首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
The effects of storm-induced sea surface temperature (SST) cooling on hurricane intensity are investigated using a 5-day cloud-resolving simulation of Hurricane Bonnie (1998). Two sensitivity simulations are performed in which the storm-induced cooling is either ignored or shifted close to the modeled storm track. Results show marked sensitivity of the model-simulated storm intensity to the magnitude and relative position with respect to the hurricane track. It is shown that incorporation of the storm-induced cooling, with an average value of 1.3℃, causes a 25-hPa weakening of the hurricane, which is about 20 hPa per 1℃ change in SST. Shifting the SST cooling close to the storm track generates the weakest storm, accounting for about 47% reduction in the storm intensity. It is found that the storm intensity changes are well correlated with the air-sea temperature difference. The results have important implications for the use of coupled hurricane-ocean models for numerical prediction of tropical cyclones.  相似文献   

2.
While previous studies indicate that typhoons can decrease sea surface temperature(SST) along their tracks, a few studies suggest that the cooling patterns in coastal areas are different from those in the open sea. However, little is known about how the induced cooling coupled with the complex ocean circulation in the coastal areas can affect tropical cyclone track and intensity. The sea surface responses to the land falling process of Typhoon Morakot(2009) are examined observationally and its influences on the activity of the typhoon are numerically simulated with the WRF model. The present study shows that the maximum SST cooling associated with Morakot occurred on the left-hand side of the typhoon track during its landfall. Numerical simulations show that, together with the SST gradients associated with the coastal upwelling and mesoscale oceanic vortices, the resulting SST cooling can cause significant difference in the typhoon track, comparable to the current 24-hour track forecasting error. It is strongly suggested that it is essential to include the non-uniform SST distribution in the coastal areas for further improvement in typhoon track forecast.  相似文献   

3.
Previous studies have linked interannual variability of tropical cyclone(TC)intensity in the North Atlantic basin(NA)to Sahelian rainfall,vertical shear of the environmental flow,and relative sea surface temperature(SST).In this study,the contribution of TC track changes to the interannual variations of intense hurricane activity in the North Atlantic basin is evaluated through numerical experiments.It is found that that observed interannual variations of the frequency of intense hurricanes during the period 1958–2017 are dynamically consistent with changes in the large-scale ocean/atmosphere environment.Track changes can account for~50%of the interannual variability of intense hurricanes,while no significant difference is found for individual environmental parameters between active and inactive years.The only significant difference between active and inactive years is in the duration of TC intensification in the region east of 60°W.The duration increase is not due to the slow-down of TC translation.In active years,a southeastward shift of the formation location in the region east of 60°W causes TCs to take a westward prevailing track,which allows TCs to have a longer opportunity for intensification.On the other hand,most TCs in inactive years take a recurving track,leading to a shorter duration of intensification.This study suggests that the influence of track changes should be considered to understand the basin-wide intensity changes in the North Atlantic basin on the interannual time scale.  相似文献   

4.
In order to investigate air-sea interactions during the life cycle of typhoons and the quantificational effects of typhoon-induced SST cooling on typhoon intensity, a mesoscale coupled air-sea model is developed based on the non-hydrostatic mesoscale model MM5 and the regional ocean model POM, which is used to simulate the life cycle of Typhoon Chanchu (2006) from a tropical depression to a typhoon followed by a steady weakening. The results show that improved intensity prediction is achieved after considering typhoon-induced SST cooling; the trend of the typhoon intensity change simulated by the coupled model is consistent with observations. The weakening stage of Typhoon Chanchu from 1200 UTC 15 May to 1800 UTC 16 May can be well reproduced, and it is the typhoon-induced SST cooling that makes Chanchu weaken during this period. Analysis reveals that the typhoon-induced SST cooling reduces the sensible and latent heat fluxes from the ocean to the typhoon's vortex, especially in the inner-core region. In this study, the average total heat flux in the inner-core region of the typhoon decrease by 57.2%, whereas typhoon intensity weakens by 46%. It is shown that incorporation of the typhoon-induced cooling, with an average value of 2.17℃, causes a 46-hPa weakening of the typhoon, which is about 20 hPa per 1℃ change in SST.  相似文献   

5.
Among all of the sources of tropical cyclone(TC) intensity forecast errors, the uncertainty of sea surface temperature(SST) has been shown to play a significant role. In the present study, we determine the SST forcing error that causes the largest simulation error of TC intensity during the entire simulation period by using the WRF model with time-dependent SST forcing. The SST forcing error is represented through the application of a nonlinear forcing singular vector(NFSV)structure. For the selected 12 TC cases, the NFSV-type SST forcing errors have a nearly coherent structure with positive(or negative) SST anomalies located along the track of TCs but are especially concentrated in a particular region. This particular region tends to occur during the specific period of the TCs life cycle when the TCs present relatively strong intensity, but are still intensifying just prior to the mature phase, especially within a TC state exhibiting a strong secondary circulation and very high inertial stability. The SST forcing errors located along the TC track during this time period are verified to have the strongest disturbing effect on TC intensity simulation. Physically, the strong inertial stability of TCs during this time period induces a strong response of the secondary circulation from diabatic heating errors induced by the SST forcing error. Consequently, this significantly influences the subsidence within the warm core in the eye region, which,in turn, leads to significant errors in TC intensity. This physical mechanism explains the formation of NSFV-type SST forcing errors. According to the sensitivity of the NFSV-type SST forcing errors, if one increases the density of SST observations along the TC track and assimilates them to the SST forcing field, the skill of TC intensity simulation generated by the WRF model could be greatly improved. However, this adjustment is most advantageous in improving simulation skill during the time period when TCs become strong but are still intensifying just prior to reaching full maturity. In light of this, the region along the TC track but in the time period of TC movement when the NFSV-type SST forcing errors occur may represent the sensitive area for targeting observation for SST forcing field associated with TC intensity simulation.  相似文献   

6.
A variational retrieval system often requires background atmospheric profiles and surface parameters in its minimization process. This study investigates the impacts of specific background profiles on retrievals of tropical cyclone(TC) thermal structure. In our Microwave Retrieval Testbed(MRT), the K-means clustering algorithm is utilized to generate a set of mean temperature and water vapor profiles according to stratiform and convective precipitation in hurricane conditions. The Advanced Technology Microwave Sounder(ATMS) observations are then used to select the profiles according to cloud type. It is shown that the cloud-based background profiles result in better hurricane thermal structures retrieved from ATMS observations. Compared to the Global Positioning System(GPS) dropsonde observations, the temperature and specific humidity errors in the TC inner region are less than 3 K and 2.5 g kg~(–1), respectively, which are significantly smaller than the retrievals without using the cloud-based profiles. Further experiments show that all the ATMS observations could retrieve well both temperature and humidity structures, especially within the inner core region. Thus, both temperature and humidity profiles derived from microwave sounding instruments in hurricane conditions can be reliably used for evaluation of the storm intensity with a high fidelity.  相似文献   

7.
Numerical modeling and experiments are conducted for the South China Sea typhoons Helen (1995) and Willie (1996) with an auto-adaptive mesh model. It is shown that durating the stage of dissipation the typhoons are mainly related with the subtropical high rather than the topography. The high is sensitive to the intensity change of the typhoon so that the former weakens as the latter strengthens and vice versa. Maintaining the typhoon as a main factor, the release of latent heat is in reversed proportion with the subtropical high in terms of the intensity. It is found that the storm tends to be maintained if it moves close to the westerly trough after landfall.  相似文献   

8.
It has been challenging to project the tropical cyclone(TC) intensity,structure and destructive potential changes in a warming climate.Here,we compare the sensitivities of TC intensity,size and destructive potential to sea surface warming with and without a pre-storm atmospheric adjustment to an idealized state of Radiative-Convective Equilibrium(RCE).Without RCE,we find large responses of TC intensity,size and destructive potential to sea surface temperature(SST) changes,which is in line with some previous studies.However,in an environment under RCE,the TC size is almost insensitive to SST changes,and the sensitivity of intensity is also much reduced to 3%?C-1–4%?C-1.Without the pre-storm RCE adjustment,the mean destructive potential measured by the integrated power dissipation increases by about 25%?C-1 during the mature stage.However,in an environment under RCE,the sensitivity of destructive potential to sea surface warming does not change significantly.Further analyses show that the reduced response of TC intensity and size to sea surface warming under RCE can be explained by the reduced thermodynamic disequilibrium between the air boundary layer and the sea surface due to the RCE adjustment.When conducting regional-scale sea surface warming experiments for TC case studies,without any RCE adjustment the TC response is likely to be unrealistically exaggerated.The TC intensity–temperature sensitivity under RCE is very similar to those found in coupled climate model simulations.This suggests global mean intensity projections under climate change can be understood in terms of a thermodynamic response to temperature with only a minor contribution from any changes in large-scale dynamics.  相似文献   

9.
In view of the growing interests in the explicit modeling of clouds and precipitation, the effects of varying vertical resolution and time-step sizes on the 72-h explicit simulation of Hurricane Andrew (1992) are studied using the Pennsylvania State University/National Center for Atmospheric Research (PSU/NCAR) mesoscale model (i.e., MM5) with the finest grid size of 6 km. It is shown that changing vertical resolution and time-step size has significant effects on hurricane intensity and inner-core cloud/precipitation, but little impact on the hurricane track. In general, increasing vertical resolution tends to produce a deeper storm with lower central pressure and stronger three-dimensional winds, and more precipitation. Similar effects, but to a less extent, occur when the time-step size is reduced. It is found that increasing the low-level vertical resolution is more efficient in intensifying a hurricane, whereas changing the upper-level vertical resolution has little impact on the hurricane intensity. Moreover, the use of a thicker surface layer tends to produce higher maximum surface winds. It is concluded that the use of higher vertical resolution,a thin surface layer, and smaller time-step sizes, along with higher horizontal resolution, is desirable to model more realistically the intensity and inner-core structures and evolution of tropical storms as well as the other convectively driven weather systems.  相似文献   

10.
Surface heat and moisture fluxes are important to the evolution of a tropical storm after its landfall. Soil moisture is one of the essential components that influence surface heating and moisture fluxes. In this study, the impact of soil moisture on a pre-landfall numerical simulation of Tropical Storm Bill(2015), which had a much longer lifespan over land, is investigated by using the research version of the NCEP Hurricane Weather Research and Forecasting(HWRF) model. It is found that increased soil moisture with SLAB scheme before storm's landfall tends to produce a weaker storm after landfall and has negative impacts on storm track simulation. Further diagnoses with different land surface schemes and sensitivity experiments indicate that the increase in soil moisture inside the storm corresponds to a strengthened vertical mixing within the storm boundary layer, which is conducive to the decay of storm and has negative impacts on storm evolution. In addition, surface diabatic heating effects over the storm environment are also found to be an important positive contribution to the storm evolution over land, but their impacts are not so substantial as boundary layer vertical mixing inside the storm. The overall results highlight the importance and uncertainty of soil moisture in numerical model simulations of landfalling hurricanes and their further evolution over land.  相似文献   

11.
Ocean feedback to tropical cyclones: climatology and processes   总被引:1,自引:0,他引:1  
This study presents the first multidecadal and coupled regional simulation of cyclonic activity in the South Pacific. The long-term integration of state-of the art models provides reliable statistics, missing in usual event studies, of air–sea coupling processes controlling tropical cyclone (TC) intensity. The coupling effect is analyzed through comparison of the coupled model with a companion forced experiment. Cyclogenesis patterns in the coupled model are closer to observations with reduced cyclogenesis in the Coral Sea. This provides novel evidence of air–sea coupling impacting not only intensity but also spatial cyclogenesis distribution. Storm-induced cooling and consequent negative feedback is stronger for regions of shallow mixed layers and thin or absent barrier layers as in the Coral Sea. The statistical effect of oceanic mesoscale eddies on TC intensity (crossing over them 20 % of the time) is also evidenced. Anticyclonic eddies provide an insulating effect against storm-induced upwelling and mixing and appear to reduce sea surface temperature (SST) cooling. Cyclonic eddies on the contrary tend to promote strong cooling, particularly through storm-induced upwelling. Air–sea coupling is shown to have a significant role on the intensification process but the sensitivity of TCs to SST cooling is nonlinear and generally lower than predicted by thermodynamic theories: about 15 rather than over 30 hPa °C?1 and only for strong cooling. The reason is that the cooling effect is not instantaneous but accumulated over time within the TC inner-core. These results thus contradict the classical evaporation-wind feedback process as being essential to intensification and rather emphasize the role of macro-scale dynamics.  相似文献   

12.
While previous studies indicate that typhoons can decrease sea surface temperature(SST) along their tracks, a few studies suggest that the cooling patterns in coastal areas are different from those in the open sea. However, little is known about how the induced cooling coupled with the complex ocean circulation in the coastal areas can affect tropical cyclone track and intensity. The sea surface responses to the land falling process of Typhoon Morakot(2009) are examined observationally and its influences on the activity of the typhoon are numerically simulated with the WRF model. The present study shows that the maximum SST cooling associated with Morakot occurred on the left-hand side of the typhoon track during its landfall. Numerical simulations show that, together with the SST gradients associated with the coastal upwelling and mesoscale oceanic vortices, the resulting SST cooling can cause significant difference in the typhoon track, comparable to the current 24-hour track forecasting error. It is strongly suggested that it is essential to include the non-uniform SST distribution in the coastal areas for further improvement in typhoon track forecast.  相似文献   

13.
利用20世纪大气再分析资料和欧洲中心海温资料研究了春季西北太平洋风暴轴的年(代)际变化特征以及在不同年代际背景下风暴轴与太平洋海温关系的转变。结果表明,春季西北太平洋风暴轴主要存在两种空间变化模态,即反映其强度变化的第1模态和反映其南北位置变化的第2模态。年代际及以上时间尺度上,风暴轴强度、位置与太平洋海温的关系主要表现为大气对海洋的强迫作用。在不同年代际背景下,风暴轴与太平洋海温的关系则存在明显的年代际转变:1977年以后,风暴轴强度与太平洋海温的关系主要表现为大气对海洋的强迫作用,而在1977年之前则主要表现为海洋对大气的强迫作用,特别是同期冬季日本以东黑潮和黑潮延伸区海温异常的强迫作用;风暴轴南北位置与太平洋海温异常的关系,在1977年以后表现为大气对海洋的强迫作用,主要表现为对北太平洋中部海温的影响,但在1977年以前表现为海洋和大气的共同作用,风暴轴南北位置的变化还与同期的赤道中东太平洋海温异常有关,表明ENSO可能对风暴轴的位置变化存在影响。  相似文献   

14.
苑俐  肖子牛 《大气科学》2017,41(6):1141-1155
利用英国哈德莱中心(Hadley Center)1949~2014年表层海温资料,将黑潮延伸体海区海温经向梯度的大值区域的平均值定义为黑潮延伸体及其北部海洋锋强度指数(KEFI),利用数据分析方法研究了各季节KEFI的变化特征及其与北太平洋风暴轴的关系。分析表明,各季节的KEFI存在明显的年际和年代际变化特征,同时在冬季与北太平洋瞬时方差有显著正相关,两者在风暴轴主体位置的相关性最为显著,并且这种相关性在KEFI超前一个月时就所显现,同时对后期风暴轴也有一定影响,即冬季黑潮延伸体海区海洋锋的强度会影响风暴轴区域瞬时方差的变化。之后主要分析了这种影响的可能机制,发现在冬季KEFI高值年,由于海洋锋两侧的热量输送差异更加明显,导致海洋锋附近的近表面气温经向梯度增强,维持了近表面的斜压性,促进涡动热量的向极输送和海洋锋南侧的向上输送,有利于瞬时涡旋的发展。另外大尺度环流场与冬季黑潮延伸体海洋锋也有关系,具体表现为,在海洋锋强年,阿留申低压加深,副热带高压略有加强,对应的对流层低层位势高度场在40°N以北有负变高,以南有正变高,同时高空极锋急流加强,副热带西风急流减弱加宽北抬,海洋锋偏弱年的变化则相反。因此,冬季黑潮延伸体及其北部的海洋锋主要通过两侧海表热量输送差异不断产生气温梯度,进而维持斜压性以促进上层风暴轴的发展。  相似文献   

15.
中尺度海-气耦合模式GRAPES_OMLM对台风珍珠的模拟研究   总被引:1,自引:0,他引:1  
利用全球/区域同化与预报系统GRAPES(Global/Regional Assimilation and Prediction System)和改进的Mellor-Yamada型海洋混合层模式OMLM(Ocean Mixed Layer Model),建立了一个新的中尺度海-气耦合模式GRAPES_OMLM,并利用该模式对发生于南海的台风珍珠(0601)进行了模拟研究,检验了GRAPES_OMLM对台风的模拟性能,并分析了局地海-气相互作用对台风的影响。结果表明,GRAPES_OMLM基本能模拟出台风天气过程中的主要物理过程。考虑了海-气相互作用的耦合试验所模拟出的台风强度、近台风中心最大风速以及台风后期移动路径,相对于两组控制试验(单独大气模式)的模拟结果都有较大的改进。而且,采用逐日变化海表温度作为下边界条件的控制试验2的模拟结果相对于SST不变的控制试验1更接近观测。耦合模式GRAPES_OMLM能较好地模拟出台风过境海表温度的变化,台风珍珠在其路径右侧有超过4.0℃的降温。SST的变化和海表风应力的变化呈反相关系,风应力的增大伴随着海洋近表层湍流动能(TKE)的加强,大风动力作用是SST降低的主要原因。SST的降低致使海洋向台风输送的热通量减少,进而削弱了台风的强度并改变台风环流结构,同时通过改变位势涡度趋势的一波结构(WN-1)来影响台风的移动路径。  相似文献   

16.
Summary The first part of the paper comprises of a control experiment and its forecasts validations with the observed. The PSU-NCAR mesoscale model MM5 was utilized at a horizontal resolution of 4 km using the data sets for hurricane Charley of 2004. The model configures some of the best available versions for physics and microphysical parameterizations schemes to produce forecasts which are close to the observed trend of hurricane Charley. The basic validations of the control run were carried out in terms of track, intensity (sea-level pressure and surface wind speed), storm propagation speed, precipitation and radar reflectivity with that of observed. The validations were necessary because this control experiment will be considered as a benchmark forecast for comparison with other microphysics sensitive experiments forecasts in the second part of this paper. In general, the control run forecasts closely comply with that of observed track and intensity of the hurricane Charley. We also note that control run manage to reproduce much of the important structural characteristics features of the hurricane as observed.  相似文献   

17.
西北太平洋纬向扰动海温经验正交函数(EOF)分解第一和第三模态、第二和第四模态分别代表同期黑潮延伸体和亲潮强弱的配置关系,将两者的典型位相合成,可以分别得到延伸体收缩和扩张状态时的典型模态海温,本文以此及气候态海温作为初始海温强迫场,利用CESM1.2.0模式,讨论了延伸体的系统变异对北太平洋风暴轴的影响及其在不同能量转换过程的主要影响机制,结果表明,延伸体收缩状态下,北太平洋风暴轴强度整体加强,而扩张模态下强度减弱。空间分布上,收缩模态下,风暴轴主要体现为经向方向的变化,中心及其以北强度加强,中心以南减弱;扩张状态下,则主要表现为纬向方向的差异,中心及以西强度减弱明显,中心以东有所增强。对能量转换的诊断分析表明,正压能量转换过程对涡动动能的变化贡献很小,且在风暴轴中心附近,其作用主要为消耗涡动动能,延伸体收缩状态下其消耗作用增强,而扩张状态下消耗作用减弱,这一差异主要是由于不同海温异常强迫下瞬变涡旋的形变不同造成;斜压有效位能释放比正压能量转换大一个量级以上,该过程几乎全部通过基流的经向温度梯度和经向涡动热量输送的相互作用完成,在这一过程中大气斜压性(经向温度梯度)起了关键性作用,大气斜压性异常、基流经向温度梯度异常、斜压有效位能释放异常与风暴轴异常的空间分布均具有较好的对应关系,该过程可能也是延伸体海温异常影响北太平洋风暴轴的主要物理过程;涡动有效位能需要进一步转换为涡动动能才能产生瞬变涡旋运动,涡动有效位能释放的量级与斜压有效位能的释放相当,但数值要小,这一过程通过冷暖空气的上升下沉运动完成,延伸体异常模态下,扰动垂直速度和扰动温度的负相关性的变化与涡动有效位能向涡动动能转换的变化也有较好的对应关系。  相似文献   

18.
运用NCEP、Had ISST再分析资料,北大西洋涛动(NAO)月指数序列,探讨了海表面温度(SST)锋的时空变化特征,揭示了北大西洋SST锋的主要气候变率及其与北大西洋风暴轴和大气大尺度环流异常的关系。研究表明,剔除季节循环后的SST锋显示其最主要变率为锋区的向南/北摆动,其对应的风暴轴发生相应的西南/东北移动,并同时在北大西洋上空对应一个跨海盆的位势高度负/正异常。这种环流异常可引起高纬度海平面气压(SLP)的反气旋/气旋式环流,这有利于增强海表面风对大洋副极地环流的负/正涡度异常输入,进一步减弱/加强了高纬度上层冷水向SST锋区的输送。北大西洋SST锋的另一主要模态为锋区在南北方向的分支和合并。当SST锋异常在40°N~45°N以单支形式加强时,对流层位势高度场和SLP南北梯度增大,对应NAO正位相,此时风暴轴也为单支型;同时SLP异常场促使冰岛附近具有气旋式风应力异常,亚速尔地区具有反气旋式风应力异常,导致副极地环流和副热带环流均加强,增加高纬度冷水和低纬度暖水在锋区的输入,从而进一步增强40°N~45°N附近的SST锋区。当SST锋异常在40°N~45°N纬带南北发生分支时,风暴轴也同时出现北强南弱的南北分支,此时对应了负位相NAO,来自北南的冷暖水输送减弱,SST锋也发生减弱分支。此外,位于大洋内区的SST锋东端也存在一个偶极子型的模态,尽管其解释方差相对较小,但仍与偏东北的NAO型具有显著相关。谱分析表明,北大西洋SST锋与风暴轴具有1~3年和年代际共振,与中高纬大尺度环流也存在周期1~3年的共变信号,其中准一年共变信号体现了SST锋和NAO之间的对应关系。进一步诊断分析表明,SST锋上空的近表层大气斜压性和经向温度梯度随着SST锋的增强而增强,经向热通量的向北输送导致涡动有效位能的增加;海洋的非绝热加热产生更强的垂直热量通量,这有利于涡动有效位能释放成为涡动动能,从而表现为该区域的风暴轴加强,并进一步影响风暴轴中的天气尺度扰动与下游大尺度环流异常的相互作用过程。  相似文献   

19.
A high resolution regional atmosphere model is used to investigate the sensitivity of the North Atlantic storm track to the spatial and temporal resolution of the sea surface temperature (SST) data used as a lower boundary condition. The model is run over an unusually large domain covering all of the North Atlantic and Europe, and is shown to produce a very good simulation of the observed storm track structure. The model is forced at the lateral boundaries with 15–20 years of data from the ERA-40 reanalysis, and at the lower boundary by SST data of differing resolution. The impacts of increasing spatial and temporal resolution are assessed separately, and in both cases increasing the resolution leads to subtle, but significant changes in the storm track. In some, but not all cases these changes act to reduce the small storm track biases seen in the model when it is forced with low-resolution SSTs. In addition there are several clear mesoscale responses to increased spatial SST resolution, with surface heat fluxes and convective precipitation increasing by 10–20% along the Gulf Stream SST gradient.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号