments using GFDL AM2.1 (Geophysical Fluid Dynamics Laboratory Atmospheric Model). Two experiments were performed, one with the observed monthly SST and the other with June SST persisting through the whole summer. The results suggest that the model well reproduced the primary differences in the atmospheric circulation systems in the two years. It is found that the difference in El Niño events has shaped the rainfall patterns in the two years of 1998 and 2010. At last, the case of 2010 was compared with the composite of historical El Niño Modoki events, and the results indicate that the impact of El Niño Modoki varies from case to case and is more complicated than previously revealed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号