首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
强台风海鸥登陆期间近地层风特性分析   总被引:2,自引:2,他引:0  
赵小平  朱晶晶  樊晶  贵志成 《气象》2016,42(4):415-423
利用位于海南文昌市的90 m测风塔观测的强台风海鸥多层测风数据,分析了台风海鸥登陆期间近地层风场时空特征、湍流强度、垂直风切变及阵风因子等风场特性,分析结果表明:台风海鸥登陆期间,近地层各高度风速呈现"M"型双峰特征,最大风速出现在台风后风圈;台风过境前后,风向旋转了180°;近地层风速随高度升高而增大,各高度风速垂直切变符合对数和指数规律;粗糙度长度、风廓线幂指数、湍流强度、阵风系数等风场特性与风速呈负相关关系,随着风速的增加而降低;从台风外围至台风眼,粗糙度长度随风速呈现"增大-减小-增大"特征;台风眼内部风速垂直切变剧烈,前后风圈的风速垂直切变较弱;强风区湍流强度较弱,弱风区湍流强度较强;台风风圈的湍流强度随高度增加而减小,台风眼内湍流强度随高度先减小再增加;台风影响各阶段阵风系数随高度升高而减小,各高度层阵风系数遵循指数定律;阵风系数随风速的增大而减小,当风速达到一定强度时,阵风系数随风速变化不明显。  相似文献   

2.
利用2011年10月15—24日在古尔班通古特沙漠腹地系留气艇边界层试验的探测资料,分析了沙漠腹地近地层风、温、湿等气象要素廓线垂直分布特征及其变化情况,结论如下:(1)20时—08时存在逆温,08时逆温最强,逆温强度为2.85℃/100 m,逆温层高度为700 m,之后逆温逐渐消失;夜晚近地层湿度明显大于上层大气,在100 m高度差内,湿度先快速减小再缓慢增大,与白天相反,20时近地面出现逆湿,1 100 m高度湿度发生明显切变;逆温层以上风速随高度变化呈多峰态,逆温层范围内风速增大趋势明显,900~1 100 m之间存在200 m厚的恒风区,1 100 m以上风速再次增大,白天的风速小于夜间。(2)风速波动范围大约为2~8 m/s,近地面100 m范围内风速随高度快速增大,风向由东南风向南风转变,600~900 m之间风速变化减缓,风向由从南风逐渐向东风转变,以东南风为主,风速与风向同步改变。(3)600 m以下随温度升高湿度快速减小,600~1 100 m之间又持续增大,1 100~1 500 m之间呈波动变化的趋势,1500 m增大明显。(4)风切变指数夜晚大于白天,最大值在23时(20.88),最小值在中午14时(0.97),平均风切变指数为9.61。混合层厚度平均为125.88 m。  相似文献   

3.
超强台风“威马逊”登陆期间近地层风速变化特征分析   总被引:1,自引:3,他引:1  
利用1409号超强台风“威马逊”登陆广东徐闻期间勇士风电场观测数据,计算分析了“威马逊”风切变、湍流强度、阵风系数和风向等的时程变化特征,拟为沿海台风影响严重区域输电线路设计和风电机组选型提供参考依据。分析发现“威马逊”风切变指数相比年平均风速(即常态风)切变指数减小,随台风中心逼近和经过呈现先减小再增大的规律;台风中心过后风向回南之后,幂指数函数拟合较差。阵风系数呈现随高度增加而减小的趋势,该趋势在台风中心经过前较好地吻合幂函数,而在台风中心经过后吻合较差;各高度阵风系数以及不同高度之间的差值随台风中心逼近、风速增加而趋于减小,随台风中心远离、风速下降而缓慢增大。湍流强度随高度增加而减小,强风时段湍流强度较小且相对平稳,轮毂高度处湍流强度基本不超IEC-B类。测站位于台风中心路径右侧眼壁区时,所测风向随时间呈顺时针旋转。   相似文献   

4.
河北地区边界层内不同高度风速变化特征   总被引:15,自引:4,他引:11  
为了研究城市化进程对风速变化的影响,利用1971-2006年河北省境内邢台、张家口和乐亭3个探空站高空风观测资料和对应地面站风观测资料,统计分析了边界层内距地面10m、300m、600m、900m 4个高度的长期风速变化特征,比较了不同高度风速变化趋势的异同.分析结果表明:3站年和季节平均风速随着距地面高度的增加而变大,但最大的风速垂直递增率出现在从10m到300m之间;各站各高度层月平均风速具有明显的季节变化特征,春季风速最大,夏季较小;在近36年里,3站平均的地面(10m高)年和季节平均风速变化存在显著的减少趋势,300m以上各高度层平均风速一般也降低,但远没有地面明显;不同高度平均风速变化趋势的差异可能主要是由城市化以及台站附近观测环境的改变引起的,这使得地面风速明显减弱;但地面以上各层平均风速同样存在一定减弱现象,说明背景大气环流的变化也是地面风速下降的原因之一.  相似文献   

5.
根据琼州海峡两岸2个梯度塔和1部车载风廓线雷达共同获取的强台风纳沙 (1117) 实测风速资料,分析强台风纳沙影响期间大风特性,发现以下观测事实和变化规律:位于台风移动路径右侧的测风站,其风向呈顺时针方向旋转,台风眼区经过的测风站,其最大风速接近35 m·s-1,且风向旋转超过180°,台风外围大风区经过的测风站其最大风速达到30 m·s-1,风向旋转73°;大风风切变过程可用对数函数和指数函数拟合,对数函数和指数函数对光滑下垫面的拟合效果更好,且对数函数拟合效果要略优于指数函数;阵风系数随风速增大而减小,但风速达到6级以后,阵风系数不随风速大小产生趋势变化,阵风系数与下垫面粗糙度有关,在粗糙下垫面上阵风系数会偏大;大风阵风系数随高度变化可用指数函数来描述,且对来自光滑下垫面的近地层大风阵风系数拟合效果更好。该观测个例的大风风切变指数与GB/T 18710—2002的推荐值存在差异——粗糙下垫面的大风风切变指数大于标准推荐值,而来自光滑下垫面的大风风切变指数则小于GB/T 18710—2002的推荐值。  相似文献   

6.
崔杨  陈正洪  何英杰  孟丹 《气象科技》2021,49(5):785-793
为准确掌握湖北省平原湖区近地层风切变特征,利用27座离地高度为120~150m测风塔各1年的逐时测风数据,研究了70~120m间风切变的时空变化特征。结果表明:(1)风切变指数具有明显的季节、日变化特征,普遍在秋冬季最小、夏季较大,夜间大、白天小;(2)位于平原湖区和山区的测风塔在70~120m间的年平均风切变指数分别为0.27和0.12。各塔风切变指数从70m至150m逐渐减小;(3)6座典型测风塔70~120m风切变指数在较稳定状态下的频率最高,为59%~75%;在不稳定条件下的频率最低,均不超过5%;(4)当70m风速在3.0m/s以下、3.0~10.0m/s及10.0m/s以上3个区段时,风切变指数由小变大,在3.0~10.0m/s风速段与年平均风切变指数最接近,10.0m/s以上风切变指数离散性最强;(5)分别推算出实测和数值模拟的风切变指数,中部平原地区实测值明显高于模拟值,总体偏差范围是-0.06~0.14。该结论可用于近地层低风速地区不同高度的风速推算或订正,以提高这类地区风能资源评价、开发规划、风电场选址的科学性以及风电功率预测的准确性。  相似文献   

7.
利用2014—2018年辽宁省探空资料分析了水平风速的垂直风廓线分布特征。用2座代表性测风塔逐时梯度风观测分析了采用不同高度组合方案计算出风切变指数的月、日变化特征, 分别用月、小时、年风切变指数推算高层风速和风功率密度, 并与实测对比。结果表明: 沈阳相较于大连地区风速随高度增加较快, 180 m高度以上风速基本保持不变, 而大连因其纬度低且靠近海洋, 300 m以下风速均匀上升。在非复杂地形情况下, 距地面10 m高度以上间隔一定高度设立4层风观测, 基本可以满足近地层风资源评估需求。受太阳辐射、下垫面、海陆热力性质差异等影响, 辽宁省风切变指数日变化特征比月变化更显著。利用小时风切变指数推算高层风速和风功率密度的方案优于采用月、年风切变指数方案。风切变指数日变化越显著, 采用逐时风切变指数推算方案越优于其他计算方案。  相似文献   

8.
利用探空风资料研究我国中低空风速变化规律   总被引:1,自引:0,他引:1  
利用全国93个探空站1981—2014年中低空5个高度层(500、1 000、1 500、2 000、3 000 m)的探空风资料,分析各高度层累年平均风速及累年逐月平均风速并绘制全国年平均风速空间分布图,并对趋势性和周期性特征进行分析。结果表明:(1)东北地区风速最大,尤其是长白山附近,其余地区平均风速由沿海向内陆、由东向西逐渐减小,四川盆地附近最小;(2)各地区(站)年平均风速均随高度增加而增加,其中冬季风速随高度迅速增大,夏季风速随高度变化增加缓慢,2 000、3 000 m高度冬季风速远大于夏季风速;(3)东北和华东地区5个高度层的年平均风速均呈减小趋势,但只有东北地区500 m高度通过了0.05显著性检验,其余5个地区5个高度层的年平均风速既有增大趋势也有减小趋势,只是减小趋势及其通过显著性检验的站数略多;(4)各地区不同高度年平均风速的周期均在2~6 a,准2 a周期主要发生在1980年代,准4 a周期主要出现在1990年代后期至2000年代初。  相似文献   

9.
陆海风是由于海陆表面之间的比热容不同而导致的昼夜热量分布差异,从而在海岸附近引发的大气中尺度循环系统.本文利用多普勒风激光雷达Windcube100s首次对黄海西海岸的海陆风的循环结构进行了观测研究.在2018年8月31日至9月28日观测期间发现,海陆风发展高度一般在700 m至1300 m.海陆风转化持续的时间为6小时至8小时.在425m高度,海风水平风速出现最大值,平均为5.6 m s~(-1).陆风最大水平风速出现在370 m,约为4.5 ms~(-1).最大风切变指数在1300m处,为2.84;在陆风向海风转换过程中,最大风切变指数在700m处,为1.28.在同一高度上,风切变指数在海风盛行和陆风盛行时的差值范围为0.2-3.6,风切变能反映出海陆风的发展高度.  相似文献   

10.
利用岳阳气象站1953-2010年年最大风速观测资料,通过时距换算、高度换算及地形订正等处理,构建相当于开阔平地10m高度处10min平均年最大风速58年序列。根据极值Ⅰ型分布曲线,采用耿贝尔法计算出10m高处不同重现期(200年、100年、50年、20年、10年)基本风速,根据洞庭湖区测风塔与岳阳气象站相应时段10min平均月最大风速比值,外推得到岳阳洞庭湖大桥桥位设计风速。根据设计风速,取α=0.131,利用风速随高度变化的指数公式推算到300m以内各个高度层(70m内10m一层,70m以上间隔30m)最大风速。  相似文献   

11.
选择近年来影响上海最严重的不同路径台风个例,首先利用TAPM数值模式对出现最大风速过程期间,海岸线的风速变化作了数值模拟计算,然后与海岸测风梯度塔的同步观测数据进行对比,在验证了模式计算结果的准确性和可靠性基础上,对台风影响下上海近海区域最大风速的分布特征、不同高度风速变化规律进行分析评估.同时采用海上测风平台的观测数据,对近海海面上的湍流强度作了计算.结果表明:当台风影响上海地区时,上海近海海上的最大风速有较明显的梯度变化;海面上风速随高度变化远比陆上小,各高度层风速如用指数律公式计算,幂指数可取O.09-0.10;海面上的湍流强度亦较小,基本上在0.10以下范围内波动.  相似文献   

12.
利用深圳气象梯度观测塔观测数据,以2017年以来进入深圳150 km范围的7个台风个例为研究对象,基于幂指数律拟合讨论台风边界层风切变指数的变化规律.结果表明:幂指数能较好地拟合台风影响下350 m高度以下风廓线,随着拟合高度范围增加,风切变指数增大,拟合精度基本维持;用深圳气象梯度观测塔等差层数据拟合台风风速效果好于...  相似文献   

13.
利用中尺度气象数值模式WRF和动力降尺度模式CALMET,对江西山地风电场不同高度层风速进行4个月逐时数值模拟,结合测风塔实测资料,对两种模式的模拟结果进行准确性、误差特征等方面研究,结果表明:1) WRF模式和CALMET模式均能较好地模拟出风速的日变化特征,在大风速时间段两个模式模拟误差变大,可能是由于出现台风、降雨伴随大风等天气时,WRF模式边界层方案对大风速时拖曳作用不充分造成,今后可考虑通过天气过程模拟的敏感性研究及历史数据对模拟结果进行订正。2)从各月模拟结果来看,WRF模式与CALMET模式各月模拟值与实测值间相关系数均大于0. 65,两个模式对70 m高度层模拟结果均优于对10 m高度层的模拟结果,并且CALMET模式均方根误差低于WRF模式的。3) CALMET模式在各风速段模拟效果均优于WRF模式的。两个模式在0~3 m·s-1低风速的模拟效果最优,在大风速段( 8 m·s~(-1))模拟结果平均绝对误差最大,今后应对大风模拟结果的订正开展进一步研究。  相似文献   

14.
陆海风是由于海陆表面之间的比热容不同而导致的昼夜热量分布差异,从而在海岸附近引发的大气中尺度循环系统.本文利用多普勒风激光雷达Windcube100s首次对黄海西海岸的海陆风的循环结构进行了观测研究.在2018年8月31日至9月28日观测期间发现,海陆风发展高度一般在700 m至1300 m.海陆风转化持续的时间为6小时至8小时.在425m高度,海风水平风速出现最大值,平均为5.6 m s-1.陆风最大水平风速出现在370m,约为4.5 m s-1.最大风切变指数在1300m处,为2.84;在陆风向海风转换过程中,最大风切变指数在700m处,为1.28.在同一高度上,风切变指数在海风盛行和陆风盛行时的差值范围为0.2-3.6,风切变能反映出海陆风的发展高度.  相似文献   

15.
"派比安"在阳江不同地区的风场特征及防风问题   总被引:1,自引:13,他引:1  
黄小丹  周武 《广东气象》2007,29(2):26-28
利用阳江海岸线上不同下垫面梯度风观测塔在“派比安”过程中所取得的资料,探讨登陆热带气旋在不同下垫面的垂直风场特点以及防台措施。分析发现,平原地区各层风速较稳定,随“派比安”的移近而增大,远离而减小,风随高度成指数增长,在v<20 m/s时,80 m的10 m in平均风速与10 m的最大风速相当;背风面风速扰动大,很有可能在热带气旋靠近时出现风速减小现象;迎风坡出现大风时间长,最大风速比背风面和平原地区都大。迎风坡和背风面在台风环状下沉运动带影响时,高层和地面10 m in平均风速相差较小,而平原地区并没有这一特征。根据弗洛斯特(Frost)风速随高度变化的经验公式,近地层风速垂直切变指数n在平原地区稳定,风随高度的对应关系好。台风登陆前所有下垫面的n都出现突增现象。阵风系数受下垫面和周围环境影响大。  相似文献   

16.
赵建伟  毕波  王周鹤  高兵 《气象科技》2019,47(6):1014-1020
根据2016—2017年大理机场航空器报告的风切变事件,利用同时段的自动气象观测资料、风廓线雷达资料对大理机场风切变进行了统计和分析。结果表明:①风切变均发生在每年的11月至次年4月,1月、2月最多;主要发生于07:00—13:00,一半出现在晴天;发生在350m以下占83%。②100m以下的风切变,地面均有阵性风,最大最小风速差6m/s;发生在15~91m的6次风切变,5次报告风切变的一端风向变化超过180°,南北两端地面风出现对头风,风速差异明显。AWOS(Automated Weather Observation System)捕捉到风向风速的明显变化可为近地层风切变预警提供参考。③发生在高度较高的风切变,雷达资料在遭遇风切变高度的上下层存在≥8m/s风速差,能确定上下层风不连续的准确高度、开始时间和结束时间。④机场区域常出现地面风速大而上空风速小或地面风速小而上空风速大的情况,结合地面风和风廓线雷达资料可为今后低高度风切变的初步预警提供参考。  相似文献   

17.
利用大连风廓线雷达高时空分辨率风场观测资料,统计2011年雷达站上空各层水平及垂直风速的分布特征.通过分析发现:最大水平风速通常出现在12 km上下,受高空急流的影响,各季节高空最大水平风速出现高度不同,4 km以下高空水平风速随高度的变化各月份存在一定差异,4 km以上至最大风速层,水平风速随高度的升高而增大,最大风速层以上至雷达测量的上限水平风速随高度增加先减小后增大;高空垂直风速在夏季较为明显,秋季次之,冬春季节最小;6月是全年月均垂直风速最大的月份,在500~1300 m高度层存在一个上升气流中心,平均风速大于0.6 m/s,2月各高度平均垂直风速全年最小.  相似文献   

18.
台风影响下上海近海风场特性的数值模拟分析   总被引:3,自引:1,他引:2  
选择近年来影响上海最严重的不同路径台风个例,首先利用TAPM数值模式对出现最大风速过程期间,海岸线的风速变化作了数值模拟计算,然后与海岸测风梯度塔的同步观测数据进行对比,在验证了模式计算结果的准确性和可靠性基础上,对台风影响下上海近海区域最大风速的分布特征、不同高度风速变化规律进行分析评估。同时采用海上测风平台的观测数据,对近海海面上的湍流强度作了计算。结果表明:当台风影响上海地区时,上海近海海上的最大风速有较明显的梯度变化;海面上风速随高度变化远比陆上小,各高度层风速如用指数律公式计算,幂指数可取0.09~0.10;海面上的湍流强度亦较小,基本上在0.10以下范围内波动。  相似文献   

19.
常蕊  朱蓉  赵大军 《大气科学》2022,46(5):1071-1086
利用台风山竹(1822)和利奇马(1909)登陆期间固定式风廓线雷达、WindCubeV2激光雷达和测风塔的梯度观测数据,结合台风山竹(1822)登陆前后精细化风场模拟资料,分析了登陆台风不同影响象限内,离地300 m高度内的强风参数及其随距离、海拔高度及下垫面的变化特征。结果表明:(1)距离台风中心200 km水平范围内,最大风速所在高度及风切变指数沿台风半径向外增加,且陆地强风切变指数普遍高于0.12,而海洋下垫面拖曳作用弱,风切变较小,仅在岛屿群附近存在超出国标设计阈值的高切变区域。(2)台风移动方向的右前象限内强风切变指数稳定维持在0.17左右,且对海拔高度不敏感,左后象限存在类似于急流的风廓线,而左前象限内强风的垂直变化在空间上具有较强的非线性特征,边界层低层强风结构较复杂。(3)阵风因子和湍流强度随平均风速增大、离地高度升高呈现减小趋势。(4)过程最大风向变差角沿台风半径向外减小,且在空间上具有显著的非对称性,其中右后象限的风向变差角最大,半小时风向变化超过30°,且大多发生在台风登陆前或登陆时。研究成果可为我国近海及沿海风电场的微尺度风场模拟及台风风险防御提供帮助。  相似文献   

20.
基于深圳356 m气象梯度塔风速观测资料,采用统计分析的方法,以台风"山竹"为例分析了台风过程中深圳近地面水平风阵风因子、风廓线指数和湍流强度的垂直变化特征。结果表明:台风"山竹"影响期间,受城市下垫面影响近地面风湍流强度大于高层,阵风因子和湍流强度随高度变化符合指数规律,风速大于6级后逐渐趋于稳定;风廓线指数随高度增加、风速增大逐渐减小。此外,利用全部样本计算得到风廓线指数平均值约为0.23,符合《建筑结构荷载规范》的推荐范围,但利用该值推算近地面不同高度的风速值略大于实测值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号