首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 141 毫秒
1.
ABSTRACT Numerical simulations with the Advanced Regional Prediction System (ARPS) model were performed to investigate the impact of microphysical drop size distribution (DSD) on tornadogenesis in a subtropical supercell thunderstorm over Anhui Province, eastern China. Sensitivity experiments with different intercept parameters of rain, hail and snow DSDs in a Lin-type microphysics scheme were conducted. Results showed that rain and hail DSDs have a significant impact on the simulated storm both microphysically and dynamically. DSDs characterized by larger (smaller) intercepts have a smaller (larger) particle size and a lower (higher) mass-weighted mean fall velocity, and produce relatively stronger (weaker) and wider (narrower) cold pools through enhanced (reduced) rain evaporation and hail melting processes, which are then less favorable (favorable) for tornadogenesis. However, tornadogenesis will also be suppressed by the weakened mid-level mesocyclone when the cold pool is too weak. When compared to a U.S. Great Plain case, the two microphysical processes are more sensitive to DSD variations in the present case with a higher melting level and deeper warm layer. This suggests that DSD-related cloud microphysics has a stronger influence on tornadogenesis in supercells over the subtropics than the U.S. Great Plains.  相似文献   

2.
An extraordinary rainstorm that occurred in Beijing on 21 July 2012 was simulated using the Weather Research and Forecasting model. The results showed that:(1) The two precipitation phases were based on a combination of cold cloud processes and warm cloud processes. The accumulated conversion amount and conversion rate of microphysical processes in the warm-area phase were all much larger than those in the cold front phase.(2) 72.6% of rainwater was from the warm-area phase. Rainwater mainly came from the melting of graupel and the melting of snow, while the accretion of cloud water by rain ranked second.(3) The net heating rate with height appeared as an overall warming with two strong heating centers in the lower and middle layers of the troposphere and a minimum heating center around the melting layer. The net heating effect in the warm-area phase was stronger than that in the cold front phase.(4) Warm cloud processes contributed most to latent heat release, and the thermal effect of cold cloud processes on the storm in the cold front phase was enhanced compared to that in the warm-area phase.(5) The melting of graupel and snow contributed most to latent heat absorption, and the effect of the evaporation of rainwater was significantly reduced in the cold front phase.  相似文献   

3.
The cumulus merging processes in generating the mesoscale convective system (MCS) on 23 August 2001 in the Beijing region are studied by using a cloud-resolving mesoscale model of MM5. The results suggest that the merger processes occurred among isolated convective cells formed in high mountain region during southerly moving process play critical role in forming MCS and severe precipitating weather events such as hailfall, heavy rain, downburst and high-frequency lightning in the region. The formation of the MCS experiences multi-scale merging processes from single-cell scale merging to cloud cluster-scale merging, and high core merging. The merger process can apparently alter cloud dynamical and microphysical properties through enhancing both low- and middle-level forcing. Also, lightning flash rates are enhanced by the production of more intense and deeper convective cells by the merger process, especially by which, the more graupel-like ice particles are formed in clouds. The explosive convective development and the late peak lightning flash rate can be found during merging process.  相似文献   

4.
At present,parameterization methods to describe cloud and precipitation processes are widely used in cloud and mesoscale models,but with different drop size distributions.When precipitation formation mechanism,weather modification technique,and mechanism of hail suppression with seeding are studied by using these models,a question that needs to be addressed is:what is the influence of different drop size distributions and related parameters on cloud and precipitation?In this paper,by using a three-dimensional hail cloud numerical model developed by the Institutes of Atmospheric Physics,Chinese Academy of Sciences, we performed numerical experiments with varied drop size distribution parameters for two hail storms,and analyzed the influence of shape parameters(ar,ai,and ag)of raindrops,ice crystal,and graupel size distributions on rainfall,hail amount,and microphysical processes in clouds.The results show that the variation of ar has no effect on precipitation formation on the whole,but affects directly the production rates for the physical processes related to raindrop.The ag variation has a less obvious effect on rainfall amount,but has a significant effect on hail amount,hailfall rate,and rainfall intensity.It impacts noticeably on the generation rate of the number and mass of ice crystal,graupel,and hail,and also to various degrees on all the microphysical processes in clouds.The ag variation also influences the growing process of the hydrometeors.The effects of the ai variation on part of the generation and growing processes of all the hydrometeors are significant,and even dramatic,such as the collection process of cloud water to rain through melting ice crystal(T CLcir).However,for clouds located in different geographic regions,the variation of ai has different effects on precipitation,which reflects the complexity of the impact of drop size distribution on cloud and precipitation.At last,some issues about the application of cloud models are also discussed.  相似文献   

5.
The effects of the initial cloud condensation nuclei(CCN) concentrations(100–3000 mg~(-1)) on hail properties were investigated in an idealized non-severe hail storm experiment using the Weather Research and Forecasting(WRF) model, with the National Severe Storms Laboratory 2-moment microphysics scheme. The initial CCN concentration(CCNC) had obvious non-monotonic effects on the mixing ratio, number concentrations, and radius of hail, both in clouds and at the surface, with a CCNC threshold between 300 and 500 mg~(-1). An increasing CCNC is conducive(suppressive) to the amount of surface hail precipitation below(above) the CCNC threshold. The non-monotonic effects were due to both the thermodynamics and microphysics. Below the CCNC threshold, the mixing ratios of cloud droplets and ice crystals increased dramatically with the increasing CCNC, resulting in more latent heat released from condensation and frozen between 4 and 8 km and intensified updraft volume. The extent of the riming process, which is the primary process for hail production, increased dramatically. Above the CCNC threshold, the mixing ratio of cloud droplets and ice crystals increased continuously, but the maximum updraft volume was weakened because of reduced frozen latent heating at low level. The smaller ice crystals reduced the formation of hail and smaller clouds, with decreased rain water reducing riming efficiency so that graupel and hail also decreased with increasing CCNC, which is unfavorable for hail growth.  相似文献   

6.
Typhoon KROSA in 2007 is simulated using GRAPES, a mesoscale numerical model, in which a two-parameter mixed-phase microphysics scheme is implanted. A series of numerical experiments are designed to test the sensitivity of landfalling typhoon structure and precipitation to varying cloud microphysics and latent heat release. It is found that typhoon track is sensitive to different microphysical processes and latent heat release. The cloud structures of simulated cyclones can be quite different with that of varying microphysical processes. Graupel particles play an important role in the formation of local heavy rainfall and the maintenance of spiral rainbands. Analysis reveals that the feedback of latent heat to dynamic fields can significantly change the content and distribution of cloud hydrometeors, thus having an impact on surface precipitation.  相似文献   

7.
This paper discusses the effect of graupel/hail parameters on a convective system in Yangjiang, Guangdong Province. The simulation results using the original model settings were similar to observations in terms of radar reflectivity and sea level pressure, as well as the identification of hydrometeor particle classification by X-band dual-polarization radar data. Sensitivity tests using changed parameters of graupel/hail indicated that a size distribution with larger and denser but fewer hail hydrometers resulted in a weaker development of the convective system in the horizontal and vertical directions. With a large terminal velocity of hail, the melting rate of graupel and evaporation rate of rain were the lowest. Hail could reach the ground and the mixing ratio of rain was the largest near the ground. Precipitation, including rainwater and hail, was the largest. However, a size distribution with smaller and lighter but numerous graupel hydrometers resulted in a stronger development of the convective system. The melting rate of graupel and evaporation rate of rain were the largest. More graupel particles were stranded in the air for a longer time—and the maximum mixing ratio of rain was the largest. The precipitation amount, including rainwater only, was the smallest. The changes to graupel parameters also led to differences in microphysical processes.  相似文献   

8.
We analyzed cloud microphysical processes’ latent heat characteristics and their influence on an autumn heavy rain event over Hainan Island, China, using the mesoscale numerical model WRF and WRF-3DVAR system. We found that positive latent heat occurred far above the zero layer, while negative latent heat occurred mainly under the zero layer. There was substantially more positive latent heat than negative latent heat, and the condensation heating had the most important contribution to the latent heat increase. The processes of deposition, congelation, melting and evaporation were all characterized by weakening after their intensification; however, the variations in condensation and sublimation processes were relatively small. The main cloud microphysical processes for positive latent heat were condensation of water vapor into cloud water, the condensation of rain, and the deposition increase of cloud ice, snow and graupel. The main cloud microphysical processes for negative latent heat were the evaporation of rain, the melting and enhanced melting of graupel. The latent heat releases due to different cloud microphysical processes have a significant impact on the intensity of precipitation. Without the condensation and evaporation of rain, the total latent heating would decrease and the moisture variables and precipitation would reduce significantly. Without deposition and sublimation, the heating in high levels would decrease and the precipitation would reduce. Without congelation and melting, the latent heating would enhance in the low levels, and the precipitation would reduce.  相似文献   

9.
Idealized supercell storms are simulated with two aerosol-aware bulk microphysics schemes(BMSs),the Thompson and the Chen-Liu-Reisner(CLR),using the Weather Research and Forecast(WRF)model.The objective of this study is to investigate the parameterizations of aerosol effects on cloud and precipitation characteristics and assess the necessity of introducing aerosols into a weather prediction model at fine grid resolution.The results show that aerosols play a decisive role in the composition of clouds in terms of the mixing ratios and number concentrations of liquid and ice hydrometeors in an intense supercell storm.The storm consists of a large amount of cloud water and snow in the polluted environment,but a large amount of rainwater and graupel instead in the clean environment.The total precipitation and rain intensity are suppressed in the CLR scheme more than in the Thompson scheme in the first three hours of storm simulations.The critical processes explaining the differences are the auto-conversion rate in the warm-rain process at the beginning of storm intensification and the low-level cooling induced by large ice hydrometeors.The cloud condensation nuclei(CCN)activation and auto-conversion processes of the two schemes exhibit considerable differences,indicating the inherent uncertainty of the parameterized aerosol effects among different BMSs.Beyond the aerosol effects,the fall speed characteristics of graupel in the two schemes play an important role in the storm dynamics and precipitation via low-level cooling.The rapid intensification of storms simulated with the Thompson scheme is attributed to the production of hail-like graupel.  相似文献   

10.
The Chinese Academy of Meteorological Sciences (CAMS) two-moment bulk microphysics scheme was adopted in this study to investigate the representation of cloud and precipitation processes under different environmental conditions.The scheme predicts the mixing ratio of water vapor as well as the mixing ratios and number concentrations of cloud droplets,rain,ice,snow,and graupel.A new parameterization approach to simulate heterogeneous droplet activation was developed in this scheme.Furthermore,the improved CAMS scheme was coupled with the Weather Research and Forecasting model (WRF v3.1),which made it possible to simulate the microphysics of clouds and precipitation as well as the cloud-aerosol interactions in selected atmospheric condition.The rain event occurring on 27-28 December 2008 in eastern China was simulated using the CAMS scheme and three sophisticated microphysics schemes in the WRF model.Results showed that the simulated 36-h accumulated precipitations were generally agreed with observation data,and the CAMS scheme performed well in the southern area of the nested domain.The radar reflectivity,the averaged precipitation intensity,and the hydrometeor mixing ratios simulated by the CAMS scheme were generally consistent with those from other microphysics schemes.The hydrometeor number concentrations simulated by the CAMS scheme were also close to the experiential values in stratus clouds.The model results suggest that the CAMS scheme performs reasonably well in describing the microphysics of clouds and precipitation in the mesoscale WRF model.  相似文献   

11.
北京一次大风和强降水天气过程形成机理的数值模拟   总被引:23,自引:5,他引:23  
利用3维强风暴冰雹分档模式(IPA—HBM)对2001年8月23日北京的一次伴有大风、暴雨和冰雹的强对流天气过程进行模拟和分析,并与部分观测资料进行了比较分析。结果表明,该模式对此次强风暴的生命史、降水分布、降雹的大小等要素做了较好的模拟,并能够模拟出伴随强风暴过程所产生的强下沉气流和及地面强风速切变(下去暴流)。从云微物理学角度分析了此次局地性大风的形成原因,认为由高空冰雹粒子的拖曳产生的负浮力作用是促发强下沉气流产生的主要原因,其次是冰雹的融化和雨水蒸发冷却对下沉气流起加速作用,冰雹的拖曳和融化作用对下沉气流具有决定性作用。强风暴所产生的爆发性强下沉气流最终导致了局地大风的形成。  相似文献   

12.
青藏高原东北侧冰雹微物理过程模拟研究   总被引:31,自引:15,他引:16  
以青藏高原东北侧及毗邻地区诱发冰雹灾害的东移短小切变线天气过程为研究背景,采用中国科学院大气物理研究所三维冰雹云分档模式,用MM5V3中尺度气象模式提供冰雹云模拟研究所需的环境大气状况,模拟研究了冰雹形成和增长的微物理过程。结果表明:模式再现了当时冰雹、大风及暴雨的实况;中尺度水分和动力条件是冰雹形成和增长的重要因素,它们决定了冰雹云的强度和冰雹的大小;冰雹形成和增长过程中的微物理过程决定了冰雹云的消亡,冰雹在空中形成的潜热释放延长了降雹的时间;云中冰雹发生、增长的主要区域和云内上升气流配合良好,是防雹消雹的主要范围。  相似文献   

13.
武汉"6·22"空难下击暴流的三维数值模拟研究   总被引:8,自引:2,他引:8  
使用武汉实测探空资料,利用三维强风暴冰雹分档模式对2000年6月22日发生在武汉的一次引起坠机事件的下击暴流进行了模拟和分析,并与实际观测进行了比较研究,结果表明:造成此次空难的下击暴流的发生发展与大的天气背景紧密相关;模拟微下击暴流的各种主要结构和生消演变特征与实测结果吻合较好;该下击暴流产生的直接原因是冰雹的重力拖曳作用引起,其次是冰雹的融化和雨水蒸发的冷却作用.空中散度和涡度的分布与变化同下击暴流也存在密切的联系.  相似文献   

14.
暖底对流云催化的微物理和动力效应的数值模拟   总被引:1,自引:1,他引:0  
为加深理解暖云底对流云降水形成的微物理机制,调查对这类对流云实施碘化银催化所能产生的微物理和动力效应,本文使用三维对流云模式(包含6种水成物:云滴、雨滴、冰晶、雪花、霰和冰雹),对2004年7月8日发生在我国江淮地区的一例对流云进行模拟,并开展碘化银催化试验。结果表明:(1)模式能够较好地模拟出实测风暴的回波结构。(2)云雨自动转化和霰粒子融化是两个最重要的成雨机制,产生的雨滴占雨滴总数量(质量)的67%(19%)和18%(57%)。(3)对流发展初期在主上升气流区进行的催化试验表明,对本例对流云播撒碘化银能够同时获得增雨和减雹的正效果。(4)催化增加的霰粒子通过竞争机制抑制了前期冰雹的形成,但增强了向雨滴的转化(通过融化机制);催化也促进了二次对流的发展,增加了入云的水汽通量和云水含量,加强了后期的云雨自动转化及碰并增长,导致后期的雨和冰雹增加,并使地面降水分布发生变化。这些结果表明,对暖底对流云进行碘化银催化能够产生微物理和动力效应。  相似文献   

15.
陈宝君  肖辉 《大气科学》2007,31(2):273-290
利用中国科学院大气物理研究所开发的三维全弹性冰雹云模式,对美国对流降水协作试验(CCOPE)期间观测的1981年8月1日雹云进行模拟,讨论在过冷雨水低含量条件下冰雹形成和增长机制及其碘化银催化效果。结果表明:(1) 自然云的模拟与观测事实一致,如最大上升气流速度、云顶高度、流场结构以及雹胚组成等。(2) 雹胚以霰为主,霰主要来自冰雪晶与过冷小水滴的碰冻,其次来自雪的积聚转化;霰、冻滴和冰雹在形成后主要靠碰并过冷云水增长。(3)人工催化试验表明,碘化银主要以凝华核(包括凝结-冻结)的作用产生大量的人工冰晶,加速了过冷水向冰晶的转化,过冷云水因而大量减少;催化后霰和冻滴的数浓度增大,对过冷云水的竞争增强,其平均尺度减小导致转化成雹的数量减少;冰雹碰冻过冷云水的增长在催化后也被削弱,导致冰雹总质量进一步减少。此外,催化后降雨量也显著减少。  相似文献   

16.
Two downburst events from one thunderstorm are investigated, which occurred on 23 March 2001, in Germany's climatologic annual minimum of downburst activity. Observations by two Doppler radars are combined with hail reports, ground lightning detection and an aerial survey conducted after the event. The downburst-producing storm had formed at a synoptic convergence line within the warm sector of a cyclone. It had a remarkably high propagation speed of up to 31 m s− 1 corresponding to the mid-tropospheric flow. Thus, by superposition with the storm motion, even two weak downbursts were sufficient to cause the observed damage of F1 and F2 intensity, respectively. While in its late stages, the storm was dynamically characterized by lower- and mid-tropospheric divergence; at about the time of the first downburst, a mesocyclonic vortex signature was verified. Aside from mid-tropospheric dry air entrainment, a thermodynamic explanation for the triggering of the two downbursts by melting of small hail according to recent findings by Atlas et al. [Atlas, D., Ulbrich, C.W., Williams, C.R., 2004. Physical origin of a wet microburst: observations and theory. J. Atmos. Sci. 61, 1186–1196] appears probable. Despite the lack of warnings to the public, the storm's potential for hail and strong straight-line winds was detected by the German weather service radar software CONRAD more than a half hour before the downbursts occurred.  相似文献   

17.
南京"03.7"大暴雨中云物理过程的数值模拟研究   总被引:1,自引:8,他引:1       下载免费PDF全文
利用三维全弹性、双参数化对流云模式和南京站探空资料,对南京“03.7”特大暴雨过程进行了数值模拟研究,着重分析产生这次大暴雨的云物理机制。模拟结果表明,此次暴雨属于积雨云降水,其中云雨碰并是最主要的成雨过程,贡献率达到74%,其次是霰/雹融化,占22%,说明此次降水以暖雨过程为主。通过暖雨过程对比试验表明,虽然冰相过程对雨水的贡献较小,但加入冰相过程能使模拟结果更接近云的实际情况。  相似文献   

18.
冰雹形成的微物理机理是人工防雹的重要科学依据,但对我国西南地区冰雹形成的微物理机理研究很少。利用中国科学院大气物理研究所三维冰雹分档云模式对云南2016年7月11日一次冰雹云过程进行了数值模拟研究,揭示了冰雹形成的微物理机理。此次冰雹云生成发展快,强度大,是西南山区典型夏季冰雹云。数值模拟的降水、降雹和回波强度等物理量与对应的观测量基本一致。模拟的冰雹云的最大上升气流速度达到28.7 m s?1。通过对冰雹形成的微物理过程分析研究表明,雹/霰胚的主要生成来源是通过过冷雨滴的概率冻结产生的冻滴,占95%,而冰晶碰冻雨滴产生的雹/霰胚仅占5%,这与国外和我国其他地区雹/霰胚产生的来源和冻滴所占比例有明显差别;形成的雹/霰胚直径多数集中在0.3 mm至3.0 mm范围,雹/霰胚主要通过对过冷云水的碰并过程实现增长,直径小于0.3 mm的雹/霰胚较难增长;大雨滴冻结成较大直径的雹胚,可促成短时间内形成冰雹;在雹云发展过程中存在短时的过冷雨水累积带,但过冷雨水累积带对雹/霰胚的增长贡献不大。  相似文献   

19.
超级单体风暴中大冰雹增长机制的模拟研究   总被引:5,自引:3,他引:2  
为调查超级单体中大冰雹的运行增长机制,使用三维冰雹分档对流云模式结合三维粒子运行增长模式,对一例超级单体风暴进行了数值模拟.实测风暴的结构如中气旋、弱回波区、前悬回波等被很好地模拟再现,显示了模式对超级单体具有良好的模拟能力.雹胚在风暴发展阶段由过冷雨滴冻结产生,主要分布在主上升气流区上部,在主上升气流区西北侧中高层也有相当数量的雹胚粒子,冰雹主要分布在主上升气流区东侧.风暴发展阶段产生的雹胚有7%~8%增长到1 cm以上,1%左右增长到2 cm以上,这些大冰雹绝大多数起源于主上升气流区北侧的高层云区,气旋性进入主上升气流区按照简单的上—下形式增长,少数大冰雹起源于主上升气流区西北侧风暴后部中高层,气旋性地沿着主上升气流区的边缘按照下—上—下形式运动增长,表明了超级单体中大冰雹存在两条增长路径.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号