首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
“14.4.23”河西走廊特强沙尘暴演变过程特征分析   总被引:3,自引:2,他引:1  
钱莉  滕杰  胡津革 《气象》2015,41(6):745-754
利用常规气象观测资料和ECMWF数值预报产品,对2014年4月23日甘肃河西走廊发生的特强沙尘暴过程形成和减弱原因进行天气动力学诊断分析,结果表明:500 hPa乌拉尔山脊前不稳定槽强烈发展,极地强冷空气向南爆发是这次特强沙尘暴产生的大尺度触发系统,地面冷锋所带来的强风是产生特强沙尘暴的主要原因.特强沙尘暴在河西走廊中西部增强的原因:700~850 hPa河西走廊近乎中性的温度层结,加上强冷平流和低空急流,有利于锋生和动量下传;地面冷锋强变压、变温梯度及日变化促使沙尘暴在河西西部爆发性发展.河西走廊中西部低空强上升运动有利于增大近地面沙尘浓度;强烈的温度差动平流和垂直风切变,加大了热力和动力不稳定.特强沙尘暴在河西走廊东部减弱的原因:造成特强沙尘暴的天气系统在河西东部北行减弱及河西走廊狭管效应地形环境消失;午夜日变化造成锋消;前期持续阴雨天气,使疏松裸露的地表土壤和沙漠形成一层板结层,增加起沙难度.  相似文献   

2.
河西走廊东部近50年沙尘暴气候预测研究   总被引:12,自引:2,他引:10  
应用甘肃省河西走廊东部武威市5站(乌鞘岭、古浪、永昌、凉州区、民勤)近50年月、年气象资料和沙尘暴个例,详细分析了沙尘暴产生的气候背景和气候影响因子。在分析二十多种气象要素的基础上,做出沙尘暴不同时间、不同范围的日数和强度预报方程。研究表明:河西走廊东部的沙尘暴是武威市北部干旱气候、丰富的地表沙源与大风天气相互作用的结果;沙尘暴日数与该市中北部冬春季的气温、年降雨量和大风日数有关;沙尘暴强度与武威市前期的干旱、异常增温、强大风日数有关。  相似文献   

3.
河西走廊一次特强沙尘暴的热力动力特征分析   总被引:1,自引:0,他引:1  
王伏村  许东蓓  王宝鉴  付有智 《气象》2012,38(8):950-959
使用NCEP再分析资料、高空和地面观测资料对2010年4月24日发生在河西走廊的一次特强沙尘暴天气进行了热力和动力作用诊断分析。结果表明:沙尘暴发生前,感热通量达最大值,湍流运动增强,增加了大气的不稳定性;大风沙尘暴发展和强盛期与动量通量大值区对应,动量通量对沙尘向上输送起了重要作用;在强锋区附近,地转关系被破坏,大风沙尘暴大气主要出现在变压梯度大,即变压风大的区域,变压风是产生地面强风的主要成分;河西走廊这次沙尘暴过程有明显锋生活动,锋生过程使锋面次级环流加强;水平螺旋度负值中心值越大,近地面层风速越大,大风沙尘暴天气主要出现在水平螺旋度负值中心前方与零值线之间;在河西走廊上空,高空急流沿等熵面穿越等位势高度面下滑到2000gpm,形成偏西风低空急流,低空急流的形成和维持在大风沙尘暴过程中起到关健作用。  相似文献   

4.
河西走廊沙尘暴的时空变化特征与其环流背景   总被引:8,自引:9,他引:8  
利用近50年来的气象台站观测资料和NCEP/NCAR再分析气候资料,分析了河西走廊沙尘暴频数的空间分布特征和时间变化规律以及有利于中国北方沙尘暴多发/少发的环流气候背景。结果表明:河西走廊沙尘暴的分布主要是沙漠边缘干旱化不稳定过渡带的产物,即在同样的大气条件下,下垫面条件决定沙尘暴的空间分布;河西走廊沙尘暴的时间分布主要与大风有关,在日变化、年变化、年际变化和年代际变化中都是如此,即在确定的下垫面条件下,大气(风)状况决定沙尘暴的时间变化;蒙古低(槽)、乌拉尔高(脊)的环流形势配置是沙尘暴过程中的典型背景条件,不仅在天气尺度是如此,在年际、年代际尺度也是如此;河西走廊沙尘暴的EOF分析表明,沙尘暴频数在20世纪末到本世纪初有一个明显的回升趋势,上升幅度已接近总下降幅度的四分之一至三分之一。  相似文献   

5.
文中从天气气候背景及天气学、动力诊断等方面 ,分析 2 0 0 0年秋、冬季河西大风和沙尘暴天气的形成原因 ,分析结果表明 ,几次大风、沙尘暴过程都是在高空 5 0 0hPa环流形势由纬向环流向径向环流调整的过程中 ,西西伯利亚强冷空气沿西北气流迅速南下 ,在蒙古地面热低压强烈发展的有利的热力和动力条件下发生的。同时 ,今年秋、冬季河西气温明显偏高 ,降水偏少以及河西地区特殊的地理环境 ,加剧了大风和沙尘暴天气的出现频次和强度。通过分析 ,初步总结出了此类天气的预报着眼点。  相似文献   

6.
一次特异强沙尘暴天气成因分析   总被引:1,自引:0,他引:1  
针对 2 0 0 1年 3月 2 6日出现在我国河西走廊东部和蒙古地区的一次强沙尘暴、大风、浮尘天气过程 ,从天气形势、气候成因、动力诊断等方面进行了探讨。分析结果表明 ,蒙古强冷空气南压 ,入侵河西东部 ,加之该区今春以来干旱严重 ,气温偏高 ,地表干土层增厚 ,形成了大风、强沙尘暴、浮尘天气。  相似文献   

7.
“4.12”沙尘暴天气的数值模拟及诊断分析   总被引:22,自引:8,他引:14  
利用MM5中尺度数值模式,以T106实况资料作为初值场和侧边界值,对甘肃省河西走廊2000年4月12日强沙尘暴的强风天气形势和地面风场进行了数值模拟,并利用模式输出结果对这次过程作了诊断分析。模拟和诊断分析结果表明:MM5中尺度模式能模拟出产生这次强沙尘暴的强风天气形势和上升运动;沙尘暴爆发前3h河西走廊出现西北大风,并有大风向这一地区的明显辐合;沙尘暴发生在地面处于于暖状态的地区;位涡的水平分布特征对沙尘暴的出现时间和落区有一定的指示意义。沙尘暴区上空螺旋度垂直分布为高层负值,低层正值。螺旋度正值的演变与沙尘暴的出现有一定的对应关系。  相似文献   

8.
利用常规气象观测资料和ECMWF数值预报产品初始场资料,对2018年3月19日河西走廊东部的大风强沙尘暴天气过程进行了分析。结果表明:500 hPa蒙古西部到新疆东部低槽是此次区域性大风沙尘暴发生的影响系统,700 hPa河西走廊东部变形场是大风沙尘暴的触发系统,午后气温日变化加大了地面冷锋前后的气压梯度和温度梯度,冷锋前后Δp3达8.3h Pa,造成冷锋移至河西走廊东部产生强烈锋生是沙尘暴爆发的直接原因;随着河西走廊东部上空高空西风急流风速增大、高度降低,风速为14 m·s~(-1)的强风速带伸展到地面,将高空动量向下传播,加之北风前锋到达之处,沙尘暴爆发;沙尘区低层辐合、高层辐散,以及无辐散层和-52.6×10~(-3)hPa·s~(-1)的强上升运动一致,有利于增大近地面沙尘浓度;V-3θ曲线显示强垂直风速切变和上干下湿的状态,为此次沙尘暴的发生发展提供了不稳定的环境条件;前期降水稀少,气温异常偏高的气候背景和边界层逆温层破坏,中低层干热及地面风速增大,为沙尘暴天气爆发提供了前期气候背景和不稳定及动力条件。  相似文献   

9.
张春燕  李岩瑛  曾婷  张爱萍 《气象》2019,45(9):1227-1237
应用1971—2016年河西走廊东部代表站的地面观测资料、NCEP 2.5°×2.5°月均地面至300 hPa高空资料,2006—2016年民勤逐日07和19时每隔10 m加密高空资料,分析了近45年河西走廊东部冬季沙尘暴天气的年际变化特征。同时选取2016年11月两次沙尘暴天气过程从天气学成因、物理量场及近地面边界层特征等方面进行了诊断分析。结果表明:近45年河西走廊东部冬季沙尘暴日数呈减少趋势,产生大风沙尘天气的主要原因不仅与大型冷暖空气强度及环流形势有关,还与冷锋过境时间、日变化、近地层风速和干湿程度关系密切。夜间至早晨近地面逆温厚且强,大气层结稳定,削弱沙暴强度,而午后到傍晚,逆温薄而弱,大气层结不稳定性强,加强了动量下传和风速,增强沙暴强度。近地层越干,风速越大,沙暴越强。  相似文献   

10.
一次飑线引发的大风强沙尘暴诊断分析   总被引:1,自引:0,他引:1  
钱莉  杨永龙  殷玉春  王生元 《气象》2009,35(3):42-48
利用常规探测、地面加密观测、T213数值预报产品和FY-2c/2d红外卫星云图资料,对2008年5月2日河西走廊东部飑线引发的大风强沙尘暴过程进行了天气动力诊断和中尺度分析.结果表明:飑线引发的强风暴是产生强沙尘暴的根本原因.河西走廊东部处在不稳定大气层结中,500hPa阶梯短波槽为飑线提供了大尺度环流背景;700hPa变形场是飑线的触发系统;地面热低压的发展加大了冷锋前后的气压和温度梯度,为对流发展提供了热力不稳定条件;高空急流对于飑线的生成、发展具有重要的作用.  相似文献   

11.
Using the International Comprehensive Ocean-Atmosphere Data Set(ICOADS) and ERA-Interim data, spatial distributions of air-sea temperature difference(ASTD) in the South China Sea(SCS) for the past 35 years are compared,and variations of spatial and temporal distributions of ASTD in this region are addressed using empirical orthogonal function decomposition and wavelet analysis methods. The results indicate that both ICOADS and ERA-Interim data can reflect actual distribution characteristics of ASTD in the SCS, but values of ASTD from the ERA-Interim data are smaller than those of the ICOADS data in the same region. In addition, the ASTD characteristics from the ERA-Interim data are not obvious inshore. A seesaw-type, north-south distribution of ASTD is dominant in the SCS; i.e., a positive peak in the south is associated with a negative peak in the north in November, and a negative peak in the south is accompanied by a positive peak in the north during April and May. Interannual ASTD variations in summer or autumn are decreasing. There is a seesaw-type distribution of ASTD between Beibu Bay and most of the SCS in summer, and the center of large values is in the Nansha Islands area in autumn. The ASTD in the SCS has a strong quasi-3a oscillation period in all seasons, and a quasi-11 a period in winter and spring. The ASTD is positively correlated with the Nio3.4 index in summer and autumn but negatively correlated in spring and winter.  相似文献   

12.
The spatial and temporal variations of daily maximum temperature(Tmax), daily minimum temperature(Tmin), daily maximum precipitation(Pmax) and daily maximum wind speed(WSmax) were examined in China using Mann-Kendall test and linear regression method. The results indicated that for China as a whole, Tmax, Tmin and Pmax had significant increasing trends at rates of 0.15℃ per decade, 0.45℃ per decade and 0.58 mm per decade,respectively, while WSmax had decreased significantly at 1.18 m·s~(-1) per decade during 1959—2014. In all regions of China, Tmin increased and WSmax decreased significantly. Spatially, Tmax increased significantly at most of the stations in South China(SC), northwestern North China(NC), northeastern Northeast China(NEC), eastern Northwest China(NWC) and eastern Southwest China(SWC), and the increasing trends were significant in NC, SC, NWC and SWC on the regional average. Tmin increased significantly at most of the stations in China, with notable increase in NEC, northern and southeastern NC and northwestern and eastern NWC. Pmax showed no significant trend at most of the stations in China, and on the regional average it decreased significantly in NC but increased in SC, NWC and the mid-lower Yangtze River valley(YR). WSmax decreased significantly at the vast majority of stations in China, with remarkable decrease in northern NC, northern and central YR, central and southern SC and in parts of central NEC and western NWC. With global climate change and rapidly economic development, China has become more vulnerable to climatic extremes and meteorological disasters, so more strategies of mitigation and/or adaptation of climatic extremes,such as environmentally-friendly and low-cost energy production systems and the enhancement of engineering defense measures are necessary for government and social publics.  相似文献   

13.
The moving-window correlation analysis was applied to investigate the relationship between autumn Indian Ocean Dipole (IOD) events and the synchronous autumn precipitation in Huaxi region, based on the daily precipitation, sea surface temperature (SST) and atmospheric circulation data from 1960 to 2012. The correlation curves of IOD and the early modulation of Huaxi region’s autumn precipitation indicated a mutational site appeared in the 1970s. During 1960 to 1979, when the IOD was in positive phase in autumn, the circulations changed from a “W” shape to an ”M” shape at 500 hPa in Asia middle-high latitude region. Cold flux got into the Sichuan province with Northwest flow, the positive anomaly of the water vapor flux transported from Western Pacific to Huaxi region strengthened, caused precipitation increase in east Huaxi region. During 1980 to 1999, when the IOD in autumn was positive phase, the atmospheric circulation presented a “W” shape at 500 hPa, the positive anomaly of the water vapor flux transported from Bay of Bengal to Huaxi region strengthened, caused precipitation ascend in west Huaxi region. In summary, the Indian Ocean changed from cold phase to warm phase since the 1970s, caused the instability of the inter-annual relationship between the IOD and the autumn rainfall in Huaxi region.  相似文献   

14.
正The Taal Volcano in Luzon is one of the most active and dangerous volcanoes of the Philippines. A recent eruption occurred on 12 January 2020(Fig. 1a), and this volcano is still active with the occurrence of volcanic earthquakes. The eruption has become a deep concern worldwide, not only for its damage on local society, but also for potential hazardous consequences on the Earth's climate and environment.  相似文献   

15.
Observed daily precipitation data from the National Meteorological Observatory in Hainan province and daily data from the National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis-2 dataset from 1981 to 2014 are used to analyze the relationship between Hainan extreme heavy rainfall processes in autumn (referred to as EHRPs) and 10–30 d low-frequency circulation. Based on the key low-frequency signals and the NCEP Climate Forecast System Version 2 (CFSv2) model forecasting products, a dynamical-statistical method is established for the extended-range forecast of EHRPs. The results suggest that EHRPs have a close relationship with the 10–30 d low-frequency oscillation of 850 hPa zonal wind over Hainan Island and to its north, and that they basically occur during the trough phase of the low-frequency oscillation of zonal wind. The latitudinal propagation of the low-frequency wave train in the middle-high latitudes and the meridional propagation of the low-frequency wave train along the coast of East Asia contribute to the ‘north high (cold), south low (warm)’ pattern near Hainan Island, which results in the zonal wind over Hainan Island and to its north reaching its trough, consequently leading to EHRPs. Considering the link between low-frequency circulation and EHRPs, a low-frequency wave train index (LWTI) is defined and adopted to forecast EHRPs by using NCEP CFSv2 forecasting products. EHRPs are predicted to occur during peak phases of LWTI with value larger than 1 for three or more consecutive forecast days. Hindcast experiments for EHRPs in 2015–2016 indicate that EHRPs can be predicted 8–24 d in advance, with an average period of validity of 16.7 d.  相似文献   

16.
Based on the measurements obtained at 64 national meteorological stations in the Beijing–Tianjin–Hebei (BTH) region between 1970 and 2013, the potential evapotranspiration (ET0) in this region was estimated using the Penman–Monteith equation and its sensitivity to maximum temperature (Tmax), minimum temperature (Tmin), wind speed (Vw), net radiation (Rn) and water vapor pressure (Pwv) was analyzed, respectively. The results are shown as follows. (1) The climatic elements in the BTH region underwent significant changes in the study period. Vw and Rn decreased significantly, whereas Tmin, Tmax and Pwv increased considerably. (2) In the BTH region, ET0 also exhibited a significant decreasing trend, and the sensitivity of ET0 to the climatic elements exhibited seasonal characteristics. Of all the climatic elements, ET0 was most sensitive to Pwv in the fall and winter and Rn in the spring and summer. On the annual scale, ET0 was most sensitive to Pwv, followed by Rn, Vw, Tmax and Tmin. In addition, the sensitivity coefficient of ET0 with respect to Pwv had a negative value for all the areas, indicating that increases in Pwv can prevent ET0 from increasing. (3) The sensitivity of ET0 to Tmin and Tmax was significantly lower than its sensitivity to other climatic elements. However, increases in temperature can lead to changes in Pwv and Rn. The temperature should be considered the key intrinsic climatic element that has caused the "evaporation paradox" phenomenon in the BTH region.  相似文献   

17.
Storms that occur at the Bay of Bengal (BoB) are of a bimodal pattern, which is different from that of the other sea areas. By using the NCEP, SST and JTWC data, the causes of the bimodal pattern storm activity of the BoB are diagnosed and analyzed in this paper. The result shows that the seasonal variation of general atmosphere circulation in East Asia has a regulating and controlling impact on the BoB storm activity, and the “bimodal period” of the storm activity corresponds exactly to the seasonal conversion period of atmospheric circulation. The minor wind speed of shear spring and autumn contributed to the storm, which was a crucial factor for the generation and occurrence of the “bimodal pattern” storm activity in the BoB. The analysis on sea surface temperature (SST) shows that the SSTs of all the year around in the BoB area meet the conditions required for the generation of tropical cyclones (TCs). However, the SSTs in the central area of the bay are higher than that of the surrounding areas in spring and autumn, which facilitates the occurrence of a “two-peak” storm activity pattern. The genesis potential index (GPI) quantifies and reflects the environmental conditions for the generation of the BoB storms. For GPI, the intense low-level vortex disturbance in the troposphere and high-humidity atmosphere are the sufficient conditions for storms, while large maximum wind velocity of the ground vortex radius and small vertical wind shear are the necessary conditions of storms.  相似文献   

18.
Various features of the atmospheric environment affect the number of migratory insects, besides their initial population. However, little is known about the impact of atmospheric low-frequency oscillation(10 to 90 days) on insect migration. A case study was conducted to ascertain the influence of low-frequency atmospheric oscillation on the immigration of brown planthopper, Nilaparvata lugens(Stl), in Hunan and Jiangxi provinces. The results showed the following:(1) The number of immigrating N. lugens from April to June of 2007 through 2016 mainly exhibited a periodic oscillation of 10 to 20 days.(2) The 10-20 d low-frequency number of immigrating N. lugens was significantly correlated with a low-frequency wind field and a geopotential height field at 850 h Pa.(3) During the peak phase of immigration, southwest or south winds served as a driving force and carried N. lugens populations northward, and when in the back of the trough and the front of the ridge, the downward airflow created a favorable condition for N. lugens to land in the study area. In conclusion, the northward migration of N. lugens was influenced by a low-frequency atmospheric circulation based on the analysis of dynamics. This study was the first research connecting atmospheric low-frequency oscillation to insect migration.  相似文献   

19.
The atmospheric and oceanic conditions before the onset of EP El Ni?o and CP El Ni?o in nearly 30 years are compared and analyzed by using 850 hPa wind, 20℃ isotherm depth, sea surface temperature and the Wheeler and Hendon index. The results are as follows: In the western equatorial Pacific, the occurrence of the anomalously strong westerly winds of the EP El Ni?o is earlier than that of the CP El Ni?o. Its intensity is far stronger than that of the CP El Ni?o. Two months before the El Ni?o, the anomaly westerly winds of the EP El Ni?o have extended to the eastern Pacific region, while the westerly wind anomaly of the CP El Ni?o can only extend to the west of the dateline three months before the El Ni?o and later stay there. Unlike the EP El Ni?o, the CP El Ni?o is always associated with easterly wind anomaly in the eastern equatorial Pacific before its onset. The thermocline depth anomaly of the EP El Ni?o can significantly move eastward and deepen. In addition, we also find that the evolution of thermocline is ahead of the development of the sea surface temperature for the EP El Ni?o. The strong MJO activity of the EP El Ni?o in the western and central Pacific is earlier than that of the CP El Ni?o. Measured by the standard deviation of the zonal wind square, the intensity of MJO activity of the EP El Ni?o is significantly greater than that of the CP El Ni?o before the onset of El Ni?o.  相似文献   

20.
正While China’s Air Pollution Prevention and Control Action Plan on particulate matter since 2013 has reduced sulfate significantly, aerosol ammonium nitrate remains high in East China. As the high nitrate abundances are strongly linked with ammonia, reducing ammonia emissions is becoming increasingly important to improve the air quality of China. Although satellite data provide evidence of substantial increases in atmospheric ammonia concentrations over major agricultural regions, long-term surface observation of ammonia concentrations are sparse. In addition, there is still no consensus on  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号