首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Variations and change in south American streamflow   总被引:4,自引:0,他引:4  
Long-term hydroclimatological records in tropical South America have been analyzed in order to determine whether or not there have been significant changes in the hydrological cycle. Streamflow data from several rivers in Peru, Brazil, Argentina and Venezuela, as well as rainfall in Northeast Brazil have been used here for the study of long-term and interannual variations on hydrological conditions in different regions of South America. The Mann-Kendall statistical test is applied to the historical streamflow annual series in order to detect trends or changes in the mean. The Studentt-test is also applied to study the relationship between interannual variability and the magnitude of change and length of data required to identify a statistically significant trend.It follows from the statistical analysis of the currently available historical river data set that there is no clear evidence of trend or change in the mean streamflow of South American rivers resulting from a climate change, even though significant trends towards drier conditions have been found for rivers in the Northwest coast of Peru and in eastern Brazil. Interannual variations characterized the hydrology of tropical South America, in association with the extreme phases of the Southern Oscillation. The change required to identify a statistically significant variation in the mean is directly proportional to the interannual variability. The effects of Amazon deforestation are not noticeable on the 1903-92 interannual variability of the Rio Negro series at Manaus nor in rainfall time series.  相似文献   

2.
Recent climate variability in rainfall, temperatures (maximum and minimum), and the diurnal temperature range is studied with emphasis on its influence over soybean yields in southern Brazil, during 1969 to 2002. The results showed that the soybean (Glycine max L. Merril) yields are more affected by changes in temperature during summer, while changes in rainfall are more important during the beginning of plantation and at its peak of development. Furthermore, soybean yields in Paraná are more sensitive to rainfall variations, while soybean yields in the Rio Grande do Sul are more sensitive to variations in temperature. Effects of interannual climatic variability on soybean yields are evaluated through three agro-meteorological models: additive Stewart, multiplicative Rao, and multiplicative Jensen. The Jensen model is able to reproduce the interannual behavior of soybean yield reasonably well.  相似文献   

3.
A new methodology is proposed that allows patterns of interannual covariability, or teleconnections, between the intraseasonal and slow components of seasonal mean Australian rainfall and the corresponding components in the Southern Hemisphere atmospheric circulation to be estimated. In all seasons, the dominant rainfall–circulation teleconnections in the intraseasonal component are shown to have the characteristic features associated with well-known intraseasonal dynamical and statistical atmospheric modes and their relationship with rainfall. Thus, for example, there are patterns of interannual covariability that reflect rainfall relationships with the intraseasonal Southern Annular Mode, the Madden-Julian Oscillation and wavenumber 3 and 4 intraseasonal modes of variability. The predictive characteristics of the atmospheric circulation–rainfall relationship are shown to reside with the slow components. In all seasons, we find rainfall–circulation teleconnections in the slow components related to the El Niño-Southern Oscillation. Each season also has a coupled mode, with a statistically significant trend in the time series of the atmospheric component that appears to be related to recent observed trends in rainfall. The slow Southern Annular Mode also features in association with southern Australian rainfall, especially during austral winter and spring. There is also evidence of an influence of Indian Ocean sea surface temperature variability on rainfall in southeast Australia during austral winter and spring.  相似文献   

4.
Summary Climatic determinants of summer (Nov-Mar) rainfall over southern Africa are investigated through analysis of sea surface temperatures (SST), outgoing longwage radiation (OLR) and tropospheric wind with respect to the Southern Oscillation Index (SOI) and the stratospheric quasi-biennial oscillation (QBO). Index-to-field correlation maps are presented at various lags for the austral spring and summer seasons to establish the spatial dependence and evolution of coherent, statistically significant features. The SOI signal is reflected in upper-level zonal wind anomalies over the equatorial Atlantic Ocean during spring. SSTs in the central Indian Ocean are significantly negatively correlated with the SOI in summer. On the other hand, OLR correlations are weak over southern Africa in the summer, implying that the SOI signal may not dominate interannual convective variability.QBO correlations with SST are relatively weak, but with 200 hPa zonal winds over the western equatorial Ocean, positive correlations are noted. A standing wave pattern is described in the sub-tropics. The OLR correlation pattern represents a dipole with increased convection over eastern and southern Africa in contrast to reduced convection over Madagascar when the QBO is in west phase.Contingency analyses indicate that the global indices are unreliable predictors in isolation. However the characteristics and domain of influence of SOI and QBO signals are identified and may offer useful inputs to objective multivariate models for different modes of southern African rainfall variability.With 12 Figures  相似文献   

5.
极冰对南方涛动的影响   总被引:6,自引:0,他引:6  
黄嘉佑  张镡 《气象学报》1997,55(2):200-209
分析南、北极冰量与南方涛动序列作月、季和年尺度的变化过程线性相关关系,发现北极冰量与南方涛动指数是反相关关系,而南极冰量与南方涛动是正相关。比较而言,南极冰量与南方涛动的关系在月和季尺度上似乎较北极与大气的关系密切些。在各时间尺度序列中以太平洋地区南极极冰的影响表现最明显。分析发现极冰与南方涛动之间存在较复杂的非线性关系。在前期极冰的强信号寻找中,发现极冰与南方涛动在月序列的相关关系上存在周期变化现象。进一步选择相关极值的对应步长建立前期极冰状态激发大气变化的预测统计动力模式,模式对大气序列的解释方差可达0.90以上。文中还进一步探讨了月序列存在的周期变化的共同因素的影响  相似文献   

6.
This is a review on the studies of tropical very low-frequency oscillation (VLFO) on interannual scale, mainly on the recent researches undertaken by Chinese scientists which are not well known outside of the country.This paper summarizes the basic features of VLFO in the tropics, the characteristic time and spacial structure of oscillation, especially the new concept of Low Latitude Oscillation consisted of two components: the well-known Southern Oscillation (SO) and the so-called Northern Oscillation (NO). A large number of evidences have been provided to illustrate the relationship between VLFO in tropics and the climate variation in China, such as the long-term variation of north Pacific high, the frequency of typhoon and the cyclone over the East China Sea, the summer monsoon rainfall in Yangtze valley basin and the cold summer disaster in Northeast China, and so on. Finally throw some lights on the nature of VLFO on imerannual scale.  相似文献   

7.
We analyzed trends, interdecadal variability, and the quantification of the changes in the frequency of daily rainfall for two thresholds: 0.1 mm and percentile 75th, using high quality daily series from 52 stations in the La Plata Basin (LPB). We observed increases in the annual frequencies in spatially coherent areas. This coherence was more marked in austral summer, autumn, and spring, during which the greatest increases occurred in southern Brazil, especially during extreme events. In winter, the low and middle basins of the Río Uruguay and Río Paraná showed negative trends, some of which were significant. Interdecadal variability is well defined in the region with more pronounced positive jumps west of the basin between 1950 and 2000. This variability was particularly more marked during periods of extreme rainfall in summer, autumn, and spring, unlike in winter when extreme daily rainfall in the lower Rio Paraná basin decreased by up to 60%. The changes in the past century during extreme rainfall produced modifications in the annual rainfall cycle. The annual cycle of both indices was broader during the last period which is mainly explained by the strong decreases in winter.  相似文献   

8.
Most of the annual rainfall over India occurs during the Southwest (June?CSeptember) and Northeast (October?CDecember) monsoon periods. In March 2008, however, Southern peninsular India and Sri Lanka received the largest rainfall anomaly on record since 1979, with amplitude comparable to summer-monsoon interannual anomalies. This anomalous rainfall appeared to be modulated at intraseasonal timescale by the Madden Julian Oscillation, and was synchronous with a decaying La Ni?a event in the Pacific Ocean. Was this a coincidence or indicative of a teleconnection pattern? In this paper, we explore factors controlling rainfall over southern India and Sri Lanka between January and April, i.e. outside of the southwest and northeast monsoons. This period accounts for 20% of annual precipitation over Sri Lanka and 10% over the southern Indian states of Kerala and Tamil Nadu. Interannual variability is strong (about 40% of the January?CApril climatology). Intraseasonal rainfall anomalies over southern India and Sri Lanka are significantly associated with equatorial eastward propagation, characteristic of the Madden Julian Oscillation. At the interannual timescale, we find a clear connection with El Ni?o-Southern Oscillation (ENSO); with El Ni?os being associated with decreased rainfall (correlation of ?0.46 significant at the 98% level). There is also a significant link with local SST anomalies over the Indian Ocean, and in particular with the inter-hemispheric sea surface temperature (SST) gradient over the Indian Ocean (with colder SST south of the equator being conducive to more rainfall, correlation of 0.55 significant at the 99% level). La Ni?as/cold SSTs south of the equator tend to have a larger impact than El Ni?os. We discuss two possible mechanisms that could explain these statistical relationships: (1) subsidence over southern India remotely forced by Pacific SST anomalies; (2) impact of ENSO-forced regional Indian Ocean SST anomalies on convection. However, the length of the observational record does not allow distinguishing between these two mechanisms in a statistically significant manner.  相似文献   

9.
IPCC global coupled model simulations of the South America monsoon system   总被引:1,自引:1,他引:0  
This study examines the variability of the South America monsoon system (SAMS) over tropical South America (SA). The onset, end, and total rainfall during the summer monsoon are investigated using precipitation pentad estimates from the global precipitation climatology project (GPCP) 1979–2006. Likewise, the variability of SAMS characteristics is examined in ten Intergovernmental Panel on Climate Change (IPCC) global coupled climate models in the twentieth century (1981–2000) and in a future scenario of global change (A1B) (2081–2100). It is shown that most IPCC models misrepresent the inter-tropical convergence zone and therefore do not capture the actual annual cycle of precipitation over the Amazon and northwest SA. Most models can correctly represent the spatiotemporal variability of the annual cycle of precipitation in central and eastern Brazil such as the correct phase of dry and wet seasons, onset dates, duration of rainy season and total accumulated precipitation during the summer monsoon for the twentieth century runs. Nevertheless, poor representation of the total monsoonal precipitation over the Amazon and northeast Brazil is observed in a large majority of the models. Overall, MIROC3.2-hires, MIROC3.2-medres and MRI-CGCM3.2.3 show the most realistic representation of SAMS’s characteristics such as onset, duration, total monsoonal precipitation, and its interannual variability. On the other hand, ECHAM5, GFDL-CM2.0 and GFDL-CM2.1 have the least realistic representation of the same characteristics. For the A1B scenario the most coherent feature observed in the IPCC models is a reduction in precipitation over central-eastern Brazil during the summer monsoon, comparatively with the present climate. The IPCC models do not indicate statistically significant changes in SAMS onset and demise dates for the same scenario.  相似文献   

10.
李建平  李艳杰  冯娟 《大气科学》2011,35(5):801-817
西澳大利亚州西南部(SWWA)是西澳大利亚州首府Perth的所在地,也是西澳州政治、经济、文化、教育和旅游的中心.自20世纪中期以来,SWWA地区雨季降水持续减少.本文利用近60年的观测及再分析数据,分析了已知的影响澳大利亚降水的热带海洋模态:厄尔尼诺—南方涛动(ENSO)、印度洋偶极子(IOD)和ENSOModoki...  相似文献   

11.
The South American Summer Monsoon (SASM) is a prominent feature of summertime climate over South America and has been identified in a number of paleoclimatic records from across the continent, including records based on stable isotopes. The relationship between the stable isotopic composition of precipitation and interannual variations in monsoon strength, however, has received little attention so far. Here we investigate how variations in the intensity of the SASM influence δ18O in precipitation based on both observational data and Atmospheric General Circulation Model (AGCM) simulations. An index of vertical wind shear over the SASM entrance (low level) and exit (upper level) region over the western equatorial Atlantic is used to define interannual variations in summer monsoon strength. This index is closely correlated with variations in deep convection over tropical and subtropical South America during the mature stage of the SASM. Observational data from the International Atomic Energy Agency-Global Network of Isotopes in Precipitation (IAEA-GNIP) and from tropical ice cores show a significant negative association between δ18O and SASM strength over the Amazon basin, SE South America and the central Andes. The more depleted stable isotopic values during intense monsoon seasons are consistent with the so-called ’‘amount effect‘’, often observed in tropical regions. In many locations, however, our results indicate that the moisture transport history and the degree of rainout upstream may be more important factors explaining interannual variations in δ18O. In many locations the stable isotopic composition is closely related to El Niño-Southern Oscillation (ENSO), even though the moisture source is located over the tropical Atlantic and precipitation is the result of the southward expansion and intensification of the SASM during austral summer. ENSO induces significant atmospheric circulation anomalies over tropical South America, which affect both SASM precipitation and δ18O variability. Therefore many regions show a weakened relationship between SASM and δ18O, once the SASM signal is decomposed into its ENSO-, and non-ENSO-related variance.  相似文献   

12.
Summary ?Nepal, lying in the southern periphery of the Tibetan Plateau receives about 80% of the total annual rainfall during summer monsoon (June–September). Rainfall analysis shows that summer monsoon is more active in the southern part of Nepal but in the high Himalayas and Trans-Himalayan region other weather systems like western disturbances are also as effective as monsoon in giving rainfall. The influence of Southern Oscillation (SO) in Nepal monsoon rainfall is found to be very significant. The years with significant negative (positive) Southern Oscillation Index (SOI) have less (more) rainfall in most of the cases during the 32-year period. This relationship is also found to vary with time. The years with deficient rainfall are associated most of the times with negative departure of SOI and the composite chart during these occasions shows about 95% area of Nepal experiencing below normal rainfall. Likewise at the time of positive departure of SOI, most of the region (94%) experienced above normal rainfall. There is a good relation between SOI and rainfall over Nepal during monsoon. The correlation coefficient between Nepal monsoon rainfall and monthly SOI shows a statistically significant in-phase relationship during and after monsoon but poor relation during the months prior to monsoon season. These results suggest that monsoon plays an active and effective role on the interannual variability including SOI. Received December 28, 1999/Revised May 22, 2000  相似文献   

13.
Summary Three homogeneous subregions of rainfall anomaly are identified in southern Brazil from the precipitation data for the months of June to September for the period 1960–1993. The area average monthly rainfall of these regions is correlated with the Indian monsoon rainfall index (MRI). The correlations are weak; however some significant negative correlation coefficients of the order of 0.3 or higher are found, indicating that more than normal monsoon activity in July has an effect of reducing the rainfall in southern Brazil in austral winter. The relevance of this result lies in the fact that any rainfall shortage in the midwinter and spring seasons can increase ambiental hazards such as forest fires.With 5 Figures  相似文献   

14.
This study investigates how accurately the interannual variability over the Indian Ocean basin and the relationship between the Indian summer monsoon and the El Niño Southern Oscillation (ENSO) can be simulated by different modelling strategies. With a hierarchy of models, from an atmospherical general circulation model (AGCM) forced by observed SST, to a coupled model with the ocean component limited to the tropical Pacific and Indian Oceans, the role of heat fluxes and of interactive coupling is analyzed. Whenever sea surface temperature anomalies in the Indian basin are created by the coupled model, the inverse relationship between the ENSO index and the Indian summer monsoon rainfall is recovered, and it is preserved if the atmospherical model is forced by the SSTs created by the coupled model. If the ocean model domain is limited to the Indian Ocean, changes in the Walker circulation over the Pacific during El-Niño years induce a decrease of rainfall over the Indian subcontinent. However, the observed correlation between ENSO and the Indian Ocean zonal mode (IOZM) is not properly modelled and the two indices are not significantly correlated, independently on season. Whenever the ocean domain extends to the Pacific, and ENSO can impact both the atmospheric circulation and the ocean subsurface in the equatorial Eastern Indian Ocean, modelled precipitation patterns associated both to ENSO and to the IOZM closely resemble the observations.  相似文献   

15.
ENSO与中国东部地区夏季降水相关性年代际变化特征   总被引:4,自引:2,他引:2  
利用国家气候中心提供的中国160站1951~2000年逐月降水资料,Hadley中心提供的1951~2000年逐月全球海表层温度资料,采用线性相关分析和滑动相关分析方法,探讨了ENSO与中国东部地区夏季降水的年际关系及二者年际关系的年代际变化特征。结果表明,夏季Nino3区海温与中国东部夏季降水年际关系同期相关显著,且二者的年际关系存在明显的年代际变化,年际相关型分3个阶段:,第1阶段(1972年前)为“东西型”,第2阶段(1973~1983年)为“南北型”,第3阶段(1984年后)也为“南北型”。  相似文献   

16.
In the Andes environment, rainfall and temperature can be extremely variable in space and time. The determination of climate variability and climate change needs a special assessment for water management. This paper examines the anomalies of observed monthly rainfall and temperature data from 25 to 16 stations, respectively, from the early 1960s to the 1990s. The stations are located in the Rio Paute Basin in the Ecuador’s Southern Andes. All stations are within the elevation band 1,800 and 4,200?m?a.s.l. and affected by the Tropical Pacific, Amazon, and Tropical Atlantic climate. Anomalies in quantiles were determined for each station and their significance tested. In addition, their correlations with different external climatic influences were studied for anomalies in annual and 3-month seasonal block periods. The results show similar temperature variations for the entire region, which are highly influenced by the El Ni?o–Southern Oscillation, especially during the December–February season. During June–August, the correlation is weaker showing the influence of other climate factors. Higher temperature anomalies are found at the high elevation sites while at deep valley sites the anomalies are less significant. Rainfall variations depend, in addition to elevation, on additional factors such as the aspect orientation, slope, and hydrological regime. The highest and most significant rainfall anomalies are found in the eastern sites.  相似文献   

17.
Extreme climatic events in the Amazon basin   总被引:1,自引:0,他引:1  
During 2009 the Amazon basin was hit by a heavy flooding with a magnitude and duration few times observed in several decades. Torrential rain in northern and eastern Amazonia during the austral summer of 2008–2009 swelled the Amazon River and its tributaries. By July 2009, water levels of the Rio Negro, a major Amazon tributary, reached at Manaus harbor a new record, the highest mark of the last 107?years. During the 2008–2009 hydrological year, the rainy season on northern and northwestern Amazonia started prematurely, and was followed by a longer-than-normal rainy season. An anomalously southward migration of the ITCZ during May–June 2009, due to the warmer than normal surface waters in the tropical South Atlantic, was responsible for abundant rainfall in large regions of eastern Amazonia and Northeast Brazil from May to July 2009. We also compared the flood of 2009 with other major events recorded in 1989 and 1999. The hydrological consequences of this pattern were earlier than normal floods in Amazon northern tributaries, which peak discharges at their confluences with the main stem almost coincided with the peaks of southern tributaries. Since the time displacement of the contribution to the main stem of northern and southern Amazon tributaries is fundamental for damping flood waves in the main stem, the simultaneous combinations of peak discharges of tributaries resulted in an extreme flood.  相似文献   

18.
The southeastern parts of India and Sri Lanka receive substantial rainfall from the northeast monsoon (NEM) during October through December. The interannual variability in NEM rainfall is known to be significantly influenced by the El-Niño/Southern Oscillation (ENSO). Unlike the southwest monsoon (SWM), the NEM rainfall is enhanced during the warm ENSO events, and vice versa. In the context of the recent weakening of the inverse relationship between Southwest Monsoon (SWM) and ENSO, we examine the secular variations in the positive relationship between ENSO and NEM rainfall over South Asia, showing that their relationship has strengthened over the recent years. Based on the analysis of GISST, IMD/CRU precipitation and NCEP/NCAR reanalysis data, we suggest that this secular variation of the relationship is due to epochal changes in the tropospheric circulation associated with ENSO over the region.  相似文献   

19.
A method is described for the analysis of the interannual variability of background atmospheric carbon dioxide concentration. The analysis is carried out on the data from 6 observatories for which records of >8 years were available.A global-scale interannual variation of CO2 concentration in the troposphere with a characteristic time-scale of 2–3 years has been confirmed throughout the period of the records. These variations are estimated to be associated with carbon cycle imbalances of 2–3 Gt or annual net exchanges between the atmosphere and another carbon reservoir(s) at a rate of about 1.2 Gt of carbon per year. Lag correlations and amplitude comparisons between the records suggests a low latitude southern hemisphere origin to this phenomenon.The interannual variations of CO2 increase are found to be correlated with those observed in data for Pacific sea surface temperatures and Pacific witd stress, the Southern Oscillation Index and the Quasi-Biennial Oscillation. However multiple regression studies found that once the Southern Oscillation index is used as an explanatory variable for CO2 variations, the inclusion of additional geophysical variables does not give any significant improvement in the regression.  相似文献   

20.
The spatio-temporal variations of the water budget components in the Amazon region are investigated by using a combination of hydrometeorological observations and moisture fluxes derived from the NCEP/NCAR reanalyses, for the period 1970–1999. The key new finding of this study identifies the major differences in the water balance characteristics and variability between the northern and southern parts of the basin. Our results show that there is a seasonality and interannual variability of the water balance that varies across the basin. At interannual time scales, anomalies in the water balance components in the northern Amazon region show relatively stronger links with tropical Pacific interannual variability. Over the entire region, precipitation exceeds evaporation and the basin acts as a sink of moisture (P>E). However, on some occasions the basin can act as a source for moisture (P<E) under extreme conditions, such as those related to deficient rainfall in northern Amazonia during the strong El Niño of 1983. Our estimates of the Amazon regions water balance do not show a closure of the budget, with an average imbalance of almost 50%, suggesting that some of the moisture that converges in the Amazon region is not accounted for. The imbalance is larger over the southern Amazon region than over the northern region, and it also exhibits interannual variability. Large uncertainties are detected in the evaporation and moisture-convergence fields derived from the reanalyses, and in the case of evaporation it can be as large as 10–20% when compared with the few field observations across the basin. Observed precipitation fields derived from station data and from grid-box products also show some discrepancies due to sampling problems and interpolation techniques. The streamflow observed at the mouth of the river is obtained after corrections on the series observed taken at a gauging site almost 200 km inland. However, variability in the evaporation, moisture convergence, and observed rainfall and runoff matches quite well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号