首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
利用1981~2016年气象常规观测和自动站资料对南充大风的基本气候特征进行统计分析,重点探讨不同类型区域雷暴大风的天气系统配置和环境物理量基本特征。结果表明:(1)南充雷暴大风按照形成原因主要分为高空冷平流强迫类和斜压锋生类,按落区出现情况分为全市型、东部型和西部型,东部型雷暴大风主要由高空冷平流强迫所致,全市型和西部型雷暴大风过程则多为斜压锋生所造成。(2)斜压锋生类雷暴大风主要发生在显著冷暖平流导致的斜压锋生与锋面动力强迫共同作用的形势下,高空冷平流强迫类则主要是高空强干冷平流的作用。(3)雷暴大风过程发生前大气环境呈上干下湿、湿层浅薄或为“喇叭口”形态,对于不同类型雷暴大风过程发生前的环境物理结构不同,斜压锋生类雷暴大风产生时大气环境多为明显斜压特征,高空常伴有强锋区,低层不稳定能量大,因此热力因子比较重要。高空冷平流强迫类主要发生在川陕槽后强烈冷平流形势下,水平风垂直切变大、要求低层增温快,故热力和动力因子都重要。   相似文献   

2.
基于常规观测资料、NCEP再分析资料、闪电定位资料和雷达资料,对湖北省2007-2015年雷暴大风的天气类型、时空分布和环境条件进行了分析,并根据箱线图展示的结果分区域分季节讨论了各型雷暴大风的环境参数特征。结果表明:(1)湖北雷暴大风分为高空冷平流强迫型、低层暖平流强迫型、斜压锋生型、准正压型,其发生在3-8月,其中夏季(6-8月)雷暴大风占其全年总数的78%;一天中,其主要发生在15-19时,峰值在16时;雷暴大风空间分布不均,其高频中心位于鄂西南的宜昌和鄂东的黄石。(2)各型雷暴大风存在季节和区域差异,斜压锋生型主要出现在春季,高空冷平流强迫型、低层暖平流强迫型、准正压型主要出现在夏季;高空冷平流强迫型在鄂西北发生最多,低层暖平流强迫型在宜昌地区、江汉平原、鄂东均出现较多,准正压型和斜压锋生型在鄂东发生最多。(3)高空冷平流强迫型雷暴大风的850 hPa与500 hPa温差(ΔT85)和中低层(925-500 hPa)风垂直切变(SL95)较大,850 hPa露点温度(Td85)偏低;低层暖平流强迫型的SL95、K指数均较大;准正压型的对流有效位能(CAPE)较大、SL95、低层(925-700 hPa)风垂直切变(SL97)较小;斜压锋生型的SL95和SL97均较大。(4)湖北雷暴大风的对流参数K指数、ΔT85、CAPE的阈值分别为35℃、25℃和925 J·kg-1,鄂西北、鄂东的对流参数离散度较大,按区域归纳各型雷暴大风的对流参数阈值,对当地雷暴大风预报预警更有指导意义。  相似文献   

3.
利用贵州省2012—2016年重要天气报、雷暴观测资料等,统计了雷暴大风时空分布特征,结果表明:贵州雷暴大风发生在3—10月,5月和8月发生次数最多,一天当中雷暴大风发生的高频时段在午后到前半夜,峰值出现在15—18时(北京时,下同)。贵州发生雷暴大风高频地带总体呈东北—西南向分布,西南部为高发区。利用NCEP再分析资料统计雷暴大风过程物理量场的特征,选取对流有效位能、对流抑制能量、下沉对流有效位能、大气可降水量、垂直风切变等8个动力和热力指标,分别给出其春季和夏季的阈值。基于指标阈值的统计结果,建立多指标叠套雷暴大风落区预报方法,结果表明预报落区与雷暴大风实际发生区域有较好的一致性,但仍然需要预报员根据环境条件做出订正。  相似文献   

4.
广西雷暴大风环流特征和物理量诊断分析   总被引:8,自引:4,他引:4  
钟利华  曾鹏  李勇  熊文兵  胡宗煜 《气象》2011,37(1):59-65
利用观测资料和ECMWF分析资料,对广西2006-2008年发生的雷暴大风强天气45次个例进行统计分析,并应用天气学方法进行影响模型分析,从雷暴大风发生的条件入手,探讨了一些稳定度指数和动力参数的物理意义,及雷暴大风发生区域的环境场特征,统计归纳出了:(1)造成广西雷暴大风强天气过程可分为高原深槽型,台风低槽型、副高西部型和华北低槽型等四种天气模型;(2)雷暴大风多发生在午后,峰值出现在16时左右;7月和8月出现的最多;(3)局地雷暴大风的出现与地形作用有密切关系;(4)雷暴大风产生前,四种天气影响型广西大部地区大气层结均有不稳定能量聚集,低层有强的水汽辐合,相对湿度大;高原深槽、华北低槽和副高西部影响型强的垂直上升运动和正涡度中心位于广西北部,台风低槽影响型则位于广西东南部;(5)出现雷暴大风的区域大气层结不稳定性更显著,低层水汽辐合和中低层气旋性辐合也偏强.  相似文献   

5.
极端雷暴大风的环境参量特征   总被引:2,自引:0,他引:2       下载免费PDF全文
为了研究极端雷暴大风天气环境要素特点,选取2002—2017年中国各地区极端雷暴大风个例95个和不伴随强对流的普通雷暴个例95个,通过两者间关键环境参数的对比,揭示极端雷暴大风事件的关键环境参数特征。结果表明:极端雷暴大风天气发生在对流层中层相对干的环境下,表现为400~700 hPa极端雷暴大风对应的单层最大温度露点差和平均温度露点差平均值分别为25.7℃和13.6℃,而普通雷暴的相应值分别为16.2℃和6.5℃。统计结果表明:尽管产生极端雷暴大风的对流风暴和普通雷达对应的地面露点差异并不大,但前者相应的大气可降水量(平均值为37 mm)明显低于后者(平均值为51 mm),差异突出表现在两者湿层厚度的不同上;相对于普通雷暴事件,极端雷暴大风事件对应的对流有效位能值(平均值为1820 J·kg-1)明显高于普通雷暴事件的对应值(平均值为470 J·kg-1);此外,极端雷暴大风事件对应的对流层中下层垂直温度递减率、下沉有效位能、夹卷层平均风速和0~6 km,0~3 km垂直风切变均明显大于普通雷暴事件对应的相应值。  相似文献   

6.
中国强雷暴大风的气候特征和环境参数分析   总被引:6,自引:3,他引:3  
费海燕  王秀明  周小刚  俞小鼎 《气象》2016,42(12):1513-1521
对2004—2013年中国强雷暴大风记录(风速≥25 m·s~(-1))的气候特征和环境参数进行统计分析研究。结果表明:强雷暴大风主要发生在中国中东部地区,从3月开始在西南、华南地区出现,4月北进入华中、华东地区,5月北进到华北、东北和西北地区。不同地区强雷暴大风发生峰值时间不同,其中华中和华南有两个峰值。中国强雷暴大风环境参数中低层垂直风切变中等(地面至700hPa和地面至500 hPa平均值分别为10.2和14.3 m·s~(-1)),明显低于美国大范围雷暴大风的均值;存在明显的干层,一般表现为500 hPa附近的中层温度露点差大于10℃C以上,其中华北、西北地区表现为整层3~7 km均较干。根据红外卫星云图的观测特征,强雷暴大风发生时云型最多的是团状,其次是线状,还有一些不规则形状的云型,不同地区主导云型不同。分析我国强雷暴大风多发地华东地区三种云型的环境参数表明:团状云型强雷暴大风的CAPE值大,低层高湿,中层干且环境温度直减率大;线状云型其热力参数值均较团状云型小,但低层和深层垂直风切变大,整层均较干;不规则云型低层高温高湿,环境风垂直切变较小。  相似文献   

7.
利用常规地面高空观测资料、地面自动站资料、NCEP 1°×1°再分析资料、卫星云图、多普勒天气雷达资料等,对2017年秋季发生在河北省中部的一次由飑线引发的雷暴大风天气进行分析。结果表明:本次雷暴大风过程发生在高空冷涡底部,槽后冷空气与低层暖平流叠加配合地面冷锋的有利天气背景下,由飑线回波直接造成。环境条件中水汽和热力达到了中国华北地区产生强雷暴大风的平均值,大气温度直减率和垂直风切变比夏季更适宜,但能量不如夏季充足。飑线的强度、形态与夏季产生雷暴大风的雷达回波特征无异,但依据低层径向速度大值区预警秋季飑线大风需提高阈值。秋季飑线过程中地面同样伴随风场辐合、雷暴高压等中尺度系统,冷池密度流作用有利于地面大风产生。  相似文献   

8.
利用2016-2021年重要天气报、雷暴观测资料等,统计分析出贵州铜仁雷暴大风的时空分布的特征分析,并对其环流形势及离铜仁较近的怀化站探空特征进行分类分型,结果表明:贵州铜仁雷暴大风主要出现在3月至9月,5月发生次数最多,年均12.5站次,高频时段出现在14时—23时,峰值在22时(北京时,下同);总体呈现“北多南少、东多西少”的分布特征,且主要以单站雷暴大风天气为主。根据天气形势配置将其分为以下4类:斜压锋生类、低层暖平流强迫类、准正压类和高层冷平流强迫类。其中低层暖平流强迫类根据中低层切变线北侧冷平流的强弱又可以分为:强冷暖平流强迫类、强暖平流强迫类和中间类。总结归纳各类雷暴大风过程的天气环流形势配置及垂直分布特征,可为短期天气预报预警提供参考。  相似文献   

9.
河北廊坊雷暴大风的气候特征   总被引:1,自引:0,他引:1  
利用1970~2012年廊坊地区9个气象站地面雷暴大风观测资料,采用趋势分析、滑动t检验、小波分析和最大熵谱分析等统计方法,系统分析了该地区雷暴大风天气的时空特征及变化趋势和变化周期。结果表明:廊坊地区的雷暴大风局地性强,43 a间只出现了一次全区性的雷暴大风天气过程,雷暴大风多以单站出现为主。雷暴大风的地域性特征明显,中部的廊坊市及南部的文安、大城站较易出现,而北部发生概率较低。雷暴大风的日、月及年变化特征明显。雷暴与大风主要发生在午后至前半夜,大风发生时间一般落后于雷暴,1 h内的雷暴与10 min以内的大风发生概率最高;雷暴大风3~10月都可出现,主要集中在夏季,发生概率为73.3%;近43 a来,年均雷暴大风日数整体呈现减少趋势,且中部的站点减少趋势最显著,1994年为雷暴大风的显著突变年,其显著变化周期为3.23a。雷暴大风多为"湿"型。  相似文献   

10.
利用2010—2017年中国气象局重要天气报、地面观测和探空资料以及欧洲中期天气预报中心ERA-Interim再分析资料,对川藏地区雷暴大风的活动特征、环境因子和环流形势进行统计分析,并对其中高原(海拔高度不低于1 km)和盆地(海拔高度低于1 km)区域雷暴大风活动进行对比。结果表明:川藏高原区域雷暴大风频次呈5—6月和9月双峰型分布,主要发生在午后;盆地区域主要发生在夏季,午后和夜间均较活跃。高原站雷暴大风年平均频次约为2次/站,在雷暴和大风中分别约占4.5%和8%。盆地站年平均频次仅为0.4次/站,雷暴中仅占1.5%,但在大风中约占60%。高原站雷暴大风的中低层环境温度递减率较大,一般呈上湿下干的逆湿垂直结构;而盆地站雷暴大风通常具有上干下湿的垂直结构。分别对5—6月和9月高原站雷暴大风两个峰值时段的环流形势进行合成分析,发现5—6月受高空西风槽影响,中层有弱冷平流侵入,高层位于高空急流入口区右侧,环境垂直风切变较大;而9月受副热带高压边缘影响,中高层较干,低层暖湿气流明显。这些均有利于雷暴大风发生。  相似文献   

11.
利用2020年6月1日—2022年5月31日CMA GD模式2 m气温预报产品(预报时效为13—36 h)和同期江西省智能网格预报区域内地面站气温观测资料,计算气温预报准确率、平均误差和均方根误差,并统计分析其时空分布特征。结果表明: 1)模式预报准确率在不同月份、起报时次存在差异,暖季总体较高,冷季总体较低;暖季08时起报产品的月准确率总体高于20时,冷季反之;秋、冬季旬准确率分布更离散。模式预报产品其准确率明显低于中央气象台和江西省气象台订正产品,需订正后使用。08时起报产品对寒潮的预报效果优于20时。2)气温预报年误差分布存在日变化,最大值出现在08时,最小值出现在15时;年均方根误差峰值出现在15时和06时,白天大于夜间。3)冬季平均误差多为正值,夏季为负值,春、秋季平均误差大小界于冬、夏季之间;白天时段夏季均方根误差最大,夜间时段冬季最大。4)气温预报年误差地理分布特征明显,平原地区预报值偏低,年均方根误差最小;丘陵和山区22 h时效预报值偏高,31 h时效偏低;高山站预报值偏高,年均方根误差最大。丘陵地区负误差最大,平原地区最小;山区正误差最大。  相似文献   

12.
基于1956—2019年参证气象站记录的雷暴、闪电、暴雨、高温、低温、雾和霾等气候资料,利用常规气候统计及Morlet小波方法对影响昌北机场安全运营的高影响天气事件演变及周期变化规律进行统计分析。结果表明:1) 雷暴多出现于春夏季,年均雷暴日数为49.8 d,呈波动下降趋势。2) 春夏季闪电高发,且夏季机场附近存在较明显的闪电集中区域,闪电高频时段为13—20时,最高峰为15时。3) 年均暴雨、大暴雨日数分别为5.0 d和0.8 d,呈缓慢增长趋势,暴雨集中在4—8月,大暴雨集中在4、6月,二者均在6月份最多。4) 夏季高温日数呈缓慢增加趋势,7月份最多,8月份次之;冬季低温日数呈明显下降趋势,1月份最多,12月份次之。5) 年均霾日数大于雾日数,霾多发于秋冬季,雾集中在冬春季,均于12月最常发生。6) 冰雹、积雪、结冰、冻雨、沙尘、龙卷风等破坏性天气发生频次较小,但不应忽视此类天气的防范工作。7) 暴雨、低温及高温日数均存在准2 a的周期变化。  相似文献   

13.
水平螺旋度在沙尘暴预报中的应用   总被引:1,自引:0,他引:1  
李岩瑛  张强 《气象学报》2012,70(1):144-154
为了更准确地预报中国北方沙尘暴的强度和范围,应用2002—2010年3—6月逐日08和20时高空流场资料、高空图资料和地面每3 h的天气图资料,计算近地面至500 hPa的水平螺旋度。结果表明,螺旋度负值中心值越大,辐合上升运动越强,风速越大,对应沙尘暴的强度就越强。螺旋度负值中心常常在河西走廊附近最强,沙尘暴发生在螺旋度负值中心附近或下游。在沙尘关键区(40°—48°N,84°—120°E)当出现螺旋度≤-600 m2/s2的负值中心时,6 h内该区或其下游将产生能见度低于500 m的强沙尘暴,螺旋度负值中心与下游沙尘暴发生区有良好的对应关系。通过对中国北方区域性强沙尘暴典型个例、甘肃省河西走廊东部沙尘天气的对比分析,螺旋度有较强的日变化,白天强于夜间,对冬春季中国北方干旱区的冷锋型沙尘暴天气有较强的预报能力。  相似文献   

14.
贵州省汛期短时降水时空特征分析   总被引:10,自引:2,他引:8  
彭芳  吴古会  杜小玲 《气象》2012,38(3):307-313
利用贵州区域84测站1991—2009年汛期(4—9月)逐小时降水量资料,分别定义各站点的小时降水量的强降水阈值。阈值的分布有两个高值中心,最强中心在西南部望谟站,西北部的强降水阈值较低。同时利用各站点阈值统计19年不同月份的强降水事件频数,其分布显示:4月份东部和中部偏南地区频数较高,5月份频数高值区呈东北—西南向,随后几个月逐渐向西北推进。4—6月事件频数逐渐增大,7月维持,8—9月开始减少。各月强降水事件发生时次统计表明:一天中有三个相对高值时段,23:00—02:00、05:00—08:00和17:00—20:00,而白天强降水事件很少。短时强降水事件发生时次的空间分布表明,西北部的强降水事件多数发生在傍晚到23:00,中部的强降水集中在23:00—02:00,东南部在05:00—08:00。  相似文献   

15.
2009—2012年中国闪电分布特征分析   总被引:6,自引:0,他引:6  
王娟  谌芸 《气象》2015,41(2):160-170
运用全国雷电监测定位系统ADTD获取的2009年1月至2012年12月云地闪电资料,对我国闪电的时空分布特征进行统计分析。结果表明:地闪中负地闪占闪电总数的94%以上,正地闪占5%左右,我国闪电主要发生在5 9月,7、8月是闪电高发期,同雨带的推进有较好的对应关系。随着季风的推进,闪电从南向北,从东向西逐渐增多。闪电在夏季达最大,春秋季次之,冬季最小;闪电频次日变化主要呈单峰分布,全国闪电多发时段在16 17时,同强对流天气多发时段相对应。闪电总体分布南部比北部多,东部沿海比西部内陆多;闪电密度分布呈明显的地域性差异,其中华南地区、中东部地区以及四川盆地为我国闪电密度高值区;闪电白天主要发生在江浙以及广东沿海一带,夜间则主要发生在云贵、川渝内陆地区。午后至傍晚(14—20时)闪电最活跃,上午(08—14时)最不活跃。三个闪电高发区的闪电峰值所在月份不同,华南地区主要在6月,四川盆地主要在7月,而中东部地区则在8月出现最大值。春季闪电最活跃的区域是华南,这和该区域的前汛期降水密切相关。正负闪电强度主要集中在10~40kA,累计概率在60%以上的正、负地闪电强度分别小于60 kA和35 kA;累计概率在90%以上的正、负地闪强度分别小于140 kA和65 kA,闪电强度的低值区主要分布负闪,而正闪主要分布在闪电强度的大值区。  相似文献   

16.
2003年夏季OLR特征及与中国异常天气的关系   总被引:11,自引:1,他引:11  
于玉斌  姚秀萍 《气象》2005,31(7):10-15
利用NOAA卫星观测的多年平均OLR及2003年的OLR资料,分析了2003年夏季OLR场的异常特征及其与2003年中国夏季异常天气的关系。结果表明,2003年夏季在60~150°E范围内热带辐合带(ITCZ)主要分布在赤道以北的阿拉伯海、孟加拉湾到南海地区,其中孟加拉湾、阿拉伯海地区的对流较常年偏强,而南海地区的对流较常年的偏弱;菲律宾以东洋面的OLR场数值异常偏高,对流活动异常不活跃,这是2003年台风异常偏少的主要原因;OLR大于250W·m-2的区域所表征的西太平洋副热带高压与常年相比,表现为南北活动相对稳定、东西出现振荡、强度偏强的特征,这是2003年南方持续高温酷暑天气的主要原因之一。  相似文献   

17.
Severe weather reports and composite radar reflectivity data from 2010–14 over North China were used to analyze the distribution of severe convective wind(SCW) events and their organizational modes of radar reflectivity. The six organizational modes for SCW events(and their proportions) were cluster cells(35.4%), squall lines(18.4%), nonlinear-shaped systems(17.8%), broken lines(11.6%), individual cells(1.2%), and bow echoes(0.5%). The peak month for both squall lines and broken lines was June, whereas it was July for the other four modes. The highest numbers of SCW events were over the mountains, which were generally associated with disorganized systems of cluster cells. In contrast, SCW associated with linear systems occurred mainly over the plains, where stations recorded an average of less than one SCW event per year. Regions with a high frequency of SCW associated with nonlinear-shaped systems also experienced many SCW events associated with squall lines. Values of convective available potential energy, precipitable water, 0–3-km shear, and 0–6-km shear, were demonstrably larger over the plains than over the mountains, which had an evident effect on the organizational modes of SCW events. Therefore, topography may be an important factor in the organizational modes for SCW events over North China.  相似文献   

18.
引入一维加权平均的谱分析方法定量研究四川地形强迫对该区域降水分布的影响。结果表明:纬向地形和冬季降水谱峰锁相于同一波长(475.8 km),呈共振关系,地形与其他季节降水呈漂移关系,这与经向和纬向上环流变动有关,即冬季纬向环流占主导,纬向地形触发的大气波动对冬季降水策动作用大;夏季降水是各种不同尺度系统相互作用的结果,地形是重要因素之一。经向和纬向地形特征尺度分别为296.8 km和475.8 km,反映了地形强迫的中尺度特征,且纬向地形谱峰比经向大1个数量级,纬向强迫更明显。夏季降水谱峰比冬季大2个数量级,降水系统纬向特征尺度比冬季小约150 km,说明夏季在纬向地形强迫下,降水系统尺度减小的同时其强度大大增加,这在一定程度上可以解释中尺度对流性降水在夏季偏多。四川夏季最大降水位于雅安地区,其地形扰动比四川整体扰动更明显,故产生的降水也更大。夏季降水和经向地形锁相于同一波长(37.1 km),经向地形对雅安夏季强降水起关键作用。  相似文献   

19.
王朋岭  周兵  韩荣青  孙冷  王遵娅  司东  孙丞虎 《气象》2012,38(4):472-479
本文基于实时和历史观测资料,利用气候统计和气候机理诊断方法,对2011年气候异常及成因进行总结分析。结果表明,全球海洋外源强迫和大气内部动力过程共同作用下的大气环流系统组合异常,是造成2011年中国大部地区降水异常偏少,温度明显偏高,呈现暖干型气候特征的主要原因。具体表现为,拉尼娜事件在2011年夏季短暂中断后,9月再次进入拉尼娜状态;西太平洋副热带高压在5月之前异常偏弱、偏东,致使长江中下游出现严重春旱,之后副热带高压有所加强,尤其在6月异常偏强,使长江中下游地区梅雨量偏多、旱涝急转;秋季副热带高压脊线偏北、中高纬度冷空气活动阶段性活跃,致使华西、黄淮地区秋雨异常偏多;热带印度洋海温演变经历负偶极型海温模态后,夏季转为全区一致型暖海温;2010/2011年东亚冬季风偏强,2011年南海夏季风爆发偏早、结束偏晚,东亚夏季风正常偏弱;西北太平洋和南海热带气旋生成数量处于偏少的年代际时段,2011年热带气旋生成数量偏少。  相似文献   

20.
利用2013年3月至2017年2月天津西青地基35通道微波辐射计观测资料,分析天津地区大气水汽和液态水特征。结果表明:天津地区各季节积分水汽和积分液态水的日变化趋势基本一致,均呈单峰型日变化特征,其中夏季最大,秋季次之,冬季最小。各季节积分水汽最大值出现在23:00时(北京时,下同)的概率均明显大于其他时次,夏季和冬季的积分液态水的最大值出现在14时的概率最大,春季和秋季分别出现在10时和13时的概率最大。天津地区水汽密度由地面至3.5 km处逐渐减小,递减梯度由夏季、秋季、春季和冬季的顺序依次增大,各季节从1.5 km往上日变化均不明显。1 km以下,春季、夏季和秋季平均水汽密度的日变化曲线呈双峰型,主峰值分别出现在08时、11时和12时左右。冬季呈单峰型变化,峰值区出现在12-16时。液态水密度随高度分层变化,夏季的液态水密度大值区(0.08-0.14 g·m-3)为5-6 km,在18-20时出现最大值。秋季、春季和冬季液态水密度的大值区出现的高度为1.5-3.5 km,但数值依次减小,春季和冬季的最大值出现在05时前后,秋季则出现在02时左右。另外天津地区水汽、液态水与温度和降水量的变化趋势基本一致,除夏季06-18时及冬季部分时次外,水汽与温度呈正相关。液态水与温度相关性较差,但与降水量呈正相关,全年液态水与降水量夜间的相关性大于白天。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号