首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
利用1°×1°经纬度NCEP/NCAR再分析资料、地面1h观测降水资料和TRMM卫星产品资料,分析了2009年6月8~9日引发贵州南部的强降水天气过程的中尺度对流系统活动,并进一步研究了大气正压非平衡强迫、湿斜压热动力耦合强迫在强降水天气发生发展与维持过程中的作用.结果表明:8~9日贵州南部的强降水主要是由中尺度系统的...  相似文献   

2.
利用NCEP FNL资料、FY-2E云顶亮温、常规观测及加密自动站降水量等资料,以及高分辨率中尺度模式WRF V3.3的模拟结果,结合对流涡度矢量方程对2011年6月一次江淮梅雨锋暴雨过程进行了诊断分析。结果表明,模拟结果再现了该次暴雨过程的降水特征,该过程主要受地面低压及梅雨锋锋面系统的控制和影响,其中6月14-15日为所选暴雨个例最旺盛的阶段,且该时段伴随梅雨锋上中尺度对流系统的移动发展和梅雨锋锋生。对流涡度矢量及其垂直分量的倾向方程的诊断分析表明,对流涡度矢量垂直分量的局地变化主要受非绝热加热项的影响;而非绝热加热与次级环流和梅雨锋锋生的关系说明中尺度对流活动与梅雨锋锋生存在类CISK机制的反馈关系。因此,对流涡度矢量,特别是其垂直分量可以用来诊断和揭示伴随非绝热加热的中尺度对流系统与梅雨锋锋生之间的关系。  相似文献   

3.
四川盆地西部一次大暴雨过程的中尺度特征分析   总被引:2,自引:0,他引:2  
利用常规观测资料、地面加密观测资料、逐时云顶亮温TBB资料和1°×1°NCEP/NCAR再分析资料,对2010年7月24-25日四川盆地暴雨天气过程中尺度对流系统发生、发展的物理量特征和动力机制进行了分析.结果表明:(1)此次四川盆地西部区域性暴雨天气过程是由中-β尺度云团合并、加强所生成的中-α尺度对流系统造成的.(2)散度、涡度、垂直速度和相当位温的分布与对流系统的发生、发展较一致,特别是在中-α尺度对流系统强烈发展阶段有很好的对应关系,为中-a尺度对流系统的发生、发展提供了有利的动力和热力条件.(3)大气非平衡强迫对发生在四川盆地西部的区域性暴雨有较好的指示意义,是激发暴雨天气的动力机制.(4)暴雨发生期间降水造成的非绝热加热有利于强降水天气的维持.  相似文献   

4.
利用1°×1°经纬度NCEP/NCAR再分析资料、地面1h观测降水资料和TRMM卫星产品资料,分析了2009年6月8~9日引发贵州南部的强降水天气过程的中尺度对流系统活动,并进一步研究了大气正压非平衡强迫、湿斜压热动力耦合强迫在强降水天气发生发展与维持过程中的作用。结果表明:8~9日贵州南部的强降水主要是由中尺度系统的发生发展引起的。南海季风不仅给贵州南部强降水区带来充足的水汽,同时也带来足够的能量。正压非平衡强迫在降水的开始阶段与降水落区有较好的对应关系,是强降水的启动机制。斜压热动力耦合强迫在降水的维持阶段,特别是当大气层结转为弱湿中性时,其分布和强度与中尺度对流系统和降水的强度与落区有较好的对应关系,可能是强降水的维持机制。  相似文献   

5.
梅雨锋上的三类暴雨   总被引:36,自引:13,他引:36       下载免费PDF全文
根据观测分析研究,概括出长江流域梅雨锋上主要有三类暴雨:梅雨锋上β中尺度的对流性暴雨、梅雨锋东部(115°E以东)的初生气旋暴雨、梅雨锋西端深厚高空低压槽前部的持续性强暴雨.第一类暴雨局地性特征明显,其范围一般小于300 km,暴雨的瞬时强度大,暴雨发生所需的强上升运动由局地强的对流有效位能(CAPE)释放的浮力抬升引起.第二类和第三类暴雨的共同点在于都有明显的大尺度强迫过程,大尺度的动力强迫使持续暴雨所需的垂直上升运动得以维持.后两类暴雨的数值预报效果较第一类的好,比梅雨锋上β中尺度暴雨预报更容易掌握.  相似文献   

6.
相当湿位涡异常与梅雨锋暴雨分析   总被引:1,自引:0,他引:1       下载免费PDF全文
基于位涡异常与中尺度对流系统发展密切相关的分析事实,以及中尺度天气的发生发展的过程中水汽的重要作用,在引入水汽变化方程的基础上,导出了非均匀饱和大气中的相当湿位涡方程,进而分析了引起相当湿位涡异常的主要因子。依据相当湿位涡包含动力因子、热力因子和水汽因子的特点,利用相当湿位涡及增量对一次梅雨锋暴雨进行诊断和模拟分析,初步揭示了相当湿位涡及其增量对梅雨锋强降水的指示意义,相当湿位涡及其增量大值区对未来1~3小时的强降水具有较好的指示作用。针对梅雨锋暴雨,可以将梅雨湿度锋与相当湿位涡相结合作为强降水短时临近预报的一个指标。  相似文献   

7.
应用常规资料、TBB资料和NCEP分析资料,对2007年7月25日发生在湘黔边境的一次梅雨锋大暴雨天气过程进行了分析.结果表明:深厚的高空低槽和副热带高压稳定维持,有利于冷暖空气的辐合和梅雨锋的长时间维持.梅雨锋上不断有中小尺度对流系统产生,这些中小尺度对流系统在受到大尺度强迫作用和梅雨锋自身的强迫抬升作用而发展增强并长时间维持,在暴雨区形成强烈的降水.暴雨区上空具有低层辐合、高层辐散的结构特征,低层的辐合使得涡度往中上层输送,这种耦合形势有利于垂直上升运动和暴雨的维持.积云对流释放的凝结潜热加热对流层中上层大气,引起梅雨锋锋生,维持和促进了垂直上升运动和对流活动.  相似文献   

8.
利用常规气象观测资料、地面自动站加密观测资料和FY2G卫星云图资料以及NECP 1°×1°FNL再分析资料等,对2016年6月30日—7月5日安徽省安庆地区梅雨锋暴雨过程中的中尺度对流系统(MCS)活动特征、MCS发展的环境场特征以及低层风场对MCS发展影响进行了分析。结果表明:梅雨锋上有多个MCS先后(或同时)生成、发展并沿正涡度带向下游移动并发展增强,成"列车效应"经过安庆地区并带来持续强降水。强降水落区发生在中尺度低空急流核的左侧,辐合区和上升运动区位于涡度中心东侧,导致MCS持续的向东发展移动并增强。对流层低层西南风急流为MCS发展增强提供了动力条件,并带来大量水汽在梅雨锋区汇集辐合。湖北至安徽上空850~500 hPa的湿度锋为强降水提供了有利的不稳定条件。  相似文献   

9.
梅雨锋暴雨中尺度对流系统研究若干进展   总被引:5,自引:1,他引:4  
孙晶 《气象科技》2011,39(3):257-265
梅雨锋暴雨中尺度对流系统是暴雨的直接影响系统,对其结构特征、活动规律及其发生发展的物理机制的深入研究,对提高梅雨锋暴雨的预报能力有重大意义。近年来对梅雨锋暴雨中尺度对流系统的研究取得了很大进展,文章对梅雨锋暴雨中尺度对流系统研究的若干进展作了简要综述,包括梅雨锋暴雨云系多尺度结构、梅雨锋暴雨的β和γ中尺度系统发生发展的环境条件和结构、云微物理分布和转化特征及其对热力动力过程反馈等方面,并对有关问题进行讨论。  相似文献   

10.
梅雨锋对引发暴雨的中尺度对流系统发生发展影响的研究   总被引:7,自引:1,他引:6  
赵玉春 《大气科学》2011,35(1):81-94
针对梅雨锋(湿度锋)上或附近偏南暖湿气流一侧中尺度对流系统不断发生发展和长时间维持而引发长江流域暴雨的观测事实,利用中尺度数值预报模式WRF(V3.1.1)设计了一系列三维理想数值试验,研究了梅雨锋两侧自身水汽差异效应,探讨了基本气流和风垂直切变对梅雨锋上中尺度对流系统发生发展的影响,揭示了梅雨锋对中尺度对流系统的组织...  相似文献   

11.
The spatial and temporal variations of daily maximum temperature(Tmax), daily minimum temperature(Tmin), daily maximum precipitation(Pmax) and daily maximum wind speed(WSmax) were examined in China using Mann-Kendall test and linear regression method. The results indicated that for China as a whole, Tmax, Tmin and Pmax had significant increasing trends at rates of 0.15℃ per decade, 0.45℃ per decade and 0.58 mm per decade,respectively, while WSmax had decreased significantly at 1.18 m·s~(-1) per decade during 1959—2014. In all regions of China, Tmin increased and WSmax decreased significantly. Spatially, Tmax increased significantly at most of the stations in South China(SC), northwestern North China(NC), northeastern Northeast China(NEC), eastern Northwest China(NWC) and eastern Southwest China(SWC), and the increasing trends were significant in NC, SC, NWC and SWC on the regional average. Tmin increased significantly at most of the stations in China, with notable increase in NEC, northern and southeastern NC and northwestern and eastern NWC. Pmax showed no significant trend at most of the stations in China, and on the regional average it decreased significantly in NC but increased in SC, NWC and the mid-lower Yangtze River valley(YR). WSmax decreased significantly at the vast majority of stations in China, with remarkable decrease in northern NC, northern and central YR, central and southern SC and in parts of central NEC and western NWC. With global climate change and rapidly economic development, China has become more vulnerable to climatic extremes and meteorological disasters, so more strategies of mitigation and/or adaptation of climatic extremes,such as environmentally-friendly and low-cost energy production systems and the enhancement of engineering defense measures are necessary for government and social publics.  相似文献   

12.
Using the International Comprehensive Ocean-Atmosphere Data Set(ICOADS) and ERA-Interim data, spatial distributions of air-sea temperature difference(ASTD) in the South China Sea(SCS) for the past 35 years are compared,and variations of spatial and temporal distributions of ASTD in this region are addressed using empirical orthogonal function decomposition and wavelet analysis methods. The results indicate that both ICOADS and ERA-Interim data can reflect actual distribution characteristics of ASTD in the SCS, but values of ASTD from the ERA-Interim data are smaller than those of the ICOADS data in the same region. In addition, the ASTD characteristics from the ERA-Interim data are not obvious inshore. A seesaw-type, north-south distribution of ASTD is dominant in the SCS; i.e., a positive peak in the south is associated with a negative peak in the north in November, and a negative peak in the south is accompanied by a positive peak in the north during April and May. Interannual ASTD variations in summer or autumn are decreasing. There is a seesaw-type distribution of ASTD between Beibu Bay and most of the SCS in summer, and the center of large values is in the Nansha Islands area in autumn. The ASTD in the SCS has a strong quasi-3a oscillation period in all seasons, and a quasi-11 a period in winter and spring. The ASTD is positively correlated with the Nio3.4 index in summer and autumn but negatively correlated in spring and winter.  相似文献   

13.
The moving-window correlation analysis was applied to investigate the relationship between autumn Indian Ocean Dipole (IOD) events and the synchronous autumn precipitation in Huaxi region, based on the daily precipitation, sea surface temperature (SST) and atmospheric circulation data from 1960 to 2012. The correlation curves of IOD and the early modulation of Huaxi region’s autumn precipitation indicated a mutational site appeared in the 1970s. During 1960 to 1979, when the IOD was in positive phase in autumn, the circulations changed from a “W” shape to an ”M” shape at 500 hPa in Asia middle-high latitude region. Cold flux got into the Sichuan province with Northwest flow, the positive anomaly of the water vapor flux transported from Western Pacific to Huaxi region strengthened, caused precipitation increase in east Huaxi region. During 1980 to 1999, when the IOD in autumn was positive phase, the atmospheric circulation presented a “W” shape at 500 hPa, the positive anomaly of the water vapor flux transported from Bay of Bengal to Huaxi region strengthened, caused precipitation ascend in west Huaxi region. In summary, the Indian Ocean changed from cold phase to warm phase since the 1970s, caused the instability of the inter-annual relationship between the IOD and the autumn rainfall in Huaxi region.  相似文献   

14.
正The Taal Volcano in Luzon is one of the most active and dangerous volcanoes of the Philippines. A recent eruption occurred on 12 January 2020(Fig. 1a), and this volcano is still active with the occurrence of volcanic earthquakes. The eruption has become a deep concern worldwide, not only for its damage on local society, but also for potential hazardous consequences on the Earth's climate and environment.  相似文献   

15.
Observed daily precipitation data from the National Meteorological Observatory in Hainan province and daily data from the National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis-2 dataset from 1981 to 2014 are used to analyze the relationship between Hainan extreme heavy rainfall processes in autumn (referred to as EHRPs) and 10–30 d low-frequency circulation. Based on the key low-frequency signals and the NCEP Climate Forecast System Version 2 (CFSv2) model forecasting products, a dynamical-statistical method is established for the extended-range forecast of EHRPs. The results suggest that EHRPs have a close relationship with the 10–30 d low-frequency oscillation of 850 hPa zonal wind over Hainan Island and to its north, and that they basically occur during the trough phase of the low-frequency oscillation of zonal wind. The latitudinal propagation of the low-frequency wave train in the middle-high latitudes and the meridional propagation of the low-frequency wave train along the coast of East Asia contribute to the ‘north high (cold), south low (warm)’ pattern near Hainan Island, which results in the zonal wind over Hainan Island and to its north reaching its trough, consequently leading to EHRPs. Considering the link between low-frequency circulation and EHRPs, a low-frequency wave train index (LWTI) is defined and adopted to forecast EHRPs by using NCEP CFSv2 forecasting products. EHRPs are predicted to occur during peak phases of LWTI with value larger than 1 for three or more consecutive forecast days. Hindcast experiments for EHRPs in 2015–2016 indicate that EHRPs can be predicted 8–24 d in advance, with an average period of validity of 16.7 d.  相似文献   

16.
Based on the measurements obtained at 64 national meteorological stations in the Beijing–Tianjin–Hebei (BTH) region between 1970 and 2013, the potential evapotranspiration (ET0) in this region was estimated using the Penman–Monteith equation and its sensitivity to maximum temperature (Tmax), minimum temperature (Tmin), wind speed (Vw), net radiation (Rn) and water vapor pressure (Pwv) was analyzed, respectively. The results are shown as follows. (1) The climatic elements in the BTH region underwent significant changes in the study period. Vw and Rn decreased significantly, whereas Tmin, Tmax and Pwv increased considerably. (2) In the BTH region, ET0 also exhibited a significant decreasing trend, and the sensitivity of ET0 to the climatic elements exhibited seasonal characteristics. Of all the climatic elements, ET0 was most sensitive to Pwv in the fall and winter and Rn in the spring and summer. On the annual scale, ET0 was most sensitive to Pwv, followed by Rn, Vw, Tmax and Tmin. In addition, the sensitivity coefficient of ET0 with respect to Pwv had a negative value for all the areas, indicating that increases in Pwv can prevent ET0 from increasing. (3) The sensitivity of ET0 to Tmin and Tmax was significantly lower than its sensitivity to other climatic elements. However, increases in temperature can lead to changes in Pwv and Rn. The temperature should be considered the key intrinsic climatic element that has caused the "evaporation paradox" phenomenon in the BTH region.  相似文献   

17.
Storms that occur at the Bay of Bengal (BoB) are of a bimodal pattern, which is different from that of the other sea areas. By using the NCEP, SST and JTWC data, the causes of the bimodal pattern storm activity of the BoB are diagnosed and analyzed in this paper. The result shows that the seasonal variation of general atmosphere circulation in East Asia has a regulating and controlling impact on the BoB storm activity, and the “bimodal period” of the storm activity corresponds exactly to the seasonal conversion period of atmospheric circulation. The minor wind speed of shear spring and autumn contributed to the storm, which was a crucial factor for the generation and occurrence of the “bimodal pattern” storm activity in the BoB. The analysis on sea surface temperature (SST) shows that the SSTs of all the year around in the BoB area meet the conditions required for the generation of tropical cyclones (TCs). However, the SSTs in the central area of the bay are higher than that of the surrounding areas in spring and autumn, which facilitates the occurrence of a “two-peak” storm activity pattern. The genesis potential index (GPI) quantifies and reflects the environmental conditions for the generation of the BoB storms. For GPI, the intense low-level vortex disturbance in the troposphere and high-humidity atmosphere are the sufficient conditions for storms, while large maximum wind velocity of the ground vortex radius and small vertical wind shear are the necessary conditions of storms.  相似文献   

18.
正While China’s Air Pollution Prevention and Control Action Plan on particulate matter since 2013 has reduced sulfate significantly, aerosol ammonium nitrate remains high in East China. As the high nitrate abundances are strongly linked with ammonia, reducing ammonia emissions is becoming increasingly important to improve the air quality of China. Although satellite data provide evidence of substantial increases in atmospheric ammonia concentrations over major agricultural regions, long-term surface observation of ammonia concentrations are sparse. In addition, there is still no consensus on  相似文献   

19.
Various features of the atmospheric environment affect the number of migratory insects, besides their initial population. However, little is known about the impact of atmospheric low-frequency oscillation(10 to 90 days) on insect migration. A case study was conducted to ascertain the influence of low-frequency atmospheric oscillation on the immigration of brown planthopper, Nilaparvata lugens(Stl), in Hunan and Jiangxi provinces. The results showed the following:(1) The number of immigrating N. lugens from April to June of 2007 through 2016 mainly exhibited a periodic oscillation of 10 to 20 days.(2) The 10-20 d low-frequency number of immigrating N. lugens was significantly correlated with a low-frequency wind field and a geopotential height field at 850 h Pa.(3) During the peak phase of immigration, southwest or south winds served as a driving force and carried N. lugens populations northward, and when in the back of the trough and the front of the ridge, the downward airflow created a favorable condition for N. lugens to land in the study area. In conclusion, the northward migration of N. lugens was influenced by a low-frequency atmospheric circulation based on the analysis of dynamics. This study was the first research connecting atmospheric low-frequency oscillation to insect migration.  相似文献   

20.
The atmospheric and oceanic conditions before the onset of EP El Ni?o and CP El Ni?o in nearly 30 years are compared and analyzed by using 850 hPa wind, 20℃ isotherm depth, sea surface temperature and the Wheeler and Hendon index. The results are as follows: In the western equatorial Pacific, the occurrence of the anomalously strong westerly winds of the EP El Ni?o is earlier than that of the CP El Ni?o. Its intensity is far stronger than that of the CP El Ni?o. Two months before the El Ni?o, the anomaly westerly winds of the EP El Ni?o have extended to the eastern Pacific region, while the westerly wind anomaly of the CP El Ni?o can only extend to the west of the dateline three months before the El Ni?o and later stay there. Unlike the EP El Ni?o, the CP El Ni?o is always associated with easterly wind anomaly in the eastern equatorial Pacific before its onset. The thermocline depth anomaly of the EP El Ni?o can significantly move eastward and deepen. In addition, we also find that the evolution of thermocline is ahead of the development of the sea surface temperature for the EP El Ni?o. The strong MJO activity of the EP El Ni?o in the western and central Pacific is earlier than that of the CP El Ni?o. Measured by the standard deviation of the zonal wind square, the intensity of MJO activity of the EP El Ni?o is significantly greater than that of the CP El Ni?o before the onset of El Ni?o.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号