首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
江苏高速公路收费站一次雷击事故分析   总被引:1,自引:0,他引:1  
程琳  裴晓芳  沈刚  周俊驰  钱美 《气象科学》2011,31(Z1):120-125
本文对2010年8月3日19时30分沿江高速公路张家港收费站一次严重雷击事故的雷暴过程进行诊断分析,并对其防雷工程存在问题进行综合探讨.分析得出:这次雷暴发生在副热带高压边缘环流形势下,虽副热带高压强大,但大幅度东退,面积明显减小,脊线位置和流场也出现调整.江苏上空由西南气流转为西北气流影响,北方有弱冷空气沿西北气流南...  相似文献   

2.
山东省雷电灾害分析及雷电防御   总被引:1,自引:0,他引:1  
本文根据对山东省雷电历史资料的分析,得出山东省属于雷暴发生频繁地区,雷电事故多发区.通过近年来防雷安全检测、防雷工程设计审核、灾害事故分析与鉴定等防雷工作的实践,总结出目前山东省防雷工作中所存在的问题,并提出相应对策.  相似文献   

3.
500KV汕头变电站是广东省电力系统重点输变电工程,投资超10亿元,它的建成,对缓解粤东片电力紧张,起着重要作用。该站于1997年10月投入使用,但1998年在其附近的莲塘街道发生多起雷击事故,特别是7月10日的事故,造成2人死亡6人受伤。为此,汕头市防雷中心受汕头电力局的委托,对500KV汕头变电站防雷系统进行现场勘察,对莲塘街道范围内的雷暴活动情况进行分析,并初步解释了雷击事故多,特别是7月10日雷击事故的原因。1 雷击与防雷  雷击经常出现在土壤电阻率较小的土地上。土壤电阻率较大的山区和平…  相似文献   

4.
一次强飑线的成因及维持和加强机制分析   总被引:18,自引:6,他引:18       下载免费PDF全文
利用常规观测资料、多普勒天气雷达、自动气象站等资料对2004年7月12日影响上海的一次较长生命史的强飑线过程进行了综合分析,对这次强对流天气发生、发展、强度以及移动和传播的分析结果表明:副热带高压从华南沿海稳定地加强西伸,西风槽缓慢东移,导致华东地区850~500 hPa形成深厚西南急流,急流的加强促使低层锋生,配合K指数高能锋区的不稳定层结,大大增强了强对流天气发生的可能性;地面锋生作用和低层辐合、高层辐散造成的强抬升作用是主要的触发机制;较强的环境风垂直切变和雷暴内部上升气流与下沉气流的正反馈作用是飑线系统维持较长时间的原因,中尺度对流系统(MCS)多个雷暴单体间的相互作用使得南侧的雷暴单体加强、移动方向发生偏转。  相似文献   

5.
通信工程单位因有大量的电子设备而极易成为雷电电磁脉冲的破坏对象.分析了雷击灾害的产生因素,从雷击与电气事故两方面进行了探讨,并从拦截、屏蔽、均压、分流和接地等方面,对其综合系统的防雷工程保护做以阐述.  相似文献   

6.
对南京地铁柔性接触网一次雷击事故进行分析,计算了柔性接触网的雷击风险和雷击参数,在此基础上提出了综合防雷措施,主要包括:安装架空地线、接地、安装地电位均衡器、安装带热脱扣装置的金属氧化物避雷器、提升绝缘子性能等。  相似文献   

7.
文章分析了2002年7月16日浙江省北部地区的一次飑线天气过程。分析表明:高空前倾槽是这次飑线发生的大尺度环流背景,飑线发生在副热带高压边缘的不稳定区域。浙江省北部地区低层暖湿平流和地面的持续强烈升温,一方面为其积蓄了大量不稳定能量;另一方面高空冷平流形成并大大促进了这一地区的不稳定层结,这一不稳定层结主要是通过高空、地面的温度差动平流来实现的。水汽分析表明:低层850hPa的水汽输送是通过暖湿西南气流来实现的,强对流发生的浙江省北部地区正好处于低层850hPa干湿区交界中的露点锋区,而高层700hPa和500hPa的水汽输送却主要是通过西北气流来实现的。  相似文献   

8.
按照国家《建筑物防雷设计规范》规定,15m以上孤立的高耸建筑物(或构筑物)必须安装防雷装置。目前,农村中小学大都安装有金属旗杆。笔者在防雷安全检查工作中发现,一些学校的旗杆高度超过15m,且设置在楼前空旷地带.甚至在人行道旁,却忽视了防雷接地,经测量也不在教学楼避雷针保护范围内。旗杆遭遇雷暴时,由于没有安装防雷接地装置,旗杆杆顶擦火炸响,雷电流不能泄人大地,若师生此时经过此地,易造成人员伤亡事故。因此,旗杆必须安装防雷接地装置,以免造成雷击事故。笔者建议有关单位应重视学校旗杆的防雷接地检查,对不合格的应尽快要求整改。  相似文献   

9.
利用寿光市1959-2006年雷暴观测资料,分析了雷电发生的时空分布和变化规律.其雷暴日数年际变化大,夏季多于春、秋季,雷暴最易出现于午后15-19时.根据近年来寿光市的几起典型雷电灾害事例,分析了雷电灾害的特征:乡村雷击伤亡人数多,感应雷的雷击事故多,雷灾损失和社会影响增大.并提出了防御对策,为今后防雷减灾工作提供依据.  相似文献   

10.
二级公路收费站电子设备雷击原因分析与改造探讨   总被引:1,自引:1,他引:0  
以陆川马盘二级公路良田收费站发生的雷击事件为例,系统地分析了机电设备遭受雷击的原因,对公路机电设备防雷建设进行了探讨,为今后防雷改造整体解决方案及防雷改造施工提供科学依据。  相似文献   

11.
利用地面和探空常规探测资料、多普勒天气雷达以及风廓线雷达资料,对2015年8月7日发生于北京的一次伴随有闪电和冰雹的突发性局地强降水过程的成因进行了分析。结果表明:这次过程发生在强层结不稳定环境中,对流层中层低槽配合低层切变线,促进河北西北部对流发展,并向东南方向移动,形成北京西北部短时强降水;北京中部地区强降水的直接制造者则是新生的局地性雷暴单体,由雷暴冷池出流和暖湿空气在边界层交绥和辐合所触发。北京西北部地形促使冷池出流下山速度加快、冷池出流高度抬高,以及偏东暖湿气流的辐合抬升作用,则是局地雷暴新生的重要影响因子。  相似文献   

12.
利用塔克拉玛干沙漠腹地的塔中气象站1996-2010年地面观测资料对该地区的雷暴和闪电特征进行了分析。结果表明:塔中地区年平均雷暴日数为9.3d,年平均闪电日数为2.7d。塔中地区4月开始出现雷暴和闪电,7月达到最高值,10月至翌年3月之间无雷暴和闪电发生,塔中地区雷暴平均初日为6月1日,平均终日为8月5日。塔中地区雷暴多出现在午后至凌晨,并以30min以内的短时雷暴为主,雷暴出现的最多方位是W和N。  相似文献   

13.
利用湖北省地面雷暴日资料和闪电定位监测资料,采取数理统计方法,对武汉至广州高速铁路湖北段沿线雷电活动进行分析。结果表明:其沿线一年四季均有雷暴发生,且处在湖北省闪电高密度区;夏季平均雷暴日最多,冬季平均雷暴日最少,4-8月闪电次数占全年闪电总次数的91.5%,为闪电集中发生期;一天中闪电次数集中出现在15-19时,也是对流性雷电天气集中发生期和雷电防御关键时段;咸宁北站一带闪电密度最大,雷电活动较频繁,是雷电防御重点地段。  相似文献   

14.
2018年5月17—18日, 湖北省一次连续强风暴过程中先后出现了不同类型的强对流天气。利用FY-4A卫星、雷达和地基闪电观测等资料, 对相似环境背景下17日夜间鄂西北强对流(第1阶段, 下同)和18日上午鄂东强对流(第2阶段, 下同)的环境背景和天气系统特征等差异进行分析, 提炼卫星雷达和闪电资料对分类强对流的预报依据。(1)此次连续强风暴是副高稳定维持, 西南涡东移, 暖式切变线触发形成的, 强对流出现在副高外围西南气流和低涡东侧的辐合区中, 第1阶段短波快速东移后中高层转为冷平流, 上干下湿的层结利于冰雹和大风出现, 第2阶段则处在槽前暖湿气流中, 湿层深厚, 探空对流有效位能CAPE中等强度, 出现持续性强降水的概率较大。地面中尺度涡旋促使强对流发展维持, 18日冷空气南下是第2阶段雷电密集的主要原因。(2)鄂西北强对流正闪比例较大, 正闪峰值时刻和降雹时刻几乎一致, 零星地闪分布在强回波外侧35~50 dBZ回波中, ≥60 dBZ强回波中并未观测到地闪, 鄂东强对流闪电频次较多, 以负闪为主, 密集的负闪分布在35~55dBZ强回波区, 零星正闪和强回波外围25~35 dBZ层状云对应, 以上雷达特征对分类强对流预警都有很好的指示意义。(3) FY-4A闪电成像仪资料LMI、云顶亮温TBB低值区和二维地闪探测位置吻合, LMI总闪和二维地闪随TBB低值中心移动, 冰雹和对流性大风的TBB更低, 分布在230 K以下, 强降水则在250~270 K。   相似文献   

15.
利用2020年成都双流机场雷暴实况与航班运行数据,分析大面积航班延误响应机制(Massive Delay Response System,MDRS)下的系统性雷暴特征。结果表明:2020年成都双流机场启动MDRS响应共21次,黄色和橙色响应分别为17次和4次。MDRS响应下的大气环境具有显著的高湿高能特征,黄色和橙色雷暴天气过程中850 hPa比湿分别为16.23 g·kg?1和17.59 g·kg?1,K指数分别为35.8℃和36.9℃。MDRS黄色响应下,成都双流机场常发生3 h以下的间断性雷暴,高空槽从四川盆地北部延伸至中部,副高位置偏东南,雷暴云团呈现带状或块状分布,35 dBZ以上的雷达强回波区小于终端区面积的1/2,移动方向多为偏东和偏北向。MDRS橙色响应下,双流机场雷暴通常在3 h以上,大气环流具有更显著的涡旋结构,高空槽从四川盆地中部延伸至南部,偏南气流较强,副高位置偏东,雷暴云团具有明显的连续长带状分布特征,强回波区覆盖面积大于终端区的1/2,系统持续时间长,移动速度慢。   相似文献   

16.
北京地区的闪电时空分布特征及不同强度雷暴的贡献   总被引:2,自引:2,他引:0  
利用北京闪电定位网(BLNET,Beijing Lightning Network)和SAFIR3000(Surveillance et Alerte Foudre par Interometrie Radioelectrique)定位网7年共423次雷暴的闪电资料,并按照雷暴产生闪电多少,同时参考雷达回波和雷暴持续时间,将雷暴划分为弱雷暴(≤1000次)、强雷暴(>1000次且≤10000次)和超强雷暴(>10000次),分析了北京地区的闪电时空分布特征及不同强度等级雷暴对闪电分布的贡献。北京总闪电密度最大值约为15.4 flashes km-2a(^-1),平均值约为1.9 flashes km^-2a(^-1),大于8 flashes km^-2a(^-1)的闪电密度高值区基本分布在海拔高度200 m等高线以下的平原地带。不同强度雷暴对总雷暴闪电总量贡献不同,弱雷暴(超强雷暴)次数多(少),产生的闪电少(多),超强雷暴和强雷暴产生的闪电分别占总雷暴闪电的37%和56%。不同强度雷暴对总雷暴的闪电密度高值中心分布和闪电日变化特征影响显著,昌平区东部、顺义区中东部和北京主城区是总雷暴闪电密度大于12 flashes km-2a(-1)的三个主要高值区中心,前两个高值中心受强雷暴影响大,而主城区高值中心主要受超强雷暴影响。总雷暴晚上频繁的闪电活动主要受超强雷暴和强雷暴影响,这两类雷暴晚上闪电活动活跃,分别占各自总闪电的69%和65%,而弱雷暴闪电活动白天陡增很快,对总雷暴午后的闪电活动影响大。另外,不同下垫面条件闪电日变化差异大,山区最强的闪电活动出现在白天,午后闪电活动增强很快,主峰值出现在北京时间18:00,而平原最强的闪电活动发生在晚上,平原(山麓)的主峰值比山区推迟了约1.5小时(1小时)。  相似文献   

17.
山西省大同市大秦铁路湖东车站信息调度机房由于没有按照防雷规范的要求安装外部防雷装置和内部防雷装置,因此每年雷雨季节都要不同程度地遭受雷击损失,本文主要是从直击雷防护、电源系统感应雷防护、轨道测速系统等电位接地等方面按照现代综合防雷的要求提出设计方案。  相似文献   

18.
孙哲  魏鸣 《大气科学学报》2016,39(2):260-269
利用NCEP再分析资料、探空资料、闪电定位资料和南京、常州多普勒雷达资料,通过对比分析南京2012年2月22日春季雷暴和2011年8月10日夏季雷暴两次过程,研究不同季节影响雷暴发生的大气结构以及强弱雷暴地闪特征的差异。结果表明:风矢位温(V-3θ)图揭示的大气动力热力水汽特征能够为雷暴的潜势预报提供先兆信息。两者相较而言,春季雷暴的动力抬升作用明显;夏季雷暴主要由热对流引起,对流层上层的动力抽吸作用不明显。春季弱雷暴正地闪在总地闪中所占比例较高。无论春季弱雷暴还是夏季强雷暴,地闪落点与辐合区对应关系明显,且地闪的落点也与雷达反射率因子有较好的对应关系:地闪主要分布在强回波区(大于40 d Bz)及其外围区域。但在较强雷暴云的发展阶段,地闪多发生在风暴体伸展方向的一侧,具有引导雷达回波移动的作用,夏季强雷暴地闪簇集在垂直风切变区域。  相似文献   

19.
那曲地区雷暴天气时空变化特征及影响因素   总被引:2,自引:0,他引:2       下载免费PDF全文
利用1966—2011年西藏自治区那曲地区所辖7个气象站的雷暴天气历史观测资料,综合运用天气学及线性统计方法、小波分析方法,分析那曲地区雷暴日数的时间和空间分布规律及影响因素。结果表明:那曲地区的雷暴日数存在显著减少趋势,减少趋势达到0.01的显著性水平,变化倾向率为每10年减少5 d;那曲地区雷暴日数空间分布特征为北部多南部少,东部高山峡谷多于西部湖盆;雷暴日数高值出现在东北部,低值出现在东南部。季节分布为夏季最多,春、秋季相对较少,冬季很少出现雷暴;雷暴初日推迟,而雷暴终日提前,雷暴期有缩短趋势。多雷期、少雷期的差异主要表现在西太平洋副热带高压脊线西伸脊点的经度位置、巴尔克什湖东部至青藏高原处高压脊和高原短波槽的位置和强弱上。那曲地区5—9月雷暴日数存在5~10年、20年两种尺度的周期变化规律,从不同时间尺度周期的变化趋势可以看出那曲地区将逐渐进入多雷期。  相似文献   

20.
选取了青藏高原东北侧临夏站1980—2010年的雷暴观测资料和陇中地区闪电定位仪2006—2010年的闪电观测资料,利用统计学手段对该地区雷电的年际变化、年变化、日变化、首次发生雷暴方向、地闪密度等进行了分析.基本揭示了该地区雷电的发生特征,发现一年中雷电主要发生在夏季,一天中雷电主要发生在下午及傍晚,地闪密度高于中国平均密度.对该地区雷电灾害防灾减灾工作有一定的促进意义.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号